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Chapter 1

Introduction to the MPI Journal

of Development

During the course of the two years that the MPI Forum convened, many ideas were explored

that are not included in the MPI-2 Standard. In some cases the ideas were not deemed

�nished enough to be considered formally. In others, much work was invested in re�ning the

speci�cations, but in the end the Forum, after thorough consideration, voted the material

out of the Standard. In a third case, an entire chapter was withdrawn from consideration

for inclusion when it was realized that it could not be �nished in time for the release of the

Standard.

This document is not part of the MPI Standard in any way. It was thought, however,

that the work invested in these topics should be preserved in some form. Those who

wish to implement the functionality described here, as extensions to MPI, might �nd the

trial speci�cations described here useful, but are not bound in any way by them. If at

some future date the MPI Forum reconvenes and wishes to add some of this functionality as

o�cial extensions to theMPI speci�cation, it is not bound by any \backward compatibility"

restrictions to conform with this Journal of Development. If someone does implement the

functionality described here, the MPI pre�x should not be used, since these functions are

not part of the MPI Standard.

The chapters of the Journal of Development vary in the amount of consideration they

were given by the Forum and the way they found their way into the Journal of Development:

The chapters in the JOD are

� Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-

cess management, in particular management of processes with which the spawning

processes do not intend to communicate, that the Forum discussed at length but

ultimately decided not to include in the MPI Standard.

� Chapter 3, Threads and MPI, describes what it might look like to incorporate into MPI

some functions normally associated with threads and shared variables.

� Chapter 4, Communicator ID, describes an approach to providing names for commu-

nicators. The MPI-1 Forum carefully de�ned communicators so that communicator

creation need not always be a synchronizing operation. This makes the notion of a

global identi�er for each communicator problematic. An approach to the problem is

discussed in this chapter.
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2 CHAPTER 1. INTRODUCTION TO THE MPI JOURNAL OF DEVELOPMENT

� Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-

lar single-copy routines for use in shared-memory environments and new datatype

constructors.

� Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a

more elaborate Fortran 90 interface.

� Chapter 7, Two-phase Collective Communication, describes a speci�cation for certain

non-blocking collective operations. The Forum spent considerable time discussing

non-blocking collective operations, which present di�cult implementation issues, par-

ticularly in the absence of threads. In the end, non-blocking collective operations were

�rst replaced by the related \two-phase" collective operations, which o�er many of the

same advantages as non-blocking operations, but eventually decided not to include

them in the Standard. The speci�cations are presented in this chapter.

� Chapter 8, Real Time, discusses MPI support for real time processing. Real-time

requirements suggest both additions to, and subtractions from, the MPI-1 and MPI-2

speci�cations. The real-time subcommittee of the MPI Forum invested considerable

work in this chapter, but eventually decided not to propose it for inclusion in the

MPI-2 Standard. The work to produce a speci�cation for a real-time message-passing

library that will be strongly related to the MPI speci�cation is ongoing.
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Chapter 2

Spawning Independent Processes

These sections of the Dynamic Process chapter received thorough consideration and even

received one vote of approval. They failed to receive the required second vote, however.

The functions described here deal with spawning and managing processes with which the

spawning processes do not intend to communicate. They are designed to be consistent with

mpifuncMPI SOMM SPAWN.

2.1 Starting Independent Processes

This section describes how to spawn independent processes, that is, processes that do not

communicate with their parent. These may be MPI processes (i.e., processes that call

MPI INIT) or not.

MPI SPAWN INDEPENDENT(command, argv, maxprocs, info, 
ag, group, array of errcodes)

IN command name of program to be started (string)

IN argv arguments to command (array of strings)

IN maxprocs maximum number of processes to start (integer)

IN info info object telling the runtime system where and how

to start the processes (handle)

IN 
ag says whether processes are MPI processes or not (in-

teger)

OUT group group of spawned processes (handle)

OUT array of errcodes one code per process (array of integer)

int MPI Spawn independent(char command[], char* argv[], int maxprocs,

MPI Info info, int flag, MPI Group* group,

int array of errcodes[])

MPI::Group::Spawn independent(const char command[], const char* argv[],

int maxprocs, const MPI::Info& info, int flag,

int array of errcodes[])
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4 CHAPTER 2. SPAWNING INDEPENDENT PROCESSES

MPI SPAWN INDEPENDENT(COMMAND, ARGV, MAXPROCS, INFO, FLAG, GROUP,

ARRAY OF ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, FLAG, GROUP, ARRAY OF ERRCODES(*), IERROR

This routine spawns a set of processes that do not establish communication with the

parent processes. It therefore returns a group instead of an intercommunicator. It is not

collective, and is called on a single process. The 
ag argument speci�es whether or not the

children are MPI processes, that is, whether or not they call MPI INIT. In other respects,

this routine is similar to MPI SPAWN.

2.1.1 MPI processes

If 
ag has the value MPI MPI then MPI SPAWN INDEPENDENT is identical to MPI SPAWN

except that it does not establish communication with the children, returning an MPI group

rather than an intercommunicator, and it is not collective. Successful completion does not

indicate that the processes have called MPI INIT successfully, only that the processes were

started successfully.

The child processes are required to call MPI INIT when 
ag is MPI MPI. All children

spawned in a single call to MPI SPAWN INDEPENDENT have the same

MPI COMM WORLD, which is separate from that of the parent. In the children,

MPI COMM PARENT has an empty remote group.

2.1.2 Non-MPI processes

If 
ag has the value MPI NONMPI then the child processes are assumed to be non-MPI

processes. MPI SPAWN INDEPENDENT is not required to do any special setup to ensure

that a call to MPI INIT in the children will be able to establish communication among the

children. The e�ect of calling MPI INIT in the children is unde�ned (but see advice to

implementors in Section 5.5.2 of the MPI-2 document).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



2.2. STARTING MULTIPLE INDEPENDENT PROCESSES 5

2.2 Starting multiple independent processes

MPI SPAWN MULTIPLE INDEPENDENT(count, array of commands, array of argv,

array of maxprocs, array of info, 
ag, group, array of errcodes)

IN count Number of commands (integer, size of each of the fol-

lowing arrays)

IN array of commands programs to be executed (array of strings)

IN array of argv arguments for commands (array of array of strings)

IN array of maxprocs maximumnumber of processes for each command line

to start (array of integers)

IN array of info info objects telling the runtime system where and how

to start processes (array of handles)

IN 
ag says whether processes are MPI processes or not (in-

teger)

OUT group group of spawned processes (handle)

OUT array of errcodes one error code per process (array of integer)

int MPI Spawn multiple independent(int count, char* array of commands[],

char** array of argv[], int array of maxprocs[],

MPI Info array of info[], int flag, MPI Group* group,

int array of errcodes[])

MPI::Group::Spawn multiple independent(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int flag, int array of errcodes[])

MPI SPAWN MULTIPLE INDEPENDENT(COUNT, ARRAY OF COMMANDS, ARRAY OF ARGV,

ARRAY OF MAXPROCS, ARRAY OF INFO, FLAG, GROUP,

ARRAY OF ERRCODES, IERROR)

INTEGER COUNT, ARRAY OF INFO, ARRAY OF MAXPROCS, FLAG, GROUP,

ARRAY OF ERRCODES(*), IERROR

CHARACTER*(*) ARRAY OF COMMANDS(*), ARRAY OF ARGV(COUNT, *)

MPI SPAWN MULTIPLE INDEPENDENT is identical to MPI SPAWN INDEPENDENT

except that there are multiple executable speci�cations. The �rst argument,

count, gives the number of speci�cations. Each of the next four arguments are simply

arrays of the corresponding arguments in MPI SPAWN INDEPENDENT. See the description

of MPI SPAWN MULTIPLE (Section 5.3.3 of the MPI-2 document) for an explanation of

array of argv in Fortran.
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6 CHAPTER 2. SPAWNING INDEPENDENT PROCESSES

2.3 Nonblocking operations

MPI ISPAWN INDEPENDENT(command, argv, maxprocs, info, 
ag, group, array of errcodes,

request)

IN command name of program to be started (string)

IN argv arguments to command (array of strings)

IN maxprocs maximum number of processes to start (integer)

IN info info object telling the runtime system where and how

to start the processes (handle)

IN 
ag says whether processes are MPI processes or not (in-

teger)

OUT group group of spawned processes (handle)

OUT array of errcodes one code per process (array of integer)

OUT request request object (handle)

int MPI Ispawn independent(char command[], char* argv[], int maxprocs,

MPI Info info, int flag, MPI Group* group,

int array of errcodes[], MPI Request* request)

MPI::Group::Ispawn independent(const char command[], const char* argv[],

int maxprocs, const MPI::Info& info, int flag,

int array of errcodes[], MPI::Request& request)

MPI SPAWN INDEPENDENT(COMMAND, ARGV, MAXPROCS, INFO, FLAG, GROUP,

ARRAY OF ERRCODES, REQUEST, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, FLAG, GROUP, ARRAY OF ERRCODES(*), REQUEST,

IERROR
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2.4. SIGNALLING PROCESSES 7

MPI ISPAWN MULTIPLE INDEPENDENT(count, array of commands, array of argv,

array of maxprocs, array of info, 
ag, group, array of errcodes, request)

IN count Number of commands (integer, size of each of the fol-

lowing arrays)

IN array of commands programs to be executed (array of strings)

IN array of argv arguments for commands (array of array of strings)

IN array of maxprocs maximumnumber of processes for each command line

to start (array of integers)

IN array of info info objects telling the runtime system where and how

to start processes (array of handles)

IN 
ag says whether processes are MPI processes or not (in-

teger)

OUT group group of spawned processes (handle)

OUT array of errcodes one error code per process (array of integer)

OUT request request object (handle)

int MPI Ispawn multiple independent(int count, char* array of commands[],

char** array of argv[], int array of maxprocs[],

MPI Info array of info[], int flag, MPI Group* group,

int array of errcodes[], MPI Request* request)

MPI::Group::Ispawn multiple independent(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int flag, const int array of errcodes[],

MPI::Request& request)

MPI ISPAWN MULTIPLE INDEPENDENT(COUNT, ARRAY OF COMMANDS, ARRAY OF ARGV,

ARRAY OF MAXPROCS, ARRAY OF INFO, FLAG, GROUP,

ARRAY OF ERRCODES, REQUEST, IERROR)

INTEGER COUNT, ARRAY OF INFO, ARRAY OF MAXPROCS, FLAG,GROUP,

ARRAY OF ERRCODES(*), REQUEST, IERROR

CHARACTER*(*) ARRAY OF COMMANDS(*), ARRAY OF ARGV(COUNT, *)

2.4 Signalling Processes

It is not possible to send messages to a process represented only by a (group, rank) pair.

For instance, it is not possible to send a message to an MPI process spawned by

MPI SPAWN INDEPENDENT, since no communicator is available.

Here we describe simple mechanisms to manage such processes. MPI SIGNAL sends a

signal to a process, and MPI PROCESS MONITOR provides a mechanism to detect when a

process dies or changes state.
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8 CHAPTER 2. SPAWNING INDEPENDENT PROCESSES

MPI SIGNAL(group, rank, signal)

IN group group containing process to signal (handle)

IN rank rank of process to signal (integer)

IN signal signal type (integer)

int MPI Signal(MPI Group group, int rank, int signal)

MPI::Group::Signal(int rank, int signal) const

MPI SIGNAL(GROUP, RANK, SIGNAL, IERROR)

INTEGER GROUP, RANK, SIGNAL, IERROR

MPI SIGNAL sends a signal to a process represented by a (group, rank) pair. If rank is

MPI ANY SOURCE, the signal is sent to every process in the group.

Where POSIX signals are supported, signal is a signal de�ned by POSIX. It is the

responsibility of an implementation to translate between signals; in other words, a SIGINT

that has value 3 on system A must be delivered as a SIGINT on system B, even if system B

uses the value 5 for SIGINT. If there is no corresponding signal, the operation is erroneous

and the result is unde�ned.

An MPI implementation must also support the MPI-de�ned signal type

MPI SIGNAL KILL. Sending this \signal" will reliably kill a process and attempt to do

the necessary system-level cleanup. In order to allow appropriate cleanup to occur, an

implementation could, for instance, send a catchable signal (e.g., SIGINT) followed by a

noncatchable signal (SIGKILL) if the process had not exited after a short time interval.

MPI requires only that the process be reliably killed. Applications should not rely on a

speci�c implementation.

Signals are delivered asynchronously. That is, when the MPI SIGNAL function returns,

the signal may not yet have been delivered. If a signal is undeliverable (e.g., the process

has already exited), the signal is silently dropped.

If an MPI implementation can determine, at the time MPI SIGNAL is called, that the

process is already dead, it may return the error MPI ERR NOPROCESS. If MPI ANY SOURCE

had been speci�ed and some of the processes are known to be dead while others are not, no

error is returned.

Advice to users. Signals do not provide any of the reliability or guarantees of regular

MPI communication. A high quality implementation will deliver signals quickly and

reliably, but applications should never depend on ordering. For example, a signal sent

after a message may arrive before the message does. Since signals may not be queued,

when multiple signals are sent, only one may get through. Some MPI implementations

may use signals internally. If an application attempts to use these signals, unexpected

behavior may result. Finally, it may not be possible at the implementation level to

restrict the e�ects of a signal to a single MPI process, so that a side-e�ect of sending a

signal to a process may be that other processes receive that signal or are killed. (End

of advice to users.)
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2.5. NOTIFICATION OF CHANGE IN STATE OF A PROCESS 9

2.5 Noti�cation of change in state of a process

In order to manage processes anMPI application must be able to be noti�ed when a process

exits.

MPI PROCESS MONITOR(group, rank, event, request)

IN group a group of processes (handle)

IN rank rank of process to be monitored (integer)

IN event a 
ag specifying what event to be noti�ed about (in-

teger)

OUT request a request object (handle)

int MPI Process monitor(MPI Group group, int rank, int event,

MPI Request* request)

MPI::Group::Process monitor(int rank, int event, MPI::Request& request)

MPI PROCESS MONITOR(GROUP, RANK, EVENT, REQUEST, IERROR)

INTEGER GROUP, RANK, EVENT, REQUEST(*), IERROR

This function provides a general method for an MPI process to detect a change in state

of another process. The request completes when the process changes state as indicated by

event.

event is an integer specifying a change of state that the calling process wishes to detect.

The most important state-change and the only one MPI currently de�nes for event is

MPI PROCESS DIED. For this case, request completes when the process terminates. If a

process has already terminated, the request completes immediately. Process termination

is de�ned by the implementation, and may conceivably include cases where a process has

become unreachable or whose status cannot be determined. If an application wants to

be noti�ed of several di�erent events, it must call MPI MONITOR once for each event. If

multiple requests are active for a single type of event, all requests will complete when the

event occurs.

A request generated by MPI PROCESS MONITOR must progress regardless of whether

any other MPI functions are called. MPI REQUEST FREE on a monitor request deletes the

request.

Advice to users. As in other cases in MPI, freeing the request marks it for deletion

but does not necessarily complete the request. Therefore a handler associated with a

MPI PROCESS MONITOR request may be called after the request is freed. To prevent

MPI from continuing to perform action on behalf of the request, it is necessary to call

MPI CANCEL. (End of advice to users.)

Future versions of the MPI standard may specify new types of events, and implementations

may de�ne new ones as well. If an application wants to be noti�ed of several di�erent

events, it must call MPI PROCSSS MONITOR once for each event.

For a request generated byMPI PROCESS MONITOR,MPI WAIT returns a status that

contains no useful information (i.e., the status is unde�ned).
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10 CHAPTER 2. SPAWNING INDEPENDENT PROCESSES

Rationale. Another possibility would be to get the exit code from the status. How-

ever, the process may not have exited - it may have become unreachable. It may also

have been killed by a signal and what we'd want to know is what signal killed it. In

the end, we might have to reimplement Unix wait(). (End of rationale.)

MPI GROUP MONITOR(group, event, array of requests)

IN group a group of processes (handle)

IN event a 
ag specifying what event to be noti�ed about (in-

teger)

OUT array of requests array of request objects (array of handles)

int MPI Group monitor(MPI Group group, int event,

MPI Request array of requests[])

MPI::Group::Monitor(int event, MPI::Request array of requests[]) const

MPI GROUP MONITOR(GROUP, EVENT, ARRAY OF REQUESTS, IERROR)

INTEGER GROUP, EVENT, ARRAY OF REQUESTS(*), IERROR

This convenience function is equivalent to calling MPI PROCESS MONITOR once for

each process in group. The ith element (numbered from 0) of array of requests is associated

with rank i in the group. array of requests must have a number of elements greater than or

equal to the size of group.
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Chapter 3

Threads and MPI

This chapter contains a proposed de�nition of what mutexes and conditional variables would

look like if integrated into a threaded MPI library. It was not voted on.

3.1 Global thread functions

It is useful to extend thread coordination functions to work across an MPI group of pro-

cesses, including processes not under the same kernel. Such extensions can be implemented

portably using MPI communication (with handlers) and proxies at each node to support

the functions globally (of course, much more e�cient implementations will be possible on

many systems).

These functions can also be used to synchronize threads within one process, using the

communicator MPI COMM SELF.

We outline below some possible choices.

3.1.1 Mutexes

MPI MUTEX CREATE(comm, mutex attr, mutex)

IN comm communicator for group sharing mutex

IN mutex attr info object for mutex attributes

OUT mutex mutex object

int MPI Mutex create(MPI Comm comm, MPI Info mutex attr, MPI mutex mutex)

MPI MUTEX CREATE(COMM, MUTEX ATTR, MUTEX, IERROR)

INTEGER COMM, MUTEX ATTR, MUTEX, IERROR

MPI::Mutex::Create(const MPI::Comm& comm, const MPI::Mutex attr&

mutex attr)

Missing: Need to specify prede�ned mutex attributes. No avoid problems with priority

inversion, may need to require that all processes in the group of comm have the same priority
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12 CHAPTER 3. THREADS AND MPI

ceiling. If left implementation dependant, could be a problem in strongly typed languages such as

C++.

Creates a mutex object that is shared by all processes in the group of comm. (One could,

instead, return a newcomm and further overload communicators.) This is the extension of

pthread mutex init

MPI MUTEX FREE(mutex)

INOUT mutex mutex object

int MPI Mutex free(MPI Mutex *mutex)

MPI MUTEX FREE(MUTEX, IERROR)

INTEGER MUTEX, IERROR

MPI::Mutex::Free(void)

Free the mutex object (should that be collective?) This is the extension to

pthread mutex destroy (POSIX says that the behavior of a pthread mutex destroy call on

a locked mutex is unde�ned. We can leave it this way, or have our usual, more lenient

implementation of free, that waits until objects are not busy. The later is consistent both

with POSIX and with MPI, but may not be consistent with current implementations of

POSIX threads.)

MPI MUTEX LOCK(mutex)

INOUT mutex mutex to be locked

int MPI Mutex lock(MPI Mutex mutex)

MPI MUTEX LOCK(MUTEX, IERROR)

INTEGER MUTEX, IERROR

MPI::Mutex::Lock(void)

MPI MUTEX TRYLOCK(mutex, 
ag)

INOUT mutex mutex to be locked

OUT 
ag success 
ag (boolean)

int MPI Mutex trylock(MPI Mutex mutex, int *flag)

MPI MUTEX TRYLOCK(MUTEX, FLAG, IERROR)

INTEGER MUTEX, FLAG, IERROR

MPI::Mutex::Trylock(int& flag)
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3.1. GLOBAL THREAD FUNCTIONS 13

MPI MUTEX UNLOCK(mutex)

INOUT mutex mutex to be unlocked

int MPI Mutex unlock(MPI Mutex mutex)

MPI MUTEX UNLOCK(MUTEX, IERROR)

INTEGER MUTEX, IERROR

MPI::Mutex::Unlock(void)

These are the extensions of the POSIX calls pthread mutex lock, pthread mutex unlock

and pthread mutex unlock. The lock call is blocking (like a wait), whereas the trylock

function in nonblocking, like a test.

3.1.2 Condition variables

MPI COND CREATE(comm, cond attr, cond)

IN comm communicator for group sharing condition variable

IN cond attr info object for condition attributes

OUT cond condition object

int MPI Cond create(MPI Comm comm, MPI Info cond attr, MPI Cond *cond)

MPI COND CREATE(COMM, COND ATTR, COND, IERROR)

INTEGER COMM, COND ATTR, COND, IERROR

MPI::Cond::Create(const MPI::Comm& comm, const MPI::Info& cond attr)

Creates a condition variable that is shared by all processes in the group of comm. (We

could, here, too, overload communicators, rather than having a new opaque object.)

MPI COND FREE(cond)

INOUT cond condition object

int MPI Cond free(MPI Cond *cond)

MPI COND FREE(COND, IERROR)

INTEGER COND, IERROR

MPI::Cond::Free(void)

Free the condition object.

These are the MPI extensions to pthread cond init and pthread cond destroy.
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14 CHAPTER 3. THREADS AND MPI

MPI COND SIGNAL(cond)

INOUT cond condition to be signaled

int MPI Cond signal(MPI Cond cond)

MPI COND SIGNAL(COND, IERROR)

INTEGER COND, IERROR

MPI::Cond::Signal(void)

MPI COND BROADCAST(cond)

INOUT cond condition to be signaled

int MPI Cond broadcast(MPI Cond cond)

MPI COND BROADCAST(COND, IERROR)

INTEGER COND, IERROR

MPI::Cond::Broadcast(void)

MPI COND WAIT(cond)

INOUT cond condition to wait on

int MPI Cond wait(MPI Cond cond)

MPI COND WAIT(COND, IERROR)

INTEGER COND, IERROR

MPI::Cond::Wait(void)

These are the MPI extensions of the POSIX calls pthread cond signal,

pthread cond broadcast, and pthread cond wait. The cond wait call is blocking. The

cond signal call unblocks at least one of the threads waiting on the condition (if any) and

the cond broadcast call unblocks all threads that are waiting on the condition.
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Chapter 4

Communicator ID

This chapter contains a proposal to give communicators identi�ers. The Forum voted, after

lengthy discussion, not to include it in the standard.

Pro�ling libraries often want a communicator ID so they can associate calls that occur

on the same communicator. This is also useful since processes can have the same rank in

di�erent communicators or the same process can be involved in di�erent communicators.

Thus, the following call is given:

MPI COMMUNICATOR ID(comm, id)

IN comm Communicator to return id of (handle)

OUT id id of comm (integer)

int MPI Communicator id(MPI Comm comm, int *id)

MPI COMMUNICATOR ID(COMM, ID, IERROR)

INTEGER COMM, ID, IERROR

MPI::Comm::Id(int& id) const

Advice to implementors. The above function can be implemented as a macro in C

and Fortran, and as an inline in C++. (End of advice to implementors.)

Rationale. Since these functions are likely to be used in pro�ling libraries, minimizing

the overhead is very important. Allowing the use of a macro or inline function helps to

accomplish this. When using a macro, the only loss is the error code but this seemed

acceptable. (End of rationale.)

To specify the uniqueness of ID returned, the key MPI COMM ID IS UNIQUE is available

on MPI COMM WORLD. This attribute returns one of the following values:

MPI COMM ID UNIQUE Means that the values returned by MPI COMMUNICATOR ID are

unique for each communicator (on di�erent processes) and for the entire MPI job. In

the unlikely event that the number of communicators created exceeds the range of

an int in C or C++ and INTEGER in Fortran, the implementation may then begin

reusing values previously used. At that point, the implementation should not reuse a

value another time until it has once again used up all the values that ID can hold.
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16 CHAPTER 4. COMMUNICATOR ID

MPI COMM ID NOT UNIQUE The value returned in ID does not meet the requirements to be

MPI COMM ID UNIQUE.

Rationale. Most libraries would prefer a globally unique communicator ID. However,

MPI was carefully speci�ed so as to avoid needing such a value in an implementation.

This was done to reduce potential overheads in communicator creation. Requiring

that a communicator ID be unique could add overhead to all communicators in some

implementations. However, some implementations may already have a unique ID that

can be given for no additional cost. This key allows for both possibilities.

The attribute key is placed on MPI COMM WORLD since it is felt that it is only really

useful if it is true throughout the complete job. (End of rationale.)

Advice to users. Intercommunicators can represent a problem. This occurs since

there are two groups which have overlapping ranks but the ID is only unique to

the intercommunicator. The alternative is to make the ID unique to the group in an

intercommunicator. However, this would make it more di�cult to associate operations

which work on the whole intercommunicator, e.g.,MPI BARRIER. Having di�erent IDs

for the di�erent groups would make the semantics di�erent between inter- and intra-

communicators. For this reason an intercommunicator returns a unique value for all

members. (End of advice to users.)

Discussion:

The above proposal has the following problem. Suppose you have two communicators which
were created by separate MPI jobs. By using, for example, the server capabilities in the dynamic
chapter, the two comms are joined into a single intercomm. The two original intracomms are now,
in some regards, part of the same MPI job. They may have had the same comm id before they were
joined. It does not seem possible make sure they will be unique in this circumstance. One possible
solution is to note this problem and say that the two original comms cannot communicate and aren't
really part of one MPI job. Only the new intercomm is and this must be unique.
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Chapter 5

Miscellany

This chapter contains the MPI Forum's work on a number of proposals. Two new datatype

constructors were designed, but concern over the details of how they might be implemented

prevented them from being voted in. In addition, there are proposals that take advantage

of single-copy possibilities for message-passing on shared-memory machines. These were

not discussed in detail and were not voted on.

5.1 New Datatype Constructors

5.1.1 Simple Struct Types

MPI TYPE SIMPLE STRUCT(count, array of blocklengths, array of types, newtype)

IN count number of blocks (integer)

IN array of blocklengths number of elements in each block (array of integer)

IN array of types type of elements in each block (array of handle)

OUT newtype new datatype (handle)

This datatype constructor is present to allow portable struct datatypes to be con-

structed. A portable datatype is a basic datatype or a datatype constructed from portable

datatypes using one of the constructors MPI TYPE CONTIGUOUS, MPI TYPE VECTOR,

MPI TYPE INDEXED, or MPI TYPE SIMPLE STRUCT.

This type constructor is similar to MPI TYPE STRUCT, except that the user does

not supply an array of displacements. Instead, the successive blocks are assumed to be

contiguous. Padding spaces are added, according to the default alignment rules for structure

components. This facilitates the construction of datatypes for structures, as the user need

not compute displacements.

This can probably be more elegantly expressed in terms of extents.

Example 5.1 The following code declares a structure type and creates a datatype for that

structure type.

struct record {

char name;
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18 CHAPTER 5. MISCELLANY

double position[3];

float mass;

}

MPI_Datatype record_type;

MPI_datatype types[3] = {MPI_CHAR, MPI_DOUBLE, MPI_FLOAT};

int lengths[3] = {1, 3, 1};

MPI_Type_simple_struct( 3, lengths, types, record_type);

Rationale. The code above is much simpler and more natural than the current

approach, that uses MPI TYPE STRUCT, and requires to compute displacements.

It also provides a de�nition of the record type that is architecture independent (as-

suming that compilers don't �ddle with the order of �elds, which is true in C) { this

facilitates transfer of records using RMA, an �ts well with various proposals for third

party transfers. (End of rationale.)

Advice to users. Datatypes constructed using MPI TYPE SIMPLE STRUCT should

be used only for structures that use the default alignment rules. They should not

be used if alignment rules have been changed, using compiler options or compilation

pragmas. (End of advice to users.)

Advice to implementors. The datatype constructor MPI TYPE SIMPLE STRUCT is

most easily implemented on systems that use natural data alignment rules. On such

systems, each basic datatype has an extent and an alignment; the alignment of a com-

pound type is the strictest alignment of a component. Padding is added so that each

component is aligned at its natural alignment. We can then derive obvious de�nitions

for the extent and alignment of portable MPI datatypes:

The extent and alignment of a basic datatype is the extent and alignment of the cor-

responding language type.

The alignment of a datatype built with one of the constructors

MPI TYPE CONTIGUOUS, MPI TYPE VECTOR, andMPI TYPE INDEXED is the align-

ment of the component datatype; the extent of the compound datatype is as de�ned

in MPI-1.

The alignment of a datatype built by a call to MPI TYPE SIMPLE STRUCT(n, lens,

types, newtype) is maxi alignment(types[i]); the extent is computed by laying out

the components with minimal padding added so that each component starts at its

alignment.

Some compilers treat the �rst component of a structure di�erently. E.g., the IBM

compiler aligns doubles at word boundaries, but align a structure that starts with a

double component at doubleword boundaries. The de�nition of the alignment of a

datatype built with MPI TYPE SIMPLE STRUCT is changed, accordingly. (End of

advice to implementors.)

5.1.2 Contiguous Struct Types

Data structures may contain padding holes, added for alignment. The de�nition of an

MPI datatype, done using the MPI TYPE STRUCT constructor, does not distinguish be-

tween holes that contain no signi�cant data, and are there only for alignment purposes,
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5.1. NEW DATATYPE CONSTRUCTORS 19

and between holes that may contain signi�cant data and were purposefully left out by a

user that wishes not to overwrite some of the information in a structure. As a result,

MPI cannot overwrite these holes, and this prevents the obvious optimization of shipping a

data structure as a contiguous block of data, padding holes included. The type constructor

MPI TYPE CONTIGUOUS STRUCT marks any such holes as \don't-care" locations, allow-

ing the implementation to overwrite them.

MPI TYPE CONTIGUOUS STRUCT(count, array of blocklengths, array of displacements, ar-

ray of types, newtype)

IN count number of blocks (integer)

IN array of blocklengths number of elements in each block (array of integer)

IN array of displacements byte displacement of each block (array of integer)

IN array of types type of elements in each block (array of handle)

OUT newtype new datatype (handle)

The semantics of MPI TYPE CONTIGUOUS STRUCT are identical to

MPI TYPE STRUCT, except that, if a receive call uses a datatype constructed with this

constructor, then the internal holes in the structure can be overwritten. The same rule

(namely, that holes between components can be overwritten) applies also to datatypes

constructed using MPI TYPE SIMPLE STRUCT.

Discussion: It is reasonable to assume that holes in layouts de�ned using

MPI TYPE SIMPLE STRUCT contain no signi�cant information, since this datatype constructor is

expected to be used for specifying the layout of structures. Users will be required to use

MPI TYPE STRUCT when holes hold signi�cant information.

Advice to users. Users should arrange the �elds in a C struct type in descending order

of their size. This arrangement has two advantages: �rstly it may reduce the size of

the struct by eliminating padding between elements with di�erent alignments (this

is generally true for C programs). Secondly, it may increase the number of cases for

which the implementation can perform block copies by ensuring that the �rst element

of the structure has the most stringent alignment requirements. (End of advice to

users.)

Advice to implementors. An implementation may ignore the constructor

MPI TYPE CONTIGUOUS STRUCT, and handle it exactly as MPI TYPE STRUCT.

Thus, there is (almost) no overhead in supporting this constructor, without taking

advantage of it. One possible way of taking advantage of it, is to adopt a canonical

\wire" representation for structures. Suppose that the compiler uses, by default,

natural alignment rules for structures: each basic component is aligned at a natural

boundary. Suppose that one adopts natural alignment rules for messages on the wire,

in a homogeneous environment: messages are padded so that each basic element is

aligned at a natural boundary. Then

(1) A receiver can always decode an incoming message and retrieve correctly the

basic components. This because the basic datatype of the element indicates at what
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20 CHAPTER 5. MISCELLANY

boundary it is aligned.

(2) A sender can block copy a structure onto the \wire" (most likely, onto a message

bu�er), when the structure is naturally aligned, relative to the start of the sending

bu�er. This optimization does not require that the sending datatype be built using

MPI TYPE CONTIGUOUS STRUCT: The MPI library can scan datatypes, when they

are committed, and recognize when a datatype (or a datatype fragment) is naturally

aligned. Block copying can be used even if the holes in the datatype contain signi�cant

information.

(3) A receiver can block copy an incoming message onto the receive bu�er when the

receiving structure is naturally aligned relative to the start of the receiving bu�er and

holes can be ignored. I.e., when the receiving datatype is built using

MPI TYPE CONTIGUOUS STRUCT orMPI TYPE SIMPLE STRUCT and is naturally

aligned, relative to its �rst position.

The same wire representation may be used in a heterogenous environment, in cases

where data conversion is done at the destination; the destination has to know, not

only the basic datatypes used by the source, but also the alignment rules used by the

source.

Example: Consider a C structure struct {char a[2]; float b[2]; double c};

assume that 
oats are 4 bytes and doubles are 8 bytes, and structures are naturally

aligned. The memory layout is [c][c]xx[ffff][ffff]xxxx[dddddddd], and the

structure is aligned to an 8 byte boundary.

Case 1: The entire structure is communicated. Sender constructs a datatype for

structure using MPI TYPE STRUCT, MPI TYPE SIMPLE STRUCT or

MPI TYPE CONTIGUOUS STRUCT; receiver constructs a datatype for this structure,

using MPI CONTIGUOUS STRUCT or MPI TYPE SIMPLE STRUCT. Then the lay-

outs in the sender memory, on the wire, and in the receiver memory are identical, and

data can be simply copied.

Case 2: communication involves only the second of the two characters, and the re-

mainder of the structure. Receiver constructs the datatype using

MPI CONTIGUOUS STRUCT. The memory layout is [c]xx[ffff][ffff]xxxx[dddddddd],

and the wire layout is [c]xxx[ffff][ffff]xxxx[dddddddd]. The datatype is not

naturally aligned, so that block copying cannot be used at the sender or the receiver.

However, a smart implementation may realize that the fragment starting from the


oat is naturally aligned, relative to the start of the bu�er, so that block copying can

be used for this fragment.

Case 3: communication involves only the two 
oats and the double. The memory

layout is [ffff][ffff]xxxx[dddddddd]. The layout on the wire is

[ffff][ffff][dddddddd]. The datatype is not naturally aligned, relative to its start,

so that block copying cannot be used. (End of advice to implementors.)

Alternatives:

1. No new function MPI TYPE CONTIGUOUS STRUCT: instead, holes can be overwritten only
for datatypes built with MPI TYPE SIMPLE STRUCT. The argument is that, at least in the
scenario I presented, hole overwriting is taken advantage of only for structures with a natural
alignment. But, then, their layout can be speci�ed using MPI TYPE SIMPLE STRUCT.
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5.2. TWO PROCESS \SHARED" BUFFERS 21

2. Both sender and receiver are required to use MPI TYPE CONTIGUOUS STRUCT, and the
datatypes on both ends have to be structurally equivalent, i.e., de�ned by the same sequence
of de�nitions. There are several possible variants for such proposal

(a) This construct can be only used in a homogeneous environment. But, then, we lose
portability to heterogeneous environment, and we achieve little that could not be achieved by
using MPI BYTE.

(b) This construct can be used portably, with enhanced performance obtained in a homo-
geneous environment. E.g., a homogeneous implementation will use block copying, while
a heterogeneous implementation will move element by element (at least, for heterogeneous
communicators). This assumes that, in a homogeneous environment, di�erent processes are
compiled with the same data alignment options. Also, this runs counter the datatype matching
rules in MPI, where only signature matching is required.

(c) MPI TYPE CONTIGUOUS STRUCT can be matched with other datatypes, as long as sig-
natures match; improved performance is achieved when both ends use
MPI TYPE CONTIGUOUS STRUCT. But, then, the wire protocol must be so that individ-
ual elements can be extracted, in case the receiver does not use
MPI TYPE CONTIGUOUS STRUCT. In this case, asking the sender to use
MPI TYPE CONTIGUOUS STRUCT does not provide additional function over the main pro-
posal. The di�erence is only whether the use asserts that the sending datatype has a natural
layout (using MPI TYPE CONTIGUOUS STRUCT), or whether MPI discovers that fact by
itself.

5.2 Two Process \Shared" Bu�ers

It is not uncommon for a pair of processes to engage in frequent pre-determined communi-

cations. On example of such a code is a pipeline algorithm in which process A creates data

that is subsequently used by process B. Another example is a �nite di�erence approxima-

tion model when communicating boundary values (a.k.a. ghost points). On a machine with

shared memory, it is possible to share a common bu�er to use for exchanging such data.

Ownership of the bu�er must be established in order for a process to safely �ll or empty the

bu�er. This can be expressed as a produce/comsume relationship. This functionality can

be expressed in such a way that it should be no less e�cient when using MPI Send/Recv on

a distributed memory machine and is simply a pointer pass on shared memory machines.

Discussion: This proposal is prompted by s proposal titled: "In�nite asymptotic bandwidth
for thread communication"

We have a similiar protocol inside our system when we work on shared memory machines.
Important to us is not only the bandwidth and latency, but also lightweight 
ow-control. The
proposal in its current form solves our problem in particular, but we feel it may prompt discussion
that can shape this proposal and Tony's proposal into something that will provide a portable high
bandwidth/low-latency mechanism on true SMPs as well as provide high performance in distributed
memory machines.

Questions for discussion:
1) Is this really going to be faster on a shared memory machine with a "high-quality" imple-

mentation.
2) Does the user visible 
ow-control provide signi�cant added value?
3) For both shared and distributed memory machines, does prede�ning the communication

pattern provide options for optimization?
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22 CHAPTER 5. MISCELLANY

Example:

Process 0: Process 1:

! Make a shared buffer with process 0 as the source, process 1 as the dest

! sbh is the shared buffer handle and buff is some memory allocated

! by MAKE_SHARED_BUFFER

MAKE_SHARED_BUFFER (..., MPI_MAKE_SHARED_BUFFER (...,

0, 1, buff, sbh) 0, 1, buff, sbh)

! Process 0 owns the buffer ! Process 1 waits for buffer

...Fill buff with useful stuff... ACQUIRE_SHARED_BUFFER (sbh)

! Process 1 releases the buffer

! communicating that it was

! modified (PRODUCEd)

RELEASE_SHARED_BUFFER (sbh, PRODUCE)

! At this point process 1 unblocks

! Wait for process 0 to use the ! and has full access to buff

! Information produced before ...Read buff and do something...

! creating more data

ACQUIRE_SHARED_BUFFER (sbh) ! Process 1 releases the buffer, but

! has not modified it (CONSUMEd)

RELEASE_SHARED_BUFFER (sbh, CONSUME)

! At this point process 0 unblocks

! and is free to modify buff

... ...

FREE_SHARED_BUFF(sbh) FREE_SHARED_BUFF(sbh)

MPI MAKE SHARED BUFFER (dataType, count, comm, source, dest, bu�er, sharedBu�Han-

dle)

IN dataType MPI Data Type (contiguous)

IN count Number of dataTypes

IN comm Communicator

IN source First process in pair (initially owns bu�er)

IN dest Second process in pair

IN tag Tag for use in communications and for uniqueness

OUT bu�er Bu�er creaated by make shared bu�er

OUT sharedBu�Handle Handle to describe shared object

int MPI_Make_shared_buffer (MPI_Datatype dataType, int, count,

MPI_Comm comm, int source, int dest,

void *buffer, MPI_Shared_buff *sharedBuffHandle)
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5.2. TWO PROCESS \SHARED" BUFFERS 23

MPI_MAKE_SHARED_BUFFER (DATA_TYPE, COUNT, COMM, SOURCE, DEST,

BUFF_REF, BUFFER_IX, SHARED_BUFF_HANDLE, IERROR)

INTEGER DATA_TYPE

INTEGER COUNT

INTEGER COMM

INTEGER SOURCE

INTEGER DEST

INTEGER BUFF_REFF(*)

INTEGER BUFFER_IX

INTEGER SHARED_BUFF_HANDLE

INTEGER IERROR

This routine creates a bu�er shared between two processes. The process identi�ed

by source initially "owns" the bu�er. Source may write to the bu�er and manipulate the

bu�er in any way that makes sense with standard language access (assignment statements,

functions calls, etc.). When source is done with the bu�er, it must release the bu�er for

dest to acquire it. Dest (and only dest) can acquire the bu�er once released by source.

Dest then has the same priviledgs as source previously had. To access a released bu�er is

considered to be erroneous. This function needs to be viewed as "bi-collective".

Discussion: Do we want to have a version that allows the user to supply a bu�er. In that

event on a distributed memory machine this becomes a "safe" interface to ready send, on a shared

memory machine it may introduce extra copies.

MPI ACQUIRE SHARED BUFFER (sharedBu�Handle)

INOUT sharedBu�Handle A shared bu�er handle

int MPI_Acquire_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

MPI_ACQUIRE_SHARED_BUFFER (SHARED_BUFF_HANDLE, IERROR)

INTEGER SHARED_BUFF_HANDLE

INTEGER IERROR

This routine waits for the shared bu�er to be released by the partner. It is a blocking

call. When it returns, the bu�er associated with the shared bu�er handle can be fully

accessed. A subsequent acquire without an intervening release is erroneous (this includes an

acquire by the source immediately after the make shared bu�er). An acquire will correctly

return only when the partner process performs a release.

MPI RELEASE SHARED BUFFER (sharedBu�Handle, releaseAction)

INOUT sharedBu�Handle A shared bu�er handle

IN releaseAction Indicate whether a produce (MPI PRODUCE) or con-

sume (MPI CONSUME) action is associated with the

release
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24 CHAPTER 5. MISCELLANY

int MPI_Release_shared_buffer (MPI_Shared_buff *sharedBuffHandle,

int releaseAction)

MPI_RELEASE_SHARED_BUFFER (SHARED_BUFF_HANDLE, RELEASE_ACTION, IERROR)

INTEGER SHARED_BUFF_HANDLE

INTEGER RELEASE_ACTION

INTEGER IERROR

This routine releases a shared bu�er so that it can be acquired by the partner process. If

the process has only read the bu�er associated with the shared bu�er handler, it may use the

releaseAction of MPI CONSUME. If the process has written to the bu�er associated with

the shared bu�er handler, it MUST use the releaseAction of MPI PRODUCE to guarantee

that the partner sees the changes.

MPI FREE SHARED BUFFER (sharedBu�Handle)

INOUT sharedBu�Handle A shared bu�er handle

int MPI_Free_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

MPI_FREE_SHARED_BUFFER (SHARED_BUFF_HANDLE, IERROR)

INTEGER SHARED_BUFF_HANDLE

INTEGER IERROR

This function frees the bu�er associated with the shared bu�er handler, the handle

itself, and satis�es any outstanding communications. This function needs to be viewed as

"bi-collective".

Possible Send/Recv Implementation:

int MPI_Make_shared_buffer (MPI_Datatype dataType, int, count,

MPI_Comm comm, int source, int dest,

void *buffer, MPI_Shared_buff *sharedBuffHandle)

{

/* Ok, ok this isn't really C, but you get the idea) */

sharedBuffHandle = malloc (sizeof(sharedBuffHandle));

*buffer = malloc (sizeof(dataType) * count);

sharedBuffHandle->buffer = buffer;

sharedBuffHandle->count = count;

sharedBuffHandle->dataType = dataType; /* Dup here? */

sharedBuffHandle->tag = getSharedBuffTag(); /* Some magic? */

/* At this point, a robust application might check with it's partner

to see if the parameters are correct and the malloc worked. But it

would take too much space (besides if programming text books

can omit error checking, why can't I? :-) */

if (myProc == src)

{

Recv (comm, sharedBuffHandle->tag, dest, (count=0, buff=NULL,...));

sharedBuffHandle->partner = dest;
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5.2. TWO PROCESS \SHARED" BUFFERS 25

}

else

{

sharedBuffHandle->waitHandle = IRECV (comm, sharedBuffHandle->tag,

source, buffer, count,...)

Send (comm, sharedBuffHandle->tag, source, (count=0, buff=NULL,...));

sharedBuffHandle->partner = source;

}

return;

}

int MPI_Acquire_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

{

wait (sharedBuffHandle->waitHandle);

}

int MPI_Release_shared_buffer (MPI_Shared_buff *sharedBuffHandle,

int releaseAction)

{

if (releaseAction == MPI_CONSUME)

count = 0;

else

count = sharedBuffHandle->count;

sharedBuffHandle->waitHandle =

IRECV (comm, sharedBuffHandle->tag,

sharedBuffHandle->partner,

sharedBuffHandle->buffer, count,...);

/* Note that a non-buffering send can be used here */

/* Note that a "ready" protocol can also be used since we guarantee

the receive is always posted before the send */

localHandle = ISSEND (comm, sharedBuffHandle->tag,

sharedBuffHandle->partner,

sharedBuffHandle->buffer, count,...);

freeHandle (localHandle);

}

int MPI_Free_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

{

/*

Either cancel the outstanding receive or (if you don't believe

cancel works) send to complete the receive.

*/

/*

Free all structures

*/

}

Possible Shared Memory Implementation:
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26 CHAPTER 5. MISCELLANY

int MPI_Make_shared_buffer (MPI_Datatype dataType, int, count,

MPI_Comm comm, int source, int dest,

void *buffer, MPI_Shared_buff *sharedBuffHandle)

{

/* Ok, ok this isn't really C, but you get the idea) */

sharedBuffHandle = malloc (sizeof(sharedBuffHandle));

if (myProc == source)

{

sharedBuffHandle->semaphore =

shared_malloc (sizeof(dataType) * count + cacheLineSize);

}

sharedBuffHandle->buffer = buffer;

sharedBuffHandle->count = count;

sharedBuffHandle->dataType = dataType; /* Dup here? */

if (myProc == source)

{

i = myProc;

memcpy (sharedBuffHandle->semaphore, &i, sizeof(int));

sharedBuffHandle->partner = dest;

Send (comm, sharedTag, dest, sharedBuffHandle->semaphore,

MPI_Pointer, ...);

}

else

{

sharedBuffHandle->partner = source;

Recv (comm, sharedTag, source, sharedBuffHandle->semaphore,

MPI_Pointer, ...);

}

*buffer = ((char *) sharedBuffHandle->semaphore) + cacheLineSize;

}

int MPI_Acquire_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

{

i = myProc - 1;

while (i != myProc)

{

memcpy (&i, sharedBuffHandle->semaphore, sizeof(int));

/* A smart implementation would release it's timeslice

after some number of times through this loop */

}

}

int MPI_Release_shared_buffer (MPI_Shared_buff *sharedBuffHandle,

int releaseAction)

{

i = sharedBuffHandle->partner;

memcpy (sharedBuffHandle->semaphore, &i, sizeof(int));

}
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5.3. CLUSTER ATTRIBUTES 27

int MPI_Free_shared_buffer (MPI_Shared_buff *sharedBuffHandle)

{

/*

Free all structures

*/

}

5.3 Cluster attributes

A cluster is given, if the communication inside the members is faster than between the

members, and at least one member has more than one MPI processes.

MPI implementations that allow to run applications on a hardware with a hierarchical

network (e.g. a cluster of MPPs, or one MPP with a hierarchical set of crossbars) may return

the actual cluster mapping used for the MPI processes of a communicator by attaching all

of the following attributes to communicators:

MPI CLUSTER SIZE returns as keyvalue the number of cluster's members.

MPI CLUSTER COLOR returns as keyvalue a number between 0 and MPI CLUSTER SIZE-1.

MPI processes that are part of the same cluster's member return the same value. MPI

processes that are part of di�erent cluster's members return di�erent values.

MPI CLUSTER CHANGEABLE returns as keyvalue the values

0 if the cluster mapping cannot change until MPI FINALIZE,

MPI CLUSTER CHANGEABLE BY TOPO if the cluster mapping can be changed only if

the application calls MPI topology functions to any communicator, and

MPI CLUSTER CHANGEABLE ANY if the cluster mapping may change at any time.

Rationale. This interface gives applications the possibility to suit the communication

between MPI processes to the cluster properties of the network. This interface is or-

thogonal to the topology interface, i.e. �rst an application should specify its topology

and the MPI implementation should map the MPI processes as good as possible and

then the application should examine the cluster attributes. (End of rationale.)

Advice to users. This interface returns no information about the signi�cance of the

di�erence between the communication inside and between cluster's members. This e.g.

can be achieved by small application speci�c benchmarks as part of the application.

the returned color can be used as input to MPI COMM SPLIT. Implementations are

free to return no cluster information available on that communicator by not supporting

these attributes or by returning a cluster size of 1. (End of advice to users.)

Advice to implementors. High quality implementations on clusters with a large

di�erence in communication e�ciency should return these attributes at least on

MPI COMM WORLD. (End of advice to implementors.)

Discussion: This interface has a minimal overhead for all implementations that need not
support this interface (only 5 constants in mpi.h, de�ned in a way that they returne 
ag=false in
MPI ATTR GET). And it can give all needed information to applications on clusters.
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28 CHAPTER 5. MISCELLANY

It may be that the application must communicate the colors because it needs to have the full
cluster information in each MPI process, and this may occur although the MPI implementation has
this information available inside the local database in each MPI process. But this is the result of a
compromise to have a very simple interface without an additional inquiry function and therefore a
minimal overhead in implementations that do not support this interface.

It was noticed that during the topology discussions in MPI-1, we talked about similar func-
tionality (though not for clusters). The �nal conclusion was if you give enough information it isn't
portable and if you make it portable then it isn't su�cently precise to be truely meaningful.

But now this is an approach for a new problem, not discussed in MPI-1. This proposal supports

systems from clusters of 1- to n-processor PCs until clusters of large SVPs, and also hierarchical

clusters. This approach does not give all information that is needed, but it gives the topology

information and all the rest the aplication can achieve e.g. by little benchmark tests.

5.4 Continuable Errors

I sent a previous message on MPI IS CONTINUABLE, but I realise that it may seem a little

over the top for general errors. However, here is some rationale why it is important for all

errors, especially in the context of the new functions being added in MPI-2.

The �rst aspect is that the continuability after errors is generally NOT associated

with an error code, but with the communicator state. For example, consider a rejection

"insu�cient store" or "too many outstanding requests".

It will very often be possible to retry after this, provided that it was due to a temporary

logjam. But it may not be, especially if the failure is due to a key server not responding.

And identical errors that occurs under di�erent circumstances may need di�erent recovery

strategies.

This will very often di�er according to the communicator; for example, one process may

be on a system that uses a �xed request pool (and so such a failure is fatal) but another

may be on one which has a "busy - try later" return.

Furthermore, some such errors will a�ect only the individual operation, others will

a�ect only the communicator and others will indicate that the local MPI environment is

knotted.

So, that is why I suggested a function that would inquire the state of a communicator,

and that the return should not be a simple yes or no, but an indication of what has to be

done to continue.

Incidentally, speaking as a run-time system implementor, the function doesn't ask for

any information that won't be held internally. All I am suggesting is that the programmer

be told how the MPI implementation regards the current state.

The second aspect is that of context-dependent messages. The standard joke about

Unix is that there are three: "can't", "shan't" and "didn't". I currently have a problem

where there is a failure SOMEWHERE in the IP or UDP stack, but have no way of �nding

out anything more.

As dynamic processes provide PVM-like facilities, there will be an increasing need to

provide an indication of WHERE the failure occurred. If you have an intercommunicator

covering 6 vendors' systems, the failure "insu�cient store" isn't exactly helpful.

MPI needs to provide some way that the implementation can pass arbitrary text back

to the programmer, so that it can be written out and taken to the support sta� or MPI

implementors. There is clearly no way that MPI can specify what the information will say,
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5.4. CONTINUABLE ERRORS 29

but any decent implementation will at least indicate which processes were involved!

And please note that I am thinking as an implementor, because one of the main pur-

poses of this information is to enable problems to be reported in a useful way. Error reports

"I have got a request rejected message" aren't exactly helpful.

I have also been thinking about the interface, and believe that the call to clear the

errors is unnecessary and can be dropped (it was there because I was thinking in C terms)

and that the error indication and messages should be requested separately. So here is a

minimal syntax:

MPI_ERROR_COMM_STATE (comm, code, severity, scope)

IN comm Communicator

OUT code Error code associated with the communicator

OUT severity Severity of the error state

OUT scope Scope of the error state

MPI_ERR_IGNORABLE No special action is needed

MPI_ERR_RECOVERABLE Specific action is needed

MPI_ERR_RESTARTABLE All outstanding operations must be abandoned

MPI_ERR_CORRUPTED This is beyond hope

MPI_ERR_ACTION The failure affects only the operation

MPI_ERR_LOCAL The failure affects only the local processor

MPI_ERR_GLOBAL The failure affects the whole communicator

MPI_ERR_UNIVERSAL The failure is not localised

MPI_ERROR_COMM_MESSAGE (comm, message, length)

IN comm Communicator

OUT message Context-dependent messages

OUT length Length of messages returned

In the Forum discussion, it was decided to add FILE and WIN to COMM as objects that

could be inquired about. But then the section was voted to the JOD.
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Chapter 6

Towards a Full Fortran 90

Interface

This chapter contains ideas for elements of a \Full" Fortran 90 interface that tries to address

the problems of the F77-based interface. Some of these ideas are compatible, and some are

mutually exclusive.

6.1 A di�erent way of handling bu�er arguments

1. De�ne a constantMPI AINT KIND. An integer of this kind is enough to hold an address.

This integer is conceptually similar to MPI Aint and will be referred to in the rest of

this message as an MPI Aint.

2. The F90 version of F77 functions with choice argument take an MPI Aint instead of

the choice argument.

3. The MPI ADDRESS function in Fortran 90 now returns an AINT.

4. Add the intrinsic function MPI F90 DESCRIBE OBJECT as described below, or one

or more variants.

5. For backward compatibility with current MPI bindings, the following would work, but

would be subject to all the caveats in the current F90 discussion:

real a(100) ! or real a(:)

MPI_ADDRESS(a, a_address)

MPI_ISEND(a_address, 100, MPI_REAL, ...)

6. For convenience, we add a new set of functions:

MPI_SEND_F90

MPI_ISEND_F90

MPI_BSEND_F90

etc.

31
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32 CHAPTER 6. TOWARDS A FULL FORTRAN 90 INTERFACE

6.1.1 MPI F90 DESCRIBE OBJECT and relatives

MPI_F90_DESCRIBE_OBJECT(IN object, OUT MPI_Datatype)

This is a generic function that can be used with any Fortran 90 object, including array

sections, derived types, etc. It creates a committed MPI datatype that describes the Fortran

90 object. The datatype must be used in conjunction with a buf argument of MPI BOTTOM.

Discussion: Need to de�ne the type signature of the new datatype, for matching rules.

It could be used in the following way

MPI_F90_DESCRIBE_OBJECT(a(10:1:-2), newtype)

MPI_ISEND(MPI_BOTTOM, 1, newtype, ...)

MPI F90 DESCRIBE OBJECT is an intrinsic function. Moreover, it does not have copy-

in/copy-out semantics. The address and type information recorded in the output datatype

describes the data in the original object, not the data in a temporary copy. It is not possible

to implement this routine portably in Fortran 90. It must be closely integrated with the

compiler. It is expected that this routine and other MPI routines would be part of an

intrinsic module.

Rationale. In many applications, you send the same data many times. Creating the

datatype once means you only pay the overhead once, instead of at each send call.

(End of rationale.)

We could also consider a routine for which the created datatype is relative:

MPI_F90_DESCRIBE_OBJECT(a(10:1:-2), newtype)

MPI_ADDRESS(a, a_address)

MPI_ISEND(a_address, 1, newtype, ...)

[I don't propose this because I'm not sure we can say clearly when/if this works for a second

array b, or even if you were to try:

MPI_ADDRESS(a(5), a5_address) ...

] In order for this to be guaranteed to work, it is probably necessary to makeMPI ADDRESS

be an intrinsic function as well. It might be possible to allow both approaches through two

calls:

MPI_F90_DESCRIBE_OBJECT(...)

MPI_F90_DESCRIBE_OBJECT_RELATIVE(...)

The following approach suggested in subcommittee discussion might provide a cleaner

separation between MPI and the compiler.

MPI_F90_GET_DOPEVECTOR(a(10:2:-2), OUT dope)

MPI_IRECV(dope, 1, MPI_REAL)

This needs to be 
eshed out.
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6.2. USING A FORTRAN 90 - ANSI C INTERFACE 33

6.2 Using a Fortran 90 - ANSI C interface

Some work is currently being done on an interface between Fortran 90 and ANSI C. MPI

may be able to use this.

6.3 Typed functions

Here are some possibilities for using typed functions:

1. Require overloaded interfaces for all functions with choice arguments.

2. Add typed functions for \the most important" basic types, for instance

MPI SEND REAL.

3. Add a \typed version" of all functions with choice arguments, e.g. MPI SEND T.

4. Have two versions of the MODULE MPI { one \light" version and one with full

generic interfaces. Same name of the module, but mpi.mod �les stored in di�erent

MODPATHs. Users can switch between safe+debug and fast mode by changing only

one Make�le line: the search path for module �les (library may contain code for both

versions in one ar �le...).

6.4 The possibility of optional arguments

For any routines with an explicit interface, it would be possible to have optional arguments.

Clear candidates are STATUS and IERR arguments. Datatype arguments could also be

omitted and the data derived from the type of buf.

This proposal could work in conjunction with one of the typed-function proposals above

(but not with implicit F77-style interfaces, for which optional arguments are not allowed).

6.5 Derived types for MPI handles

Type-checking enabled by explicit interfaces might not be too useful because almost all

of the arguments to MPI routines are integers in Fortran. It would be possible (losing all

compatibility with Fortran 77) to introduce derived types for MPI objects, substantially

improving the usefulness of type checking (though it is unclear that there would be any

other bene�ts).
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Chapter 7

Split Collective Communication

In some applications, better performance can be achieved by separating the initiation and

completion of a collective operation. For example, in some numerical applications, better

performance can be achieved by overlapping other work (both computation and commu-

nication) with an MPI Allreduce. At the same time, the full generality of non-blocking

collective operations, considered at length by the MPI Forum, is both not needed by some

applications, and can be a burden for someMPI implementations. Instead, a very restricted

set of collective operations that can be started and completed with separate MPI calls are

proposed. These are called \split" collective communication routines.1 For each of these

operations, there is a separate begin and end routine. For example, for the split allreduce

operation, the calls are

MPI_Allreduce_begin( sbuf, rbuf, count, datatype, op, comm );

...

other work and/or MPI calls

...

MPI_Allreduce_end( rbuf, comm );

The reason for the rbuf in the end call is described below.

These routines allow applications to separate the process of data transmission from

synchronization, much as the non-blocking point-to-point operations (such as MPI Isend

and MPI Irecv) do for point-to-point communication. The split versions can provide impor-

tant performance advantages even on platforms with fast collective operations by allowing

applications to avoid unnecessary synchronizations. For example, an MPI implementation

with some shared memory may choose to implement these operations by using a small

amount of shared memory attached to each communicator and a special algorithm for each

split operation. An MPI implementation without shared memory but with a multicast or

simple data-collection capability may use these features. Because the split operations are

distinct from the other collective operations, the split version can be optimized, and there

is no impact on the implementation or performance of the other collective operations.

1These were originally called two-phase collective communications. However, since two-phase has a

di�erent meaning in parallel I/O, and since the MPI-2 parallel I/O chapter adopted a varient of this approach

and termed it split communication, this section adopts the term split communication.
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36 CHAPTER 7. SPLIT COLLECTIVE COMMUNICATION

7.0.1 General rules for all split collective communication

� Only one split collective communication may be active on any particular commu-

nicator and MPI process at any time. In other words, on any MPI process, each

communicator may have a most one active split operation at any time. The inclusion

of process here is intend to make clear that \at any time" applies to each process

separately.

� Begin calls are collective over the communicator and follow the ordering rules for

collective calls.

� End calls are collective over the communicator and follow the ordering rules for collec-

tive calls. End calls match the preceeding begin call for the same collective operation.

When and \end" call is made, exactly one unmatched \begin" call for the same op-

eration must preceed it.

� An implementation is free to implement any split collective operation using the corre-

sponding blocking collective routine when either the begin (e.g., MPI Allreduce begin)

or end call (e.g., MPI Allreduce end) is issued. The begin call is provided to allow the

user and MPI implementation to optimize the collective operation.

� Split collective operations do not match the corresponding regular collective operation.

For example, an MPI Allreduce and an MPI Allreduce begin/end do not match.

� Split routines that have a destination bu�er specify that bu�er in both the begin and

end routines. By specifying the bu�er that receives data in the end routine, we can

avoid many (though not all) of the problems described in Section 10.2.2 (A Problem

with Register Optimization).

� An MPI communicator may only have one collective operation in progress. In other

words, if a split collective operation is started on a communicator, no other collective

operation may be begun on that communicator. For example, the following is illegal:

MPI_Allreduce_begin( ..., comm );

...

MPI_Barrier( comm );

...

MPI_Allreduce_end( rbuf, comm );

� In a multithreaded implementation, any split collective begin and end operation called

by a process must be called from the same thread. This restriction is made to simplify

the implementation in the multithreaded case. (Note that we have already disallowed

having two threads start a split operation on the same communicator since only one

split operation can be active on a communicator at any time.)

Speci�c routines
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37

MPI ALLREDUCE BEGIN( sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send bu�er (choice)

OUT recvbuf starting address of receive bu�er (choice)

IN count number of elements in send bu�er (integer)

IN datatype data type of elements of send bu�er (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI Allreduce begin(void* sendbuf, void* recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm)

MPI ALLREDUCE BEGIN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI ALLREDUCE END( recvbuf, comm)

OUT recvbuf starting address of receive bu�er (choice)

IN comm communicator (handle)

int MPI Allreduce end( void* recvbuf, MPI Comm comm)

MPI ALLREDUCE END(RECVBUF, COMM, IERROR)

<type> RECVBUF(*)

INTEGER COMM, IERROR

The arguments have the same meaning as for MPI Allreduce.

MPI ALLREDUCE BEGIN begins a split operation that, when completed with

MPI ALLREDUCE END, produces the result as de�ned for MPI ALLREDUCE.

Advice to users. This is deliberately weaker than \same as MPI ALLREDUCE,"

to allow for di�ering orders of operations which may produce di�erent results. For

example, when performing the common operation of MPI SUM on

MPI DOUBLE data, the exact return value depends on the order of operation, since


oating point arithmetic is not associative. (End of advice to users.)
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38 CHAPTER 7. SPLIT COLLECTIVE COMMUNICATION

MPI BCAST BEGIN( bu�er, count, datatype, root, comm )

INOUT bu�er starting address of bu�er (choice)

IN count number of entries in bu�er (integer)

IN datatype data type of bu�er (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI Bcast begin(void* buffer, int count, MPI Datatype datatype, int

root, MPI Comm comm )

MPI BCAST BEGIN(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI BCAST END( bu�er, comm )

INOUT bu�er starting address of bu�er (choice)

IN comm communicator (handle)

int MPI Bcast end(void* buffer, MPI Comm comm )

MPI BCAST END(BUFFER, COMM, IERROR)

<type> BUFFER(*)

INTEGER COMM, IERROR

The arguments have the same meaning as for MPI Bcast.

MPI BCAST BEGIN begins a split operation that, when completed with

MPI BCAST END, produces the result as de�ned for MPI BCAST.

MPI BARRIER BEGIN( comm )

IN comm communicator (handle)

int MPI Barrier begin( MPI Comm comm )

MPI BARRIER BEGIN(COMM, IERROR)

<type> BUFFER(*)

COMM, IERROR

MPI BARRIER END( comm )

IN comm communicator (handle)

int MPI Barrier end(MPI Comm comm )

MPI BARRIER END(COMM, IERROR)
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INTEGER COMM, IERROR

The arguments have the same meaning as for MPI Barrier.

MPI BARRIER BEGIN begins a split operation that, when completed with

MPI BARRIER END, produces the result as de�ned for MPI BARRIER.

Advice to users. One use of the split barrier is in double bu�ering schemes, where the

barrier is used to ensure that the bu�ers may be swapped. (End of advice to users.)

MPI WIN FENCE BEGIN(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI Win fence begin( int assert, MPI Win win)

MPI WIN FENCE BEGIN(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

MPI::Win::Fence begin(int assert)

MPI WIN FENCE END(win)

IN win window object (handle)

int MPI Win fence end(MPI Win win)

MPI WIN FENCE END( WIN, IERROR)

INTEGER WIN, IERROR

MPI::Win::Fence end()

The arguments have the same meaning as for MPI WIN FENCE.

MPI WIN FENCE BEGIN begins a split operation that, when completed with

MPI WIN FENCE END, produces the result as de�ned for MPI WIN FENCE.

For the MPI WIN FENCE BEGIN and MPI WIN FENCE END routines, the rules for

split collective communication are modi�ed to apply to a window (MPI Win) instead of a

communicator (MPI Comm).

7.0.2 Examples using MPI ALLREDUCE BEGIN

The following example shows how a split collective operation is used to avoid unnecessary

synchronization in a

call MPI_ALLREDUCE_BEGIN(teilresl1, resl1, 1, MPI_REAL, MPI_SUM,

. mpi_comm_world_a, info)

call MPI_ALLREDUCE_BEGIN(teilresl0, resl0, 1, MPI_REAL, MPI_MAX,

. mpi_comm_world_b, info)
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40 CHAPTER 7. SPLIT COLLECTIVE COMMUNICATION

c...solve the equation system

call parallelsolver( rm000, rmf00, rmb00, rm0f0, rm0b0, rm00f,

. rm00b, dq, rhs, nsubit, nhofhausit )

c...computation of the CFL-Number with resl1

call MPI_ALLREDUCE_END(mpi_comm_world_a, resl1)

...

c...output of all residuals

call MPI_ALLREDUCE_END(mpi_comm_world_b, resl0)

...
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Chapter 8

Real-Time MPI

Real-Time proposals presented here constitute work in progress. The real-time working

group unanimously voted to move the chapter into the MPI-2 Journal of Development in

order to gain more time for preliminary implementations and further improvements since

the work here standardize an area that does not have common existing practice. The MPI

Forum had not voted on any parts of this chapter.

The work contained here is being updated and developed further in public meetings

comparable to the MPI Forum, beginning after the conclusion of the MPI-2 Forum's, and

scheduled to meet regularly in six week intervals for at least one year. For information, and

to participate, see http://www.cs.msstate.edu/mpirt, the homepage for MPI/RT.

8.1 Introduction

The goal of real-timeMPI (MPI/RT ) is to provide the middleware for programmers to create

real-time applications with performance portability. MPI/RT is to provide a consistent set

of extensions and, in some cases, restrictions to MPI. MPI/RT adds greater predictability

and schedulability to message-passing programming.

MPI/RT is intended to provide several core features for the most demanding applica-

tions while allowing 
exibility for use in a broad variety of applications. The core features

are:

1. Message-passing performance guarantees. MPI/RT will provide quality of service

(QOS) by allocating resources and providing bounds on the delivery of messages which

will allow the use of MPI/RT in time-critical applications.

2. Minimizing the critical path for message passing in a portable environment. Many

applications take advantage of machine-speci�c message passing that provide minimal

overhead. In order to be usable for tightly integrated equipment applications, MPI/RT

will minimize the overhead relative to MPI-1 and MPI-2 as much as practical.

(Note: MPI/RT will have the greatest chance of success if it can be designed to provide

as little performance penalty as possible while achieving portability.)

3. Early binding. Facilities will be provided to allow MPI/RT resources to be scheduled.

Scheduling will allow e�cient use of resources. Early binding will allow message

overhead in the critical path to be reduced and support such paradigms as \no-sided"

communication.
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42 CHAPTER 8. REAL-TIME MPI

Many applications will only require a subset of the core features or may not be as

demanding in their timing requirements. Many features of MPI/RT are provided to allow

its use in a wide variety of these applications while not compromising the core features.

MPI/RT is designed to provide high performance along with portability. Portability in

the MPI/RT is de�ned as follows:

� Ability to move a parallel application from one platform to another, or from one

con�guration to another, and compile successfully without changing the syntax of the

parallel program.

� The qualities of service achieved by the real-time application may not be guaranteed

in a new con�guration or port. By �ne tuning the quality of service parameters, the

program may be made to run in the new con�guration or platform. These changes

ensure timing correctness, provided that su�cient resources are present to support

the application requirements.

� Upgrading from one generation of a platform to the next is generally expected to work

seamlessly, even though resource utilization could be lower on the upgraded platform.

The design philosophy of MPI/RT is as follows:

� MPI/RT will not determine implementation policy, but will instead provide middle-

ware to support for real-time paradigms such as:

{ Time-driven,

{ Event-driven,

{ Priority-driven,

{ Best-e�ort (aka, soft real-time), and

{ Resource constrained.

� MPI/RT should have analogous functions toMPI-1 andMPI-2 that guarantee message

passing in a timely fashion.

� MPI/RT will make minimal changes to MPI-1 and MPI-2, so that MPI/RT programs

can bene�t from existing MPI libraries, at least for non-time-critical parts of real-time

applications.

� E�orts will be made to make existing MPI libraries work as seamlessly as possible

within these real-time pro�les.

� MPI/RTmust allow not only code portability but also performance portability, insofar

as possible.

� MPI/RT will not replace the native runtime system or scheduler, but will provide a

portable means to communicate with these systems.

� For resource-constrained users, the advantages of a layered approach indicate that

\subset pro�les" bear consideration as part of this e�ort. The smallest subsets should

be minimal to allow the widest possible embedding of MPI-1.2 with and without

speci�c real-time features. A feature-driven rather than call-driven approach to such

pro�les is indicated. Some real-time, embedded kernels might choose to add the

smallest set of features to the kernel, with layering of additional features for less

constrained situations (See Section 8.3).
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8.2. REAL-TIME MESSAGE-PASSING REQUIREMENTS 43

� The results of the MPI/RT e�ort will be a single set of real-time extensions, restric-

tions, and recommendations, suitable for realization as an MPI/RT implementation. It

is expected that users will select operations in order to support the real-time paradigms

of their choosing.

� The placement of this chapter in the Journal of Development (JOD) indicates that

MPI/RT will be adopted separately from the MPI-2 standard but is related to it

wherever appropriate. That is, not all MPI-2 implementations will need to support

the real-time and resource-constrained features described here.

Figure 8.1 illustrates the model of software abstraction layers for MPI/RT.

Application

MPI/RT

OS

Hardware
Network

Runtime System

Figure 8.1: Model of Software Abstraction Layers for MPI/RT.

MPI/RT will serve as an open standard for a wide variety of high-performance, real-

time, embedded, and heterogeneous parallel computing systems encompassing a diverse

mix of computational paradigms. We intend that MPI/RT will make message passing pro-

gramming relevant to the real-time community as well as enable development of vendor-

independent real-time applications. It should also assist in bridging the gap between theory

and implementation in parallel real-time computing and communications.

8.2 Real-time Message-Passing Requirements

Although developers have an intuitive sense of what they mean by a real-time system,

de�nitions vary widely. The distinction between real-time computer systems and general-

purpose computer systems lies not in their performance speci�cations, but in the relative

importance of system timing considerations. In real-time computing, the correctness of a

computation depends not only on the results of a computation, but also on the time at

which the results of the computation are generated.

The measures of merit in a real-time system include:

� Timing correctness as well as program correctness. A real-time program can proceed,

in a meaningful way, only if all previous steps are time-correct.
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44 CHAPTER 8. REAL-TIME MPI

� Deterministic operation, even at the cost of performance,

� Predictable response to urgent events,

� High degree of schedulability,

� Stability under transient load: When the system is overloaded by events and meet-

ing all deadlines is impossible, the deadlines of selected critical tasks must still be

guaranteed.

� Dependability,

� Portability, with minimal impact on performance.

8.3 RT Pro�les

There are several pro�les of the real-time MPI. These pro�les are independent of the pro-

gramming paradigms that this chapter provides. All implementations are required to pro-

vide all pro�les, though implementors may concentrate their e�orts on the pro�le or pro�les

most relevant to their systems. This will provide for wide portability, and allow for appro-

priate investment in particular system niches.

Advice to implementors. Such pro�les may be handled at compile/link time. We have

an expectation that \smart linking" will be used to minimize the overhead associated

with unused functions. This is compatible with the MPI-1 expectation of pro�ling

libraries, that essentially puts one function per source �le in most implementations.

(End of advice to implementors.)

The hierarchy of pro�les to be recognized by MPI/RT are as follows:

� Resource constrained MPI-1.2, de�ned below,

� Resource constrained MPI-1.2, plus RT features described in this chapter,

� MPI-1.2 (classic MPI), plus RT features,

� MPI-1.2 (classic MPI), resource constrained MPI-2 (to be de�ned), plus RT features.

� MPI-1.2 (classic MPI), MPI-2, plus RT features.

8.3.1 Resource Constrained MPI-1.2

This pro�le is to include all of the functionality of the revised MPI-1 reference document,

with the following exceptions and restrictions:

� Derived datatypes are omitted, but built-in datatypes are preserved.

� Virtual topologies are eliminated.

� All bu�ered send modes are eliminated (e.g., MPI Bsend).

� Explicit operations on groups are eliminated.

� Users are recommended to assume zero bu�ering in writing their programs.
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8.4. RT INITIALIZATION/TERMINATION 45

Advice to users. MPI is not mandated to assume bu�ering, but most non-real-

time implementations provide it. This is a strong advice to users and imple-

mentors of the resource-constrained versions to expect programs that use any

bu�ering to deadlock or otherwise fail. (End of advice to users.)

Advice to implementors. The expectation is that all resource-constrained imple-

mentations will utilize smart linking to avoid code bloat, and will take advantage of

simpli�cations that arise from the restriction to built-in datatypes. (End of advice to

implementors.)

8.3.2 Other pro�les

The pro�les, de�ned above, are essentially self-explanatory. The details of MPI-2 are to be

revisited upon its completion. Furthermore, there is an expectation that the meaning of \RT

features" will be broadened to include all relevant RT versions of the MPI-2 functionality

rather than MPI-1 functionality only. For instance, I/O will require a real-time analog.

8.4 RT Initialization/Termination

Discussion:

� In a mixed environment, with one \world," some processes may need RT features while others
may not.

� It is desired to have MPI INIT start all the MPI processes, and have some exploit real-time
behavior according to the way they were linked and/or executed.

� Further arguments are needed about how to achieve the functionality of starting the real-
time mode of operation, while allowing other processes to avoid expensive synchronization. It
was pointed out that admission tests, with some processes uninvolved in real-time, might be
specious at best.

8.5 Clocks

Discussion: It was stated that it will be di�cult for implementations to provide appropriate bounds

with respect to Accuracy and Access Time of clocks. Various caveats will be added to allow imple-

mentors to provide �nite bounds, of some residual value to users.

8.5.1 Synchronization of Clocks

Most platforms that support real-time applications provide tightly synchronized system

clocks, that are dependent upon special hardware support. There are several compelling

reasons for having highly synchronized clocks [9]:

1. Fine-grained, accurate instrumentation is needed for all approaches to real-time mes-

sage passing systems, and even for performance measurements in non real-time sys-

tems.
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46 CHAPTER 8. REAL-TIME MPI

2. Real-time applications require precise timing correctness. These systems also require

demonstrations of this correctness, and often require delicate tuning for optimal per-

formance. Well-synchronized clocks are necessary to support these requirements in a

parallel environment.

3. Applications should be able to adjust scheduled times for portability, based upon the

quality of the synchronized clocks. For example, time padding will be needed to adapt

scheduled message-passing operations on heterogeneous processing nodes.

4. The primary goal of time-driven real-time MPI is to support application speci�cation

of resource usage. For time-driven MPI/RT, all resources that are used for communi-

cation need to be scheduled in order to achieve predictable behavior. These scheduled

resources can include:

(a) Distributed Memory,

(b) Shared Memory,

(c) Communication Bandwidth,

(d) Communication Fabric

(e) Computation.

as well as others, such as platform speci�c resources related to inter-process commu-

nication.

8.5.2 Description of the Clocks

The processing nodes (which may contain one or more CPUs) that comprise a real-time

parallel processing system may have access to several clocks. We designate one of the clocks

as a globally synchronized clock. For each process in anMPI/RT program, this clock will the

be one read by the MPI WTIME call. There is an underlying assumption that each process

is associated with a �xed processing node. The process accesses its globally synchronized

clock through its associated node.

For most platforms, each node has a local clock, and this is periodically corrected in

order for it to serve as a synchronized clock for all MPI/RT processes active at that node.

However, other alternatives are not precluded. For example, there may even be a single

clock at one of the nodes or even completely outside of the participating nodes, which all the

processing nodes access over a network (which may also be used for regular data transfer

operations) to get a synchronized clock value.

A fundamental assumption is made that the system clocks will be monotonically non-

decreasing. We also assume that the underlying operating system will hide any artifacts

resulting from the over
ow of system clock counters.

8.5.3 Clock Synchronization Parameters

In this section, we present several parameters that describe the synchronized clocks, all

of which must be accessible at both run time and compile time. The values of all these

parameters are expected to be double-precision 
oating-point values measured in seconds,

with exception of drift, which is dimensionless.
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Resolution (Tick) Resolution represents the time between two successive clock ticks. The

resolution of the various synchronized clocks in a heterogeneous system may di�er.

Advice to implementors. We have proposed a subtle modi�cation to

MPI WTICK, so that the call will return the resolution of the synchronized clock

of the processing node associated with the calling process. In order to support

tightly synchronized system clocks, we expect clock resolution to be at most one

millisecond. (End of advice to implementors.)

Drift Drift indicates, for each synchronized clock, a guaranteed upper bound on the error

in the rate of the clock. That is, if the drift is �, then the clock rate (measured in

seconds per actually elapsed second) is guaranteed to be between 1 � � and 1 + �.

Drift is, as stated above, dimensionless.

Drift can be e�ectively used to bound the accuracy of measurement of small time

intervals, when they are measured by the di�erence between two readings of the same

synchronized clock.

Advice to implementors. An implementation of MPI/RT should reset the drift

parameter when global system clocks are synchronized. (End of advice to imple-

mentors.)

Skew Skew is a maximum bound on the absolute value of the di�erence between simul-

taneous values of the synchronized clocks in distinct nodes. Note that this refers to

ideal values, not the result of any real reading operations.

Accuracy Accuracy is a maximum bound on the absolute value of the di�erence between

simultaneous values of the synchronized clock and an ideal clock started at the syn-

chronized clock hypothetical starting time (some critical instant in time).

If synchronized clocks are periodically corrected in order to deal with drifts and other

inaccuracies, the calculation of the interval accuracy based upon drift will be too

pessimistic for large intervals.

This value can also be used for cross-platform synchronization.

Access Time Access Time is a maximum bound on the time to execute a call of

MPI WTIME. This, of course, assumes that the execution of the call is not interrupted

by the operating system. This undesirable and ambiguous caveat is necessary with

current operating systems (especially those with virtual memory) because an absolute

guarantee would be so long as to be practically unusable.

Implementations that are based on accessing the same global clock instead of a local

synchronized one will have the same resolution for all nodes, with zero skew, no drift, and

identical accuracy (subject to the propagation delay of the clock signal) for all processing

nodes. However, the access times could still vary at each processing node and across all the

processing nodes. A bound on this variability is needed.

8.5.4 MPI/RT Clock Attributes

In order for MPI/RT to allow portable applications across a wide variety of parallel real-

time systems, it is necessary to encapsulate the clock synchronization parameters of Sec-

tion 8.5.3 in a system-independent way. MPI provides a caching facility that allows an
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48 CHAPTER 8. REAL-TIME MPI

application to attach arbitrary pieces of information, called attributes, to both intra-

and intercommunicators [13]. This information is retrieved by referencing a key. A set

of attributes that describe the execution environment is attached to the communicator

MPI COMM WORLD when MPI is initialized. The value of these attributes can be inquired

by using the function MPI ATTR GET. At initialization time, MPI/RT adds the following

keys to MPI COMM WORLD:

� MPIRT WTIME DRIFT (DOUBLE)

� MPIRT WTIME SKEW (DOUBLE)

� MPIRT WTIME ACCURACY (DOUBLE)

� MPIRT WTIME ACCESS TIME (DOUBLE)

Discussion: It was proposed that we also add MPI WTICK to that list of attributes. Cur-
rently, MPI WTICK is a function call in MPI-1. It was also considered that users might have the
ability to change tick in some systems. This implies that this attribute is not static and may change
or be changed at run time.

MPI-2 considered changes to the implementation requirements for MPI WTIME and

MPI WTICK. We will have to consider this change in relationship to MPI/RT.

The format of above parameters match POSIX Speci�cation.

The values of the listed parameters do not depend on what applications are running but

rather on the parallel environment. These parameters represent constraints on the changes

to the environment. For example, the skew should not be increased when new processes are

added while an application is running.

Discussion: That suggests that dynamic process management functionality of MPI-2 are im-

pacted by timing correctness requirements.

8.6 Real-Time Bu�er Pools

This section proposes an interface for bu�er management, where bu�ers are organized into

bu�er pools, that are associated with real-time channels.

Discussion: A proposal for a method to hook application speci�c modules to do queue

management both for implementation and user sides is needed.

8.6.1 Bu�er Pool Object Creation and Destruction

Bu�er pools are created via single constructor that speci�es their entire contents. The for-

mat of the participating bu�ers can not be modi�ed after creation, however a new bu�er

pool that can reuse the same memory can be associated with the same channel (see Sec-

tion 8.7). The bu�er pool handle is used in the creation of a real-time channel, following a

speci�c constructor (MPIRT CHANNELS INIT). The bu�er state transition diagram, illus-

trated in Figure 8.2, shows the relationship of the bu�ers to data transfer operations and

channels.
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8.6. REAL-TIME BUFFER POOLS 49

All the bu�ers in a bu�er pool are the same length and contain the same datatype

elements. The datatypes are relative, while addresses for individual bu�ers are absolute.

The bu�er pool can be shared between several channels but all channels must use the same

queuing strategy.

MPIRT BUFFER POOL CREATE(count, datatype, system queue strategy, bufcount, bases,

bufpool)

IN count the number of elements of datatype in a bu�er (non-

negative integer)

IN datatype datatype of each element (handle)

IN system queue strategy MPI's designated approach to managing the bu�er pool

when it is used in an association with a channel (inte-

ger)

IN bufcount the number of bu�ers in the bu�er pool (nonnegative

integer)

INOUT bases array of length bufcount with the beginning addresses

of each bu�er in the pool (choice)

OUT bufpool bu�er pool object (handle)

int MPIRT Buffer pool create(int count, MPI Datatype datatype, int

system queue strategy, int bufcount, void *bases[],

MPIRT Bufpool *bufpool)

MPIRT BUFFER POOL CREATE(COUNT, DATATYPE, SYSTEM QUEUE STRATEGY, BUFCOUNT,

BASES, BUFPOOL, IERROR)

INTEGER COUNT, DATATYPE, SYSTEM QUEUE STRATEGY, BUFCOUNT, BASES(*),

BUFPOOL, IERROR

The system queue strategy argument indicates the desired bu�er management strategy.

Two speci�c values are currently under consideration: MPIRT BUFFER CIRCULAR WAIT and

MPIRT BUFFER CIRCULAR NOWAIT These two values specify that the system should traverse

the bu�ers in a circular order when trying to locate an available bu�er.

A unique index is de�ned with each bu�er. When the MPI creates all bu�ers it cre-

ates an index between 0 and bufcount-1 for each bu�er. These numbers are assigned in

accordance with the order in the array bases above.

Discussion: The zero length bu�ers are allowed. The users can use them to do their own

data 
ow control and the number of these bu�ers make the di�erence for the application users. The

meaning of other parameters including datatype, queue strategy, and bases have to be considered

for this case. Can we specify the same base for all bu�ers? Does queue strategy have any e�ect?

However, the wait no wait (overwrite or not) option still makes sense. Should the value of datatype

be ignored for zero length bu�er?

The following function destroys a bu�er pool handle:
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50 CHAPTER 8. REAL-TIME MPI

MPIRT BUFFER POOL HANDLE FREE(bufpool)

INOUT bufpool bu�er pool object (handle)

int MPIRT Buffer pool handle free(MPIRT Bufpool *bufpool)

MPIRT BUFFER POOL HANDLE FREE(BUFPOOL, IERROR)

INTEGER BUFPOOL, IERROR

8.6.2 User Bu�er Access

In considering the consumption and release of bu�ers as a channel's state evolves under

message transmission, both the system's strategy, and the user's emphasis on message age

come into play. The desired system strategy for handling the bu�er pools upon creation has

been speci�ed by MPIRT BUFFER POOL CREATE. There is also the need for an application

to specify \newer," \older" or \intermediate" age data, as a function of the semantics of

the meaning of such data to the application.

Bu�ers in the bu�er pool are either available or used. Bu�ers become used as the user

consumes them. Used bu�ers can be made available to the system again by the following

function:

MPIRT BUFFER MAKE AVAIL(index, bufpool)

IN index bu�er index (integer)

INOUT bufpool bu�er pool object (handle)

int MPIRT Buffer make avail(int index, MPIRT Bufpool *bufpool)

MPIRT BUFFER MAKE AVAIL(INDEX, BUFFER, IERROR)

INTEGER INDEX, BUFPOOL, IERROR

The special index value MPIRT ALL BUFFER indicates that all bu�ers in the bu�er pool

are available for reuse by MPI/RT.

The following operation allows the user to get access to the bu�ers for a message receive

or a future send operation:

MPIRT BUFFER GET(bufpool, user strategy, count, index, equest)

IN bufpool bu�er pool object (handle)

IN user strategy user strategy for bu�er management (integer)

INOUT count count of the bu�er element (integer)

OUT index the index of the bu�er (integer)

OUT request a copy of the request of the channel on which the mes-

sage arrived (handle)

int MPIRT Buffer get(MPIRT Bufpool bufpool, int user strategy, int *count,

int *index, MPI Request *request)
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8.7. CHANNELS 51

MPIRT BUFFER GET(BUFPOOL, USER STRATEGY, COUNT, INDEX, REQUEST, IERROR)

INTEGER BUFPOOL, USER STRATEGY, COUNT, INDEX, REQUEST, IERROR)

Three speci�c values of the user strategy are currently de�ned:

MPIRT BUFFER NEWEST, MPIRT BUFFER OLDEST, and MPIRT BUFFER NEXTAVAIL. Other

options may be added. For example, MPIRT BUFFER GET(bufpool, NEWEST, 1, index,

request) returns the index of the bu�er with the last received message. To obtain a bu�er

suitable for use on the sending side MPIRT BUFFER NEXTAVAIL is de�ned.

Discussion: A frozen user view of the bu�er queue may be required for some applications

(atomic access to the bu�er pool queue). For example, the user may need to access three consecutive

receive messages. Simple repetition of MPIRT BUFFER GET(bufpool, NEWEST, 1, index, request)

is not su�cient, since new messages may arrive between these three operations and the queue

will be modi�ed. Hence, the following operations are proposed: MPIRT QUEUE LOCK,

MPIRT QUEUE UNLOCK. An implementation can have a shadow queue so it can continue to receive

and send messages, while maintaining the frozen bu�er queue snapshot for the user. Since additional

resources may be required, a 
ag can be added to the API for the bu�er pool at creation time to

notify implementation. This 
ag provides information for establishing QOS for a channel.

Discussion: An example is needed here, that will be added later.

The Bufferpool/Buffer State Transition Diagram for MPI/RT
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Figure 8.2: Bu�er Pool State Transition Diagram. This diagram represents the semantic

behavior of the bu�er pool and the operations, but does not specify the implementation.

8.7 Channels

Persistent point-to-point communications can provide scheduled sends and receives. MPI-

1 persistent communications allow any receive to match a persistent send, and any send
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52 CHAPTER 8. REAL-TIME MPI

to match a persistent receive [13]. These persistent communication calls operate as pre-

negotiated communication endpoints. MPI-2 provides a simple way to bind such endpoints

into a point-to-point channel. MPI/RT chooses a more general strategy, de�ning point-to-

point collective channel.

In MPI/RT, persistent channels o�er the functionality of a virtual channel [4, 6, 10]

within the framework of the MPI standard. The motivations for having virtual channels in

MPI/RT are as follows:

� Ability to exploit persistent communication

� Deadlock avoidance

� Once established, virtual channels should guarantee properties critical for timing cor-

rectness such as:

{ Bounds on end-to-end delay,

{ Jitter control,

{ Minimum bandwidth,

{ Bu�er space.

8.7.1 Point-to-point Channels

Discussion: This draft contains two versions of the channel management: separate operations for
creating, deleting and modifying channels, and a single combined operation one.

The combined uni�ed initialize, modify, and delete channel operation is introduced and is
written.

How to pass information about the endpoint of a channel is also under discussion. The sugges-
tions range from several arrays, each de�ning one parameter of an endpoint, to two separate arrays
one for HEADS and one for TAILS, to an array structure where each element of the structure de�nes
single endpoint.

As part of this proposal, it was recommend that MPI/RT will provide no other bu�ering for a

channel other than that explicitly provided by the user via the bu�er pool. (For example, if all of

the receive bu�ers have been exhausted, any further requests at the send side will not complete until

one of the receive bu�ers is freed.) By eliminating extra bu�ering in an implementation, tighter

real-time constraints can be met; especially the needs of resource-constrained systems.

Collective operations for point-to-point channels negotiation are as follows:
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8.7. CHANNELS 53

MPIRT CHANNELS INIT(bufpools, nchannels, 
ags, ranks, qoss, fns, names, comm, requests,

errors)

IN bufpools array of transfer bu�er pool addresses (handle array

of length nchannels)

IN nchannels length of all arrays used locally (number of channels

being opened) (integer)

IN 
ags array indicating endedness of ith channel (integer ar-

ray of length nchannels)

IN ranks the ranks of the remote channel endpoints (integer ar-

ray of length nchannels)

INOUT qoss quality of service parameters per channel (handle ar-

ray of length nchannels)

IN fns array of function names for handlers on channels (ar-

ray of user-de�ned function of type

MPIRT QOS ERROR FN

INOUT names array of names of the channels that are used in event

lists (string array of length nchannels)

IN comm communicator (handle)

OUT requests array of request objects, one per channel (persistent

requests array of length nchannels)

OUT errors speci�es success, non-success, for each channel (integer

array of length nchannels)

int MPIRT Channels init(MPIRT Bufpool bufpools[], int nchannels,

int flags[], int ranks[], MPIRT QOS *qoss[], MPIRT QOS ERROR FN

fns[], char **names[], MPI Comm comm, MPI Request *requests[],

int *errors[])

MPIRT CHANNELS INIT(BUFPOOLS, NCHANNELS, FLAGS, RANKS, QOSS, FNS, NAMES,

COMM, REQUESTS, ERRORS, IERROR)

INTEGER BUFPOOLS(*), NCHANNELS, FLAGS(*), RANKS(*), QOSS(*), FNS(*),

CHARACTER*(*) NAMES(*),

INTEGER COMM, REQUESTS(*), ERRORS(*), IERROR

From the perspective of a single process calling the function above, for each of nchannel

entries, a single channel is speci�ed, which must have a corresponding entry in exactly one

other process calling the same constructor, with appropriate arguments. The ith channel's

connectivity is speci�ed completely by:

� ranks[i] { the name of the other end of the channel (integer rank in communicator

group). The ranks are the names of those processes contained in the group of comm.

� 
ags[i] { the direction of the transfers on the channel, where each process speci�es

itself as sender with a constant HEAD (1), or else receiver with a constant TAIL (-1),
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54 CHAPTER 8. REAL-TIME MPI

This operation yields as many channels as speci�ed by the user, with the potential for

duplicate ranks both for sending and receiving as well as multiple channels involving the

same pair. The self-channels are allowed and the matching rule applies to them too.

These individual requests may be used to transmit point-to-point data between pro-

cesses, independently. The initialization call is collective in order to establish required

quality of service in the face of shared resources. This call does not initiate any communi-

cation, but only sets up such communication.

The quality of service parameters (per channel) include speci�cation of hard vs. best-

e�ort requirement for meeting the QOS request made. By hard, we mean that if the QOS

cannot be o�ered exactly as speci�ed, then an error is returned, and the channel is not

established. Best e�ort constitutes the nearest level of service a system can provide [8, 9].

It is less than the application requested as speci�ed in the QOS In-parameter, is returned

in the QOS as an Out-parameter.

Both ends of each channel must specify the same quality of service requirements, or the

call is erroneous. The error function handler array speci�es functions that are called in case

of QOS failures, but not for such a speci�cation error. These error functions are needed

to support one-sided and no-sided (where MPI/RT does data transfer without application

having any per-transfer data transfer operations) communication uses of the channels, as

there is no MPI/RT call to bind a function to an operation on a per-use (such as timeout)

basis. This is especially critical for the periodic uses. We may create more than one error

handle for a channel. One is needed to handle QOS failure situations, especially for no-

sided communication. More may be needed to handle other types, like bu�er pool over
ow,

communicator errors and others, that some applications may want to handle prior to a

timeout expiration. The error condition array speci�es MPI SUCCESS for successful channel

creation, and o�ers speci�c error codes, to be determined, for non-successful channel creation

operations.

The names is used for application event-driven paradigm (see Section 8.10). The user

can provide the channel names andMPI/RT will assign them to the channels, or the user can

specify MPIRT IGNORABLE and MPI/RT will provide the channel names and return them as

an Out-parameter in names. The names on both endpoints of the channel must match.

Discussion: Proposal: The complicated mappings between error codes and error handlers

should be addressed in the future. Masking errors, providing mechanisms to de�ne and �nd out

about \fatal" errors should be address at the same time. This is still based on assumption that most

of errors for this section, including, communicators, bu�er pools, QOS and so on, will be associated

with the channels.

Discussion: Proposal: Currently, the QOS error handler is speci�ed by the name. For the

future we should consider wrapping this error handler into MPI REQUEST using persistent handlers,

analogous to the lower-level or application event-driven paradigms. That method is more generic

and does not require introduction of the new object MPIRT QOS ERROR FN.

Advice to users. The same bu�er pool may be used for more than one channel.

While for some paradigms (event-driven, time-driven) the user can easily manage to

avoid problems with the shared bu�ers, in general it is a dangerous scenario that can

lead to various errors and create problems for maintaining QOS for the channels that
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share the bu�er pool. Hence shared bu�er pool can be a source of a performance

optimization, but it should be used with caution. (End of advice to users.)

MPIRT CHANNELS DELETE(comm, 
ag, nchannels, requests )

IN comm communicator (handle)

IN 
ag \abrupt" versus \close" type channel semantics (inte-

ger)

IN nchannels number of channels to be deleted (integer)

INOUT requests array of request objects, one per channel (persistent

request array of length nchannels)

int MPIRT Channels delete(MPI Comm comm, int flag, int nchannels,

MPI Request *requests[])

MPIRT CHANNELS DELETE(COMM, FLAG, NCHANNELS, REQUESTS, IERROR)

INTEGER COMM,

LOGICAL FLAG,

INTEGER NCHANNELS, REQUESTS(*), IERROR

This operation frees the speci�ed requests previously allocated, and is a collective

operation over the group of the communicator. This may be all the channels allocated in a

single or multiple calls, or just a subset thereof, according to user preference.

Any pending operations are cancelled, if the 
ag is set to MPIRT DELETE, and are

completed, if the 
ag is set to MPIRT CLOSE.

In order to allow changes of channels parameters for application mode changes, a

modi�cation capability is o�ered:
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MPIRT CHANNELS MODIFY(bufpools, nchannels, 
ags, qoss, fns, comm, requests, errors )

IN bufpools array of transfer bu�er pool handles (handle array of

length nchannels)

IN nchannels number of channels to be modi�ed (integer)

IN 
ags if MPIRT FLAGS IGNORE, channel is left unchanged,

otherwise it is MPIRT MODIFY and speci�c parame-

ters are renegotiated for this channel (integer)

INOUT qoss array of quality of service parameters per channel (han-

dle array of length nchannels)

IN fns QOS error handler functions (array of user-de�ned

functions of type MPIRT QOS ERROR FN of length

nchannels)

IN comm communicator (handle)

INOUT requests request objects, one per channel (persistent request

array of length nchannels)

OUT errors speci�es success, non-success, for each channel (integer

array of length nchannels)

int MPIRT Channels modify(MPIRT Bufpool bufpools[], int nchannels,

int flags[], MPIRT QOS *qoss[], MPIRT QOS ERROR FN fns[],

MPI Comm comm, MPI Request *requests[], int *errors[])

MPIRT CHANNELS MODIFY(BUFPOOLS, NCHANNELS, FLAGS, QOSS, FNS, COMM,

REQUESTS, ERRORS, IERROR)

INTEGER BUFPOOLS(*), NCHANNELS,

LOGICAL FLAGS(*),

INTEGER QOSS(*), FNS(*), COMM, REQUESTS(*), ERRORS(*), IERROR

When a 
ag is set to MPIRT MODIFY, then the remaining arguments become signi�cant.

On both ends of a channel, the 
ags must be set consistently or the program is erroneous.

For each channel to be renegotiated, each parameter is checked. A special value of \ignore"

appropriate to the argument type of a given �eld will be de�ned for each of these, to keep

the currently set value. If not \ignored," then the quantity will be modi�ed:

� bufpool: MPIRT BUFPOOL IGNORE,

� qos parameter: MPIRT QOS IGNORE,

� error fn parameter: MPIRT HANDLER IGNORE,

It should be noted that the in-out parameter requests[] contain su�cient information so

that it is not necessary to reiterate the ranks[] of the communicator involved, which are in

any event not modi�able under this call. That is, channels may not be redirected.

Discussion: What parameters can be modi�ed and what the meaning of modi�cation for

these parameters is still under discussion. The only one parameter that everybody agree on is QOS.
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8.7. CHANNELS 57

If an error occurs upon a channel renegotiation, the original channel set up continues to

persist. Setting channels to have negligible usefulness of quality of service does not in any

event cause a channel to disappear, and some system resources mat continue to be reserved

for it.

Discussion: Proposal: There is no easy way to change any parameters of a bu�er pool. We

can only disconnect the old bu�er pool with a channel and connect a new one. Maybe we should

add another modify operation, to modify bu�ers in the existing bu�er pool, while they are attached

to a channel.

The most general real-time programs will want to transition channel resources in a

combined create/modify/delete call. Others may choose to use these calls individually. In

general, MPI/RT will be able to better utilize resources when presented with an atomic

transition. The operation below is a combined operation that allows create, delete and

modify channels in atomic fashion.
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MPIRT CHANNELS TRANSIT(comm, ncchannels, cbufpools, cranks, c
ags, cqoss, cfns,

cnames, cchannels, nmchannels, mbufpools, mqoss, mfns, mchannels, ndchannels, dchannels)

IN comm communicator (handle)

IN ncchannels length of arrays for channels to be created, (integer)

IN cbufpools array of bu�er pool addresses (handle array of length

ncchannels)

IN cranks array of ranks of the remote channel endpoints (integer

array of length ncchannels)

IN c
ags array indicating the channel directions (integer array

of length ncchannels)

IN cqoss array of quality of service parameters (handle array of

length ncchannels)

IN cfns array of function names for qos error handlers on chan-

nels (array of user-de�ned function of type

MPIRT QOS ERROR FN of length ncchannels)

INOUT cnames array of names of the channels that are used in event

lists (string array of length ncchannels)

OUT cchannels array of request objects for channels to be created (ar-

ray of persistent requests of length ncchannels)

IN nmchannels length of arrays for channels to be modi�ed (integer)

IN mbufpools array of bu�er pool addresses (handle array of length

nmchannels)

IN mqoss array of new quality of service parameters (handle ar-

ray of length nmchannels)

IN mfns array of new function names for qos error handlers

(array of user-de�ned function of type

MPIRT QOS ERROR FN of length nmchannels)

INOUT mchannels array of request objects for channels to be modi�ed

(persistent requests array of length nmchannels)

IN ndchannels length of arrays for channels to be deleted (integer)

INOUT dchannels array of request objects for channels to be deleted

(persistent requests array of length ndchannels)

int MPIRT Channels transit(MPI Comm comm, int ncchannels,

MPIRT Bufpool cbufpools[], int cranks[], int cflags[],

MPIRT QOS *cqoss[], MPIRT QOS ERROR FN cfns[], char **cnames[],

MPI Request *cchannels[], int nmchannels,

MPIRT Bufpool mbufpools[], MPIRT QOS mqoss[],

MPIRT QOS ERROR FN mfns[], MPI Request *mchannels[],

int ndchannels, MPI Request *dchannels[] )
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MPIRT CHANNELS TRANSIT(COMM, NCCHANNELS, CBUFPOOLS, CRANKS, CFLAGS, CQOSS,

CFNS, CNAMES, CCHANNELS, NMCHANNELS, MBUFPOOLS, MQOSS, MFNS,

MCHANNELS, NDCHANNELS, DCHANNELS, IERROR)

INTEGER COMM, NCCHANNELS, CBUFPOOLS(*), CRANKS(*), CFLAGS(*), CQOSS(*),

CFNS(*),

CHARACTER*(*) NAMES(*),

INTEGER CCHANNELS(*), NMCHANNELS, MBUFPOOLS(*), MQOSS(*),

MFNS(*), MCHANNELS(*), NDCHANNELS, DCHANNELS(*), IERROR

All the parameters of the above operations are identical to the parameters for the

separate operations. The only exceptions are the errors. Since this operation is atomic

and no channel handles can be created, modi�ed, or deleted unless all the requests can be

satis�ed, there is no reason to return individual channel errors. These errors do not provide

any information to a user beyond the fact that there are not enough resources to satisfy all

the requests. A user need more information beyond what channels an implementation can

create/delete/modify in order for him/her to be able to split this operation into a series of

requests for a smaller number of channels if it possible at all.

This operation is atomic. Release of resources should not occur if all channels cannot

be allocated. Modifying any channel requests is not permitted if any of the original channels

passed in can not be modi�ed. The call is collective in order to establish required quality

of service in the face of shared resources. This call does not initiate any communication,

but only sets up such communication.

8.7.2 Collective Operations with Quality of Service

For each operation in MPI-1 and MPI-2 and collective operations (i.e., non-blocking) that

should be in the journal of development (futureMPI-3), we have de�ned a persistent variant,

that is initiated with asynchronous (MPI START) and synchronous (MPI DO) mechanisms.

For each such operation, the real-time variant is speci�ed as follows: A quality of service

speci�cation is added as an additional parameter, directly before the communicator pa-

rameter. Currently, we have both the MPI-1 and MPI-2 style functionality (illustrated for

broadcast):

MPI_Bcast(bufpool, root, comm);

MPI_Bcast_init(bufpool, root, comm, &request);

For each collective operation MPI/RT provides an additional form.
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MPIRT BCAST INIT(bufpool, root, qos, fn, comm, request)

IN bufpool bu�er pool (handle)

IN root rank of broadcast root in a group (integer)

INOUT qos quality of service parameters per channel (handle)

IN fn function name for QOS error handler for the chan-

nel (user-de�ned function of type

MPIRT QOS ERROR FN)

IN comm communicator (handle)

OUT request request object (persistent request)

int MPIRT Bcast init(MPIRT Bufpool bufpool, int root, MPIRT QOS *qos,

MPIRT QOS ERROR FN fn, MPI Comm comm, MPI Request *request)

MPIRT BCAST INIT(BUFPOOL, ROOT, QOS, FN, COMM, REQUEST, IERROR)

INTEGER BUFPOOL, ROOT, QOS, FN, COMM, REQUEST, IERROR

The quality of service parameter applies to the collective operation. The hard vs. best

e�ort nature of the quality of service speci�cation is as for point-to-point channels. The

speci�cation of quality of service may di�er from that used for point-to-point channels,

and may also di�er for various collective operations. The collective operations can have

a timeout version. For modi�cation (late binding), the following type of service is to be

provided for each collective operation, illustrated here for broadcast:

MPIRT BCAST MODIFY(bufpool, root, qos, fn, comm, request)

IN bufpool new bu�er pool address or \ignore" (handle)

IN root new rank of broadcast root in a group or \ignore"

(integer)

INOUT qos quality of service parameters per channel or \ignore"

(handle)

IN fn function name for QOS error handler for the channel

or \ignore" (user-de�ned function of type

MPIRT QOS ERROR FN)

IN comm communicator (handle)

INOUT request request object (persistent request)

int MPIRT Bcast modify(MPIRT Bufpool bufpool, int root, MPIRT QOS *qos,

MPIRT QOS ERROR FN fn, MPI Comm comm, MPI Request *request)

MPIRT BCAST MODIFY(BUFPOOL, ROOT, QOS, FN, COMM, REQUEST, IERROR)

INTEGER BUFPOOL, ROOT, QOS, FN, COMM, REQUEST, IERROR

Each parameter will either be \ignorable" or specify a new value. The modify is itself a

collective operation over the group of the communicator. Quality of services may be either

increased or decreased. For deletion of a collective persistent operation in the Collective
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Extensions chapter, it is assumed that MPI REQUEST FREE is su�cient. Here, we add a

speci�c collective destructor:

Discussion: Proposal: This operation may be removed provided that the existing MPI-2

channel deletion is su�cient. This functionality is currently in the collective chapter in the JOD.

MPIRT CHANNEL COLL DELETE(comm, 
ag, request)

IN comm communicator (handle)

IN 
ag \abrupt" versus \close" type channel semantics (inte-

ger)

INOUT request request object representing real-time collective opera-

tion (persistent request)

int MPIRT Channel coll delete(MPI Comm comm, int flag, MPI Request *request)

MPIRT CHANNEL COLL DELETE(COMM, FLAG, REQUEST, IERROR)

INTEGER COMM,

LOGICAL FLAG,

INTEGER REQUEST, IERROR

This operation frees all request previously allocated, and is a collective operation over

the group of the communicator. Any pending operations are cancelled, if the 
ag is set to

MPIRT DELETE, and are completed, if the 
ag is set to MPIRT CLOSE.

Discussion: An equivalent, alternative model is to have two calls, and no 
ag.

Advice to implementors. If real-time collective operations are layered on top of point-

to-point channels, then a set of channels used to create a collective operation could

be built up with the point-to-point channels, and deleted using the point-to-point

channel deletion de�ned above.

However, the quality of service parameter to the collective operation, as speci�ed by

the user, will have to be translated to appropriate channel quality of service param-

eters by the implementation. The implementation is also free to select one of several

algorithms (poly-algorithm [12]) to accomplish a given operation. We will consider

in the future a single operation to allow creation, deletion, and modi�cation of all

channels (point-to-point and collective) over a single communicator. (End of advice

to implementors.)

8.8 Quality of Service

The quality of service parameters span point-to-point persistent channels, collective persis-

tent channels and all paradigms of real-time discussed in this chapter. The QOS parameters

are the most important distinction between regular MPI and real-time MPI.

Only paradigm-speci�c QOS parameters are part ofMPI/RT for point-to-point channels

and collective channels, and that any lower-level QOS parameters are only discussed as

advice to implementors. See also [4, 10].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



62 CHAPTER 8. REAL-TIME MPI

Discussion: Some of the lower-level quality of service may be revisited for multiple real-time

paradigms mixed in the same application, but that is beyond the current scope of this draft. This

will also recur when we consider implementation interoperability.

For the four paradigms, here are the current proposed contents of the quality of service

parameters:

Time-Driven The QOS parameters for time-driven paradigm include:

� the time interval for message transmission,

� the period, for periodic message transmission, including the relationship between

the time interval and the period, usually de�ned by a release time and a deadline,

� the starting time within the period (transmission need not start at the beginning

of the period, or end within the period).

Event-Driven The currently expected QOS for the event-driven paradigm is the bound

required on the activation time of an event handler for a delivered event.

Low-level event-driven paradigm will put bounds on local event trigger, whereas high-

level event-driven will put bounds on global event delivery and trigger.

Priority-Driven The QOS parameters for the priority-driven paradigm include:

� Preemptability 
ag - boolean (yes is true or no is false),

� Integer Priority of the persistent channel for message transmission (integer),

� Priority class of the persistent channel (integer) (provides second level of priority)

� Some measure of the preemption quantum desired in bytes (allows a user to

calculate timing bounds for guaranteed delivery)

Discussion: Parameters still in 
ax. Only the second bullet is agreed upon.

soft QOS Discussion: Proposal: For some applications the hard real-time guarantees are too

restrictive, sometime at the expense of the performance. The working group voted to add a

QOS version that does not require hard guarantees. The details of the \softer" quality are

still under discussion.

Currently, there are no deadline associated with the message transmission for the

priority-driven or event-driven paradigms.

Note that the aggregate size of the transmission is needed as part of quality of service,

but this is provided separately through the (bu�er, datatype, and count) parameters of

the standard form of the channel initialization, and alternatively as part of the bu�er pool

objects.

Discussion: It was agreed that it is appropriate for an application to specify event-driven
quality of service with either time-driven or priority-driven quality of service parameters but not
both. It is quite often the case that an application uses event-driven with other paradigms.
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8.9. TIME-DRIVEN MPI/RT 63

It is still under discussion what the meaning of the mixture of time-driven and priority-driven

paradigms with their associate quality of services might be. The mixture of soft and hard QOS

paradigms will also be considered later.

8.9 Time-driven MPI/RT

The primary goal of the time-driven approach to MPI/RT is to allow the real-time appli-

cation su�cient control of the environment in which it is running so that it can explicitly

schedule its message-passing activities and resource usage. Since MPI is designed as a

message-passing library, it cannot schedule by itself, but must depend upon the operating

system and communication and network protocols to enforce speci�ed schedules.

An application using time-drivenMPI/RT will be able to specify time intervals to bound

the resource usage of communication operations using globally synchronized clock values,

and the implementation of time-driven MPI/RT will ful�ll these requirements with minimal

changes to the MPI standard.

For practicality, the work of our e�orts has been to minimize the number of new

functions introduced intoMPI/RT pro�les to provide these real-time features. MPI supports

both blocking and non-blocking sends and receives, as well bu�ered, synchronous, and

ready versions of each. We decided it was important not to add new versions of each send

and receive mode, increasing the number of MPI calls multiplicatively. Rather, we sought

solutions that would involve additions to the number of MPI functions.

8.9.1 Scheduling Message Transfers

The existing MPI message transfer operations lack two parameters that we consider critical

for real-time applications, especially for the time-driven programming paradigm. These

are a starting time of the operation and a timeout for completion of the operation. The

starting time of an operation should be considered as a special case of an event. While

certain applications (especially embedded ones) prefer an even �ner granularity of control,

we tried to strike a balance between the feasibility of an implementation and what time-

driven application designers want to use. For example, there is a hard lower bound for the

starting time, but no hard upper bound on the starting time.

One distinctive characteristic of the time-driven approach to real-time message-passing

is its lack of need for queues and system bu�ers. Applications use ready mode message-

passing implicitly. A ready-mode send may be started only if the matching receive has

already been posted [5]. On many systems, this allows the removal of a hand-shake op-

eration and results in improved performance. Since a parallel time-driven program must

globally schedule all message transmissions, the message receiver always knows to expect

an incoming message. Thus, for reasons of e�ciency and simplicity, a time-driven MPI/RT

implementation should not do any handshaking (as many of the existing non-real-time im-

plementations do). It is up to the application to specify times (for start and timeout) to

ensure that the sender/receiver (local/remote) pairs are working in synchrony.

Another distinctive feature is a potentially more e�cient way of using noti�cations,

which can be more minimal (shorter critical instruction path) than with other approaches. A

time-driven MPI/RT application does not need to be noti�ed when a message is transmitted

successfully and on time; instead it is noti�ed only when an error occurs (e.g., a timeout
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64 CHAPTER 8. REAL-TIME MPI

expires). A matter of signi�cant discussion in the MPI/RT group concerns precisely what

should happen to messages left on the network when a timeout expires.

8.9.2 Schedulable Time Intervals

An activity interval, speci�ed by a starting time and a timeout, is an input parameter for

a scheduled message send. The purpose of this parameter is to ensure that the system

resources required to satisfy this operation will not be used outside of speci�ed interval.

These resources can be narrowly interpreted to refer to the interprocess communications

network. A broader interpretation would include memory accesses, node busses, network

interface cards, and so on. Again, while we prefer a �ner granularity of control, we have

tried to strike a balance between the feasibility of an implementation and what time-driven

schedule designers want to use.

The starting time and timeout are somewhat symmetric. The starting time ensures

that the resources needed for a data transfer operation will be available at the speci�ed

start time. The timeout parameter, in contrast, would ideally specify the time when all

resources required by the message transfer operation are no longer in use. That is, after the

time speci�ed in the timeout, irrespective of whether the operation completed successfully

or not, all system resources (physical network, network interface cards, node buses, message

bu�ers, etc.) have been released and can be used for subsequent message-passing operations.

Unfortunately, in practice these guarantees often cannot be met. The MPI/RT timeout

therefore speci�es that the message transfer should be stopped and the calling application

should be noti�ed if the operation has not completed by the time speci�ed by the timeout.

Since the message may be progressing through a multi-stage network, a time-driven MPI/RT

implementation may need to send a message from the receiver node to the sender to indicate

that the timeout has occurred. The resulting error messages may not be received by the

timeout deadline, and they may use resources after the timeout. Thus the application may

need to reserve resources to handle such events. It should not be the responsibility of the

MPI/RT implementation to provide this bound, since any guarantees that can be given

from the perspective of a user-level message-passing library would be too naive to be useful.

The application itself is in a much better position to know timing and performance details

relevant to establishing such a bound, including details of the platform and knowledge of

the run-time patterns of communication. Even for the application, it may be extremely

di�cult to establish such bounds, especially if the real-time performance characteristics of

the operating system or the underlying runtime system are poorly known or highly variable.

8.9.3 MPI/RT Time Handle

The starting times and timeouts of the activity interval in time-driven MPI/RT data transfer

operation calls are speci�ed by a structure called a MPIRT TIME OBJECT/ (one instance

of the structure is used for each). A MPIRT TIME OBJECT/ has two �elds,

MPIRT TIME OBJECT TYPE/ and MPIRT TIME OBJECT TIME/.

MPIRT TIME OBJECT TYPE/ must have one of two values, ABSOLUTE/, or RELATIVE/.

When a starting time is replaced by MPIRT TIME IGNORE/, then there is no hard constraint

on when the operation should start. Implicitly, it should start as soon as possible, just as

with the current MPI calls. Similarly, when a timeout is given by a MPIRT TIME IGNORE/,

there is to be no hard constraint on when the operation should end. Furthermore, the

second �eld of a MPIRT TIME OBJECT/ is not signi�cant if the �rst �eld is set to
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8.9. TIME-DRIVEN MPI/RT 65

MPIRT TIME IGNORE/.

For aMPIRT TIME OBJECT/ whose �rst �eld is ABSOLUTE or RELATIVE, the second

�eld (MPIRT TIME OBJECT TIME) should be a �eld containing a double precision 
oating

point number. In either case (ABSOLUTE or RELATIVE) theMPIRT TIME OBJECT TIME/

refers to the global synchronized clock, but in the relative case, an actual constraint is to be

derived at run-time by adding MPIRT TIME OBJECT TIME/ to the value returned by as

fresh as possible a read of the global synchronized clock. Note that even in the ABSOLUTE

form, an actual time requirement cannot necessarily be constructed until the value of the

time object at the time of the execution of the call is known.

Thus, the activity interval for time-driven MPI/RT message transfers is speci�ed by

two parameters: starting time and timeout, each speci�ed in turn by a time handle of the

form MPIRT TIME OBJECT.

When using a late binding call, MPIRT TIME NOOVERRIDE should be used to retain

built-in QOS speci�cation, whereas MPIRT TIME IGNORE/ would replace the speci�ed times

with an \ignore," thereby making the call work as if no time interval were required.

In C/C++, the MPIRT TIME OBJECT/ is semi-opaque, like the

MPI STATUS. For Fortran, a strategy will be worked out similar to the MPI STATUS solution

as well.

8.9.4 Time-Driven Channel Calls

Using persistent channels to schedule a time-driven message transaction involves the addi-

tion of an MPIRT TIME OBJECT parameters to the MPI START() call, which activates a

persistent communications handle. The two MPIRT TIME OBJECT parameters de�nes the

time interval for data transmission. The users can set these parameters to

MPIRT TIME IGNORE/ in order to use the time interval speci�ed in

MPI CHANNELS INIT. Analogously, users can either specify the period or reuse the one

speci�ed by MPI CHANNELS INIT. If period is speci�ed by MPIRT START TIME or by

MPI CHANNELS INIT then this starts the persistent channel and MPI/RT implementation

is responsible for moving the data between bu�ers at the end of the channel within the

de�ned time interval of the period.

MPIRT START TIME(request, start, timeout, period, fn)

IN request persistent channel request object (persistent request)

IN start message start timing parameter (

MPIRT TIME OBJECT)

IN timeout message stop timing parameter (

MPIRT TIME OBJECT)

IN period optional periodic re-invocation (

MPIRT TIME OBJECT)

IN fn void function to call on QOS failure (

MPIRT QOS ERROR FN)

int MPIRT Start time(MPI Request request, MPIRT TIME OBJECT start,

MPIRT TIME OBJECT timeout, MPIRT TIME OBJECT period,

MPIRT QOS ERROR FN fn)
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66 CHAPTER 8. REAL-TIME MPI

MPIRT START TIME(REQUEST, START, TIMEOUT, PERIOD, FN, IERROR)

INTEGER REQUEST, START, TIMEOUT, PERIOD, FN, IERROR

The meanings of start and timeout are de�ned above. The meaning of period is either:

non-periodic, if MPIRT TIME IGNORE/ is speci�ed, or else the length of the period between

automatic restarts of the request speci�ed. When period is speci�ed, both start and timeout

are taken as relative to multiples of the period. The bu�er pool strategy speci�ed for the

bu�er pool creation will tell which bu�er to use for each message send.

For time-driven MPI/RT, it is su�cient to map a request into a function call speci�-

cation (per invocation), so that no status is formed, and no special action is taken, unless

a timeout occurs. Other violations could occur, in the channel situation, and an analogous

mechanism to the timeout event must be provided.

8.10 Event-Driven MPI/RT

The local and application event-driven real-time MPI paradigms provide functionality for

local and global events, respectively. The local event-driven paradigm provides a mechanism

for scheduling with QOS an application handler upon the completion of a data transfer

operation. The application event-driven paradigm provides a mechanism for scheduling with

QOS any application activity, including MPI data transfer, application functions triggered

from a system event, application event orMPI event. Both paradigms allow users to manage

MPI, system, and user resources using events.

Discussion: A discussion of the relationship between the communication and OS scheduler

prompted a proposal to add a caveat with respect to the granularity of the OS scheduler for event

driven QOS. Also a bound on the number of events over a time interval may be needed to guarantee

QOS. This may be more critical for application event-driven MPI/RT.

8.10.1 Local Event-Driven Real-Time MPI

Request handlers are an ideal mechanism for implementing the event-driven paradigm. Han-

dlers were introduced in MPI-2. The functionality of this paradigm can be used with either

MPI or MPI/RT operation's requests. To help users better manage resources, two events

for the data transfer completions are introduced. One event speci�es the local completion

of the data transfer, that is the message bu�er can be reused, an event which is currently

available on most platforms. The other speci�es the global completion of the data transfer,

that is the channel resources can be reused.

Request handlers

The local mechanism for event-driven MPI/RT is the request completion handler, shown

below. (NOTE: This mechanism is based on theMPIRT POST HANDLER routine currently

in the External Interfaces chapter.)
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8.10. EVENT-DRIVEN MPI/RT 67

MPIRT REQUEST POST HANDLER(request, request cond, cond handler fn, failure fn, ex-

tra state, qos)

INOUT request MPI request (handle)

IN request cond request condition (integer)

IN cond handler fn request condition handler (user-de�ned function

MPIRT function)

IN failure fn QOS failure handler (user-de�ne function

MPIRT QOS ERROR FN)

IN extra state user supplied state (choice)

IN qos event-driven QOS (handle)

int MPIRT Request post handle(MPI request *request, int request cond,

MPIRT function cond handler fn, MPIRT QOS ERROR FN failure fn,

void extra state, MPIRT QOS qos)

MPIRT REQUEST POST HANDLER(REQUEST, REQUEST COND, COND HANDLER FN,

FAILURE FN, EXTRA STATE, QOS, IERROR)

INTEGER REQUEST, REQUEST COND, COND HANDLER FN, FAILURE FN, EXTRA STATE,

QOS, IERROR

The request condition and QOS failure handlers are both of the form:

MPIRT HANDLER FN(request, status, extra state)

INOUT request user-supplied MPI request (handle)

INOUT status status of the request (handle)

INOUT extra state user-supplied state (choice)

Once MPIRT REQUEST POST HANDLER has been called, the handler function

cond handler fn is to be called within the event-driven QOS after the given request reaches

the condition speci�ed by the request cond argument. Recall, that the event-driven QOS

speci�es the bound required for the activation time of an event handler after the request cond

is reached. When the handler is called, it is passed the request, the status of the request, and

the extra state. If the condition handler cannot be called within QOS speci�ed (the event-

driven allotted QOS time in the case of either absolute or relative times, or the speci�ed

time has already passed in the case of absolute times only), then the failure handler failure fn

is called. Like the request handler, the failure routine is passed the request argument, that

request's status, and the extra state argument.

Discussion: The de�nition of MPIRT REQUEST POST HANDLER is as yet imprecise. The

exact meaning of the handler function to be called need to be de�ned. One de�nition may specify

that the function should be in the ready queue of the operating system, while another may specify

that the function should start its execution. These and other choices need to be discussed and voted.
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68 CHAPTER 8. REAL-TIME MPI

There are two exceptional cases for the time argument: First, if qos is a relative time

and its value is zero, then the handler is to be called \as soon as possible." (How soon

is an implementation quality issue. The desired goal is an interrupt-like functionality.)

If the time is MPIRT TIME IGNORE, the request handler will be called at some later time

but not necessarily \immediately." Since an instantaneous response time is not practically

achievable in the �rst case and since the response time is unspeci�ed in the second case,

the failure handler will never be called for either case.

If the request has reached the speci�ed condition when the

MPIRT REQUEST POST HANDLER call is made, the handler is scheduled for execution

(unless the qos speci�ed time is absolute and has already passed, in which case the failure

routine is called). Notice that for normal nonblocking calls, it may often be the case that the

request has already completed. In such circumstances the user may wish to use a persistent

version of the call generating the request, if it is available. This would allow the handler

to be speci�ed before the request is started. (The lack of late binding poses something of a

problem, however. See the example given below.)

Note that a request can have only one handler for each of its conditions. If the user

wishes to have a callback list for each condition, this must be implemented manually by

having a high-level handler that calls the individual handlers one-by-one. If

MPIRT REQUEST POST HANDLER is called for a request and a condition for which a

handler has already been speci�ed and the handler has not yet been invoked or the request

is a persistent one, then the old handler is replaced by the new handler. If the new handler

is a null pointer, then a handler will no longer be called for the speci�ed condition on that

request.

The request conditions currently speci�ed are as follows:

� MPIRT REQUEST COMPLETE The associated handler is called when the request in

question has been marked complete. For example, if the handler is associated with

a nonblocking or persistent send, then the handler is called after the send bu�er is

available for reuse. (Note that the handler may run concurrently with the process

if the process was blocked on an MPI WAIT on the same request at the time the

handler was invoked. If the user wishes to avoid this, he/she must provide explicit

synchronization.)

� MPIRT REQUEST RELEASE The associated handler is called when all resources asso-

ciated with the last execution of the request are free. Continuing the above example,

if the handler is associated with a nonblocking or persistent send, then this handler is

called when all local bu�ers and network resources have been released. (The overall

semantics of this condition are admittedly fuzzy. The condition is necessary, however,

in order to guarantee real-time performance in certain circumstances. For example,

in the case of the above example, one might want the handler to initiate another send

request, guaranteeing that the two sends do not contend for system resources.)

Discussion: As an alternative to the MPIRT REQUEST RELEASE condition, we may wish to

strengthen the notion of request completion for real-time systems to include the release of all system

resources{not just the user bu�er.

The request handler is assumed to be \full-weight." That is, it can execute any MPI

call or system-speci�c synchronization call and may run for an indeterminate amount of
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8.10. EVENT-DRIVEN MPI/RT 69

time. (I.e., it is not restricted like a signal handler.) Also, handlers do not implicitly

\consume" their request(s). The request passed to a handler can still be waited on or

freed by the process before or after the handler is called, unless the handler itself explicitly

frees the request. A request is not actually freed by MPI/RT until all of the handlers

associated with that request have been called. Even if the process or another handler

has called MPI REQUEST FREE on the request prior to the execution of the handler, the

request is still valid and can be queried using the appropriate calls. One complication is

MPI CANCEL: If a request is cancelled prior to the execution of the handlers, the handlers

for each condition are called in turn may note the fact that the request has been cancelled

via MPI TEST CANCELLED.

Discussion: A suggestion was made to include a priority parameter in

MPIRT REQUEST POST HANDLER .

8.10.2 Application Event-Driven Real-Time MPI

Introduction

This section provides limited functionality that supports only some of many existing event-

driven models currently in use by real-time and embedded systems.

The main goal of the event-driven approach of real-time MPI is to help the application

to control the run-time environment in which it is running with explicit scheduling of MPI,

computation activities and their resource usage. Coordination is required between MPI, the

operating system, and communication and network protocols to enforce the schedules.

In a nutshell, an application using event-driven MPI will be able to specify intervals

guarded by speci�ed events in order to bound the resource usage of communication and

computation activities.

The limited functionality presented here contains:

1. MPIRT REQUEST GUARDED that allows the application to bind a guarded activity

associated with the request with an interval of time speci�ed by events,

2. MPIRT EVENTNAMES REGISTER andMPIRT EVENTNAMES DEREGISTER that al-

low the application to manipulate event lists,

3. MPIRT EVENT GENERATED that allows an application to generate user events.

Currently many applications \wait" on system events or user control messages to sched-

ule a handler, which, in turn, may schedule several application activities: functions, pro-

cesses, threads, and data transfers. The model for the application event-driven paradigm

presented in this section establishes the direct coupling between events and application

activities without user created handlers.

Events

Just as MPI provides the interface for data 
ow, the application event-driven MPI/RT

provides the interface for control 
ow. The events can be both persistent and one time

only. Three issues need to be addressed for the events. First, who generates an event.

Second, who is aware of the event. And �nally, how do we distinguish events.
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70 CHAPTER 8. REAL-TIME MPI

MPI/RT makes three types of events available: system events, communication events

and user events. The type of the event indicates who generated the event and consequently

what resources are involved. System events are generated by the platform environment, for

example operating system. User is unaware of these events but would like to be able to

schedule an activity based upon them. An example of this would be fault-tolerance. An

MPI/RT implementation is aware or can be made aware of these events. Due to a preliminary

nature of this proposal no system events are presented or de�ned in this section.

Discussion: In JOD MPI PROCESS DIED is de�ned as the only system event.

In this preliminary version all communication events are associated with the user

MPI/RT channels. MPI/RT generates and is aware of all communication events. This pro-

posal currently contains two events associated with the channel that are introduced in the lo-

cal event-driven section: MPIRT REQUEST COMPLETE and MPIRT HANDLER COMPLETE.

They represent local and global completion of the MPI/RT channel data transfer.

Each event is identi�ed with a name. For the application event-driven paradigm events

are not necessarily local to the process or even a node. Each process registers with MPI/RT

both the persistent event names that it wants MPI/RT to \monitor" and the persistent

event names that the process will generate.

In order to properly match communication events with the guarded activities, MPI/RT

associates a persistent global name with a channel. The channel name can be either provided

to an implementation by the application or the implementation will assign a name to a

channel. Hence, there are two persistent event names associated with the channel. For

example, if the channel is named � then they are: � local complete for a local data transfer

completion, and � global complete for a global data transfer.

The MPIRT CHANNELS INIT and MPIRT CHANNELS TRANSIT operations specify

the channel name 8.7.

User events are dedicated to the synchronization of the resource usage among di�erent

processes (nodes) on the platform, and are generated by the application. The user events

has meaning only to the application. MPI/RT is just a mechanism to match user events and

responses as well as the mechanism for event delivery and response triggers. An application

assigns a persistent name to a user event and noti�esMPI/RT about which process generates

this event. This is the only event type that is generated by the user. The events of other

two event types are generated by MPI/RT and the system.

MPI/RT delivers all the events to the processes that are registered for them and then

triggers application functions or data transfers according to the events that guard the ac-

tivity.

Guards and Guarded Activities

For any activity an application can specify events that trigger its start and that trigger its

termination if it is not �nished yet.

Discussion: Proposal for merging event-driven and time-driven paradigms. The main purpose
of the events is to guard the interval when the activity may use resources. This is analogous to the
time-driven paradigm where no resources will be used by an MPI/RT data transfer operation prior
to its starting time of the operation time interval and, to the best of the MPI/RT implementation
e�ort, no resources will be used after timeout of the operation time interval.
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8.10. EVENT-DRIVEN MPI/RT 71

The time interval of the time-driven real-time MPI/RT contains two events that are speci�ed

by the time stamps. From this perspective time-driven paradigm is just a subset of the event-driven

one. There is, however, one critical di�erence that lie in the ability of the application to schedule

its non-MPI activities. For the time-driven paradigm there are existing facilities to start non-MPI

activities using OS timers, spin-locks and others. That and the synchronized clocks allows the

application to coordinate all of its activities, MPI and non MPI, local and global. There are no

analogous mechanisms for event-driven paradigm, and event delivery/monitoring across the entire

platform requires application action and su�cient communication support. This is the place where

MPI/RT can really help.

Discussion: Relationship to the existing MPI functionality. Currently, in the JOD (chapter 2)

there is already a notion of the event; there are also event handlers in External Interfaces (ref to

Section 9.8). The only event speci�ed there is MPI PROCESS DIED, which is a system-level event

that an application can monitor. There are two relevant operations: MPI SIGNAL and

MPI MONITOR that appear in JOD. However, only the monitor operation makes use of events.

Events \guard" a liveliness interval within which the activity can use resources. While

many di�erent activities are of interest for real-time and embedded system for this pro-

posal we concentrated on two types of activities: MPI/RT data transfers over channels and

\generic" application activities.

The guards use two lists. The �rst one is the list of events whose conjuncture trigger

the activity. The second one is the list of events, such that any event on the list stops the

activity if it is not �nished by itself yet. If we need more comprehensive arithmetic for

event actions or a di�erent one we can add it later. For completeness we may add action

IGNORABLE for the empty action list.

Discussion: Proposal for adding time speci�cation for events. For merging event-driven and

time-driven paradigms special event types called time-instances should be allowed. The time-instance

will take a speci�cation of the MPIRT TIME OBJECT used by the time-driven paradigm. That will

allow to specify the time for the beginning and/or timeout for the activity as well as mixed time/event

guards.

MPI/RT is responsible to deliver events and to trigger (start or stop) an activity if it

is eligible. The API for application guarded request is
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72 CHAPTER 8. REAL-TIME MPI

MPIRT REQUEST GUARDED(request, start list, stop list, start qos, stop qos, failure fn, ex-

tra state)

IN request request (persistent handle)

IN start list list of the events that trigger the start of the function

(array of strings)

IN stop list list of the events that trigger the stop of the function

(array of strings)

IN start qos event-driven qos for the delivery of starting events (

MPIRT QOS)

IN stop qos event-driven qos for the delivery of terminating events

(MPIRT QOS)

IN failure fn qos failure handler (user-de�ned function

MPIRT QOS ERROR FN)

IN extra state user supplied state (choice)

int MPIRT Request Guarded(MPI Request request, char **start list,

char **stop list, MPIRT QOS start qos, MPIRT QOS stop qos,

MPIRT QOS ERROR FN failure fn, void extra state)

MPIRT REQUEST GUARDED(REQUEST, START LIST, STOP LIST, START QOS, STOP QOS,

FAILURE FN, EXTRA STATE, IERROR)

INTEGER REQUEST,

CHARACTER*(*) START LIST, STOP LIST,

INTEGER START QOS, STOP QOS, FAILURE FN, EXTRA STATE, IERROR

Recall that MPIRT CHANNELS INIT returns a request handle for each channel, and

analogous collective channel initialization operations return a request handle for a collective

channel. The persistent generalized requests that allow to encapsulate any application

activity within a request is introduced in MPI-2 and is now in JOD.

The two arguments start list and stop list de�ne the liveliness interval for the guarded

request. The start qos and stop qos speci�es the event QOS, that provides the bounds for

the start time of the guarded function after a triggering event happened and stop time after

a timeout event happens, regardless if it happened locally or remotely. Separate qualities

of service for starting and terminating events allows speci�cation of di�erent guarantees for

stopping and stopping an activity. The start qos and stop qos used standard event-driven

QOS format.

The extra state provides the list of the input arguments for the guarded activity. If the

activity is a communication one, like data transfer over the channel then this parameter

will be ignored. For simplicity user can always specify IGNORABLE. For the application

computation activities, like functions, processes, threads, extra state provides input values.

Notice that for communication data transfer this functionality is only needed for the

late binding since the early binding can be done using MPIRT CHANNELS INIT and by

specifying start and stop event lists with their QOS in the event-driven QOS attribute.

This MPIRT REQUEST GUARDED should still be used to start the channel use.

Discussion: Extensions. The issue of periodicity and its e�ect on event names will need to

be discussed further. The existing MPI SIGNAL can be used in an MPI implementation to send an

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



8.10. EVENT-DRIVEN MPI/RT 73

event to a proper place. Alternatively MPI MONITOR can be enhanced to include events discussed

above. Notice also, that while action list speci�ed only by the \sending" side, both sending and

receiving sides may be aware of the action. For example, the function failure fn of the receiving side

will be triggered if the �nishing event is triggered.

Discussion: There is still a few unaddressed issues. First, what functionality is allowed
in the guarded activities. If an application is allowed to create new processes, communicators,
register for events and generate new events and so on then an implementation may not be able to
guarantee quality of service for new as well as existing processes. For this �rst version of application
event-driven paradigm it may be su�cient to restrict application guarded activities functionality.
We may not allow any MPI/RT and MPI functionality within the application guarded activities. An
application can only use persistent channel requests for data transfers in the application event-driven
paradigm.

The second issue addresses the reentry properties of the guarded activities. It is quite clear that
guarded persistent channels are reentrant. So should be application guarded activities. However for
the guarded channel only one instance of it at a time can be asked to run by the application. We
should put the same restriction on all guarded activities.

Finally, there is an issue of event queue. How many events can the system deliver and what is
the quality of service it can provide?

Queues are an implementation issue. Once we add missing QOS parameters that specify the

event interarrival time or more generally the maximum number of event needed to be delivered

within a time interval, and the scheduling quantum, it is up to the implementation to de�ne the

order in which events should be delivered, queue length, priorities of delivery of the events and other

related issues. Queues are nothing more than an implementation mechanism of dealing with events.

The issue of what should be \a time interval" for QOS speci�cation and should it only specify local

view of global view still needs clari�cation. But \a time interval" may be application speci�c since

it is highly dependent on the timing granularity of the application.

Event Registration

Each application process registers event names it wants MPI/RT to monitor and event

names that the process generates. Recall that an application can only generate user events,

hence user event names that the application generates need to be registered with MPI/RT.

MPI/RT is already aware where and how system and communication events are generated.

Discussion: All the event names that the process registers for appear in the start or stop

list that guards an activity within the process and the process generated events that are used in

MPIRT EVENT GENERATED. So in reality there is no need for registration, a compiler can pick the

event names itself. Currently, the full registration of all events that are used to guard a process

activity is presented.

The following operations register and deregister event names:
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MPIRT Eventnames Register(events, generated events, comm)

IN events list of the events (array of strings)

IN generated events list of the events generated by the process (array of

strings)

IN comm communicator (handle)

int MPIRT Eventnames register(char **events,char **generated events,

MPI Comm comm)

MPIRT EVENTNAMES REGISTER(EVENTS, GENERATED EVENTS, COMM, IERROR)

CHARACTER*(*) EVENTS, GENERATED EVENTS,

INTEGER COMM, IERROR

MPIRT Eventnames Deregister(events, comm)

IN events list of the events (array of strings)

IN comm communicator (handle)

int MPIRT Eventnames deregister(char **events, MPI Comm comm)

MPIRT EVENTNAMES DEREGISTER(EVENTS, COMM, IERROR)

CHARACTER*(*) EVENTS,

INTEGER COMM, IERROR

The events list for MPIRT EVENTNAMES REGISTER speci�es all events that this pro-

cess wants MPI/RT to handle and generated events speci�es all events that this process can

generate. ForMPIRT EVENTNAMES DEREGISTER the events list speci�es the list of events

that process no longer wants MPI/RT to monitor or the process will generate. Since all the

names are unique at least over the scope of the communicator,MPI/RT implementation can

always distinguish between monitored and generated events. The comm does not mean that

events delivery should be done over this communicator. The communicator just de�nes the

scope for the events the process wants MPI/RT to monitor as well as the scope for delivery

of the events that the process generates.

Discussion: The use of communicator for the scope of event deliveries does not allowMPI/RT

to see all the events for the process and hence may hinder potential optimization. This may require

an application to use several communicators for event speci�cation. The older version of event

speci�cation without a communicator allows the maximum 
exibility both for an application and

an implementation. It also left the scope of the events open. This meant that when a new process

is created it can register to receive events that are already generated by existing processes of the

application. However, application can always use only MPI COMM WORLD to get the same global

application speci�cation view for static applications. The dynamic version is a lot harder. The

proposal was just trying to completely separate event delivery \network" frommessage/data delivery

one. This separation was not physical but mental. That would still allow implementation a complete


exibility to use any network for delivery of global events. (see advice to implementors below.)
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Event Delivery

The issue of how the events are delivered to the guarded activity is left to the implementa-

tion.

Advice to implementors. There were several discussions on the topic of the event

delivery. The following methods were suggested:

1. Between all the nodes of the communicator establish point-to-point channels.

MPI/RT will use these channels to delivery events. Using the registration oper-

ations together with the system and MPI/RT generated events, MPI/RT creates

matching tables for all registered events. Upon receiving messages on these chan-

nels, MPI/RT checks if the event is su�cient to activate/deactivate an activity

that is guarded by the received event(s).

Similarly, during the registration phase an implementation can map each event

type to a tag. When an event is generated or when MPI/RT become aware of an

event broadcast a zero size message with the event tag. Locally for each event

type (message tag) MPI/RT has a handler that is waiting for this message tag

and invokes appropriate waiting application activity.

2. Similar to the above but uses signals (MPI/RT or system) for event delivery.

3. Hardware assisted event delivery.

(End of advice to implementors.)

User Generated Event Noti�cation

The following operation is provided for the application to notify MPI/RT about a user

generated event.

MPIRT EVENT GENERATED(event, comm)

IN event event name (string)

IN comm communicator (handle)

int MPIRT Event generated(char event, MPI Comm comm)

MPIRT EVENT GENERATED(EVENT, COMM, IERROR)

CHARACTER* EVENT,

INTEGER COMM, IERROR

The event name in event must be in the list generated events of the

MPIRT EVENTNAMES REGISTER.

8.11 Priority-Driven MPI/RT

Discussion: Recommendations were made for the following proposals:

� Errors for priorities must be de�ned.

� Priority models be de�ned only with respect to a start time.
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76 CHAPTER 8. REAL-TIME MPI

� Two categories of priorites: Emergency and Other.

� A line of demarcation for events and priorities.

� The limitations of mixing paradigms must be de�ned.

� Priority proposal discussions should be cross-referenced to the discussions on adhoc models.

In the priority-based real-time programming paradigm, process and message priorities

are used to meet timing speci�cations. However, because process priorities can be handled

in a variety of ways, it is extremely di�cult to provide portable mechanisms to specify them,

and MPI/RT does not directly address this issue.

8.11.1 Message Priority

In MPI/RT priorities are speci�ed and �xed per channel by a �eld in the QOS argument to

the channel creation calls. As with other QOS parameters, the processes at the input and

output end of the channel must provide the same priority or an error occurs. (NOTE: We

still need to work out the range of process priorities as well as the mechanism for setting

the process priority �eld of the QOS block.)

Because varying platforms may provide di�erent levels of support for message priority

at the OS level and below, MPI/RT speci�es very little about how message priorities are

implemented. In addition to passing message priority information to the appropriate OS

and hardware layers, a high-quality MPI/RT implementation will order operations internally

according to priority information. For example, given the choice between performing two

di�erent communication operations (such as receiving one message or another), the higher

priority communication should be performed �rst. If the high priority communication blocks

or stalls, lower priority communication may be initiated. Notice that in the general case, this

implies that communication may need to be preempted. For example, if the user initiates a

low-priority nonblocking send, the begins a high-priority send, the low-priority send would

be stalled in favor of the high-priority send.

8.11.2 Process Priority

As stated above,MPI/RTmakes no attempt to correlate process and message priorities, and

indeed, has nothing to do with process priorities whatsoever (with the possible exception

of calls in the dynamic process chapter, which may be passed priority information via the

\info" argument, and the case of request handlers, mentioned below). Such functionality

should instead be provided by domain-speci�c middleware. Such middleware could, for

example, set the priority of a process to the priority of the messages it receives. In the

absence of middleware, the application developer must manage process priorities explicitly.

For example, if the programmer wishes for processes receiving high priority messages to

have a high process priority, the process priority must be set explicitly. Similarly, in the

case of request handlers associated with a prioritized message, the user of MPI/RT must

explicitly correlate the priority of the handler to that of the message by creating a thread, for

example, that has a priority corresponding to that of the message, and allowing that thread

to handle the message. Alternatively, the request handler mechanism could be used to

alter the priority of the receiving process, providing an implementation of the middleware

mechanism described above. Notice that this implies that request handlers must almost

certainly be run at a higher priority that any MPI/RT process or thread. Thus, while an
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MPI/RT implementation may need to concern itself with process priorities, the interface

itself does not.

8.12 Best E�ort MPI/RT

Discussion: The issues that a�ect soft real-time are related to best e�orts of hard real time

QOS. Discussions on soft real-time, priority models, adhoc real-time and mixed paradigms should

be cross-referenced as some of the issues are related.

Some real-time systems have no explicit deadlines and may be interactive. Interactive

systems try to achieve adequate response times. Interactive parallel visualization is an

example of a non hard real-time application. These interactive systems have hard and soft

deadlines, with interactive behavior with the user. A mechanism for handling this mixture

of deadlines as well as providing QOS for the interactive portion must be available.

Discussion: Interactive real-time systems can take advantage of the notion of priority pref-

erences. By assigning priorities and weighting the priorities by preferences, interactive QOS may be

achieved. More discussion is required.

The correctness of real-time systems depends on the logical result of the computation

and the time at which results are produced. For soft real-time systems, the user has 
exi-

bility with respect to hard deadlines. If certain deadlines are missed, the system continues

to function correctly. Any system that tolerates intermittent delays may be considered soft.

The degree that the system is allowed to miss deadlines is the key factor in de�ning the soft

real-time system behavior.

Discussion: Proposal QOS: Quality of service parameters to de�ne the deviation from the

hard deadline could be considered. This gives 
exibility to the system, where speci�c deadlines are

hard and others are soft, the hard deadlines may be a reference point for de�ning the o�set for the

soft deadlines. One mechanism to achieve QOS is a guarantee to tolerate a percentage of timeouts

within a period. Another mechanism is to have priorities with preferences.

8.13 Issues in Resource Constrained Systems

For resource-constrained systems, the following issues become more important than in other

uses of MPI:

� Small amounts of program space (code bloat unacceptable),

� Small amount of data space (bu�ering limited, maximum message sizes may be lim-

ited),

� Simpli�ed programming environments as compared to full-blown OS's,

� Static loading environments more nearly compatible with MPI-2's view of the world.

Such systems may also have real-time requirements.
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MPI is already migrating into resource-constrained prototype systems; hence it is in-

teresting to o�er suggestions, and possibly additional pro�le language, to address this par-

ticular space of applications and systems. One particular approach will be to o�er a set

of subset implementation pro�les for resource-constrained systems, so that if subsetting

should occur, it can be done according to a systematic convention documented in the MPI-2

standard.

8.13.1 Resource Constrained MPI

There are users within the resource-constrained computing arena that would like to use

MPI, but are constrained by extreme limitations on local memory and storage space. These

users often run code stored in non-volatile memory, such as FLASH, or ROM. While the use

of an e�cient linker can dramatically reduce the size of MPI libraries, the resulting binaries

are still far too large to be incorporated into �rmware. There are three particular areas of

concern.

� Large executable size due to the many functions in MPI and their interdependence in

many cases. (i.e., resource-constrained MPI/RT may only be able to support a subset

of MPI/RT functionality.)

� The amount of bu�er space on the receiver side. (i.e., the illusion of in�nite slack may

be particularly untenable.)

� The amount of bu�er space on the sender side. (i.e., the ability to pack derived

datatypes may be restricted.)

As a result, we recommend that only a core set of MPI/RT functionality be required for

resource-constrained MPI/RT. (Exactly which routines should be preserved remains to be

discussed.) In fact, because bu�er space may be limited or nonexistent, the user should only

expect that the synchronous and ready send operations are available (these routines require

no explicit bu�er space at the receiver) and that only the built-in datatypes are provided

(neither requires bu�er space at the sender or the receiver). The combination of these two

restrictions would seem to completely eliminate the need for bu�er space (except, perhaps,

for the case of collective communication, which may require space for intermediate values).

Alternatively, the user could be expected to provide bu�er space explicitly via routines such

as MPI BUFFER ATTACH and be restricted to using bu�ered send operations (as well as

synchronous and ready ones). Also, direct memory transfer between source and destination

bu�ers may be implementable only when the source of a message is explicitly speci�ed in a

receive call, so the use of MPI ANY SOURCE may be precluded.

8.14 Instrumentation

Instrumentation is an essential aspect in providing application developers with the met-

rics needed to monitor quality of service assurances and �ne tune speci�c platform con-

�gurations [7]. These metrics support performance portability, maintainability and fault

tolerance. Real-time instrumentation includes, but is not restricted to monitoring appli-

cation performance and monitoring MPI/RT performance. Other performance monitoring

directly related to the overhead of MPI/RT operations will be implementation dependent.
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An important bene�t from performance monitoring is the ability to capture global and local

resource utilization information.

Currently, there is little information available to the user concerning internal MPI

events. In some circumstances where timing is critical, an application could bene�t from

information about times of resources used by internal MPI (and native) communication.

Real-time instrumentation must be sensitive to any impact on the timing behavior of an

application and its communication. To minimize this impact, MPI/RT instrumentation will

include interfaces to external monitoring and/or event loggers. This design promotes im-

plementation independence. Real-time instruments will not duplicate e�orts provided in

pro�ling tools, although some of the information collected may be similar. The distinction

between pro�ling and instrumentation will be de�ned by global and local resource require-

ments and impact to timing requirements. Implementors may choose to use "pro�ling"

hooks when applicable if performance can be achieved.

Discussion: A proposal to extend performance monitoring: A proposal was made to extend

MPI/RT performance monitoring to accommodate layered libraries. Most real-time applications

have performance instruments to monitor application resource usage associated with computations

such as FFT's. A proposal was made to include instrumentation for layered libraries as part of a

solution to integrate resource usage monitoring into MPI/RT. Monitors for layered libraries may be

created, deleted, reset, started and stopped. The ability to start and stop must include speci�c start,

mark and record functions. These functions mark the start time and end time with a provision for

counting the number of monitoring accesses for this monitor. This is a method for marking and

recording an interval of statistics.

8.14.1 MPI/RT Monitoring

Run time instruments support performance monitoring, decision analysis and fault toler-

ance. The MPI monitoring API is designed to monitor and output metrics. Performance

monitoring for both application speci�c information (layered libraries), and MPI/RT com-

munication metrics are accommodated. Monitoring a block of code, monitoring channel(s),

monitoring over a communicator and monitoring layered libraries are supported. For sys-

tems that interface to an external performance monitoring capability, MPI/RT monitoring

also provides an interface.

The user may de�ne the parameters to be monitored and specify the implementation-

dependent information (handle) required to manage resources. The monitor info (handle)

allows the user to specify implementation-dependent information for managing resources.

MPI info objects (handles) are described in MPI-2 in Chapter 4, Process Creation and

Management. These handles may be created, set, deleted and a status taken.

MPI/RT monitoring supports quality of service assurances. Metrics that are obtained

from performance monitoring also provide decision analysis criteria for conditional heuris-

tics. These heuristics support fault tolerance policies and support load balancing schemes.

Runtime instruments are created, deleted and reset. Activation of real-time instrument

monitoring is de�ned by a start and end function to capture a snapshot of any size. Some

inaccuracies may occur when MPI monitoring is turned o� and some communications have

not completed. More than one monitor may execute simultaneously. The execution of some

monitors may be mutually exclusive and the responsibility of non-con
icting monitors is

currently left to the user.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



80 CHAPTER 8. REAL-TIME MPI

8.14.2 MPI/RT Monitoring Management

The creation and destruction of monitoring is designed to decouple the burden of over-

head for initialization, reset and �nalization from the ability to start and stop monitoring

respectively. Initialization is performed during monitor create.

MPI/RT Monitoring Management - Block of Code

This monitoring is over an application snapshot or block of code and is designed to monitor

MPI communication.

MPIRT MONITOR CREATE(monitor info, monitor handle, errcode)

IN monitor info monitor information (info)

OUT monitor handle monitor handle (handle)

OUT errcode indicates reason for failure (integer)

int MPIRT Monitor create(MPI Info Monitor info,

MPIRT Monitor handle *monitor handle, int *errcode)

MPIRT MONITOR CREATE(MONITOR INFO, MONITOR HANDLE, ERRCODE, IERROR)

INTEGER MONITOR INFO, MONITOR HANDLE, ERRCODE, IERROR

MPIRT MONITOR DELETE(monitor handle)

INOUT monitor handle monitor handle (handle)

int MPIRT Monitor delete( MPIRT Monitor handle *monitor handle)

MPIRT MONITOR DELETE(MONITOR HANDLE, IERROR)

INTEGER MONITOR HANDLE, IERROR

Discussion: Proposal to reset a monitor: It was proposed that a monitor be reset and that ini-
tialization be coupled to create. The function MPIRT MONITOR INIT was deleted and the function
MPIRT MONITOR RESET was added.

MPIRT MONITOR RESET(info, monitor handle, error)

IN info monitor information (info)

IN monitor handle monitor handle (handle)

OUT error speci�es error (integer)

int MPIRT Monitor reset( MPI Info info, MPIRT Monitor handle monitor handle,

int *error)

MPIRT MONITOR RESET(INFO, MONITOR HANDLE, ERROR, IERROR)

INTEGER INFO, MONITOR HANDLE, ERROR, IERROR
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MPI/RT Monitoring Management - Requests

The following allow monitoring of requests. An example is a snapshot over channels. A

unique monitoring handle is associated with a channel request. These monitors are created,

deleted and reset.

MPIRT MONITOR REQUEST CREATE(request, info, count, monitor handle, errors)

IN request array of requests of length count (array of requests)

IN info array of monitor information of length count (array of

info)

IN count number of requests (non-negative integer)

OUT monitor handle handle array of length count (array of monitor handle)

OUT errors speci�es error for each request(integer array)

int MPIRT Monitor request create(MPI Request request[], MPI Info info[],

int count, MPIRT Monitor handle *monitor handle[],

int *errors[])

MPIRT MONITOR REQUEST CREATE(REQUEST, INFO, COUNT, MONITOR HANDLE, ERRORS,

IERROR)

INTEGER REQUEST(*), INFO(*), COUNT, MONITOR HANDLE(*), ERRORS(*),

IERROR

MPIRT MONITOR REQUEST DELETE(count, monitor handle, errors)

IN count number of handles (non-negative integer)

INOUT monitor handle handle array of length count (array of monitor handle)

OUT errors speci�es error for each monitor handle(integer array)

int MPIRT Monitor request delete(int count,

MPIRT Monitor handle *monitor handle[], int *errors[])

MPIRT MONITOR DELETE(COUNT, MONITOR HANDLE, ERRORS, IERROR)

INTEGER COUNT, MONITOR HANDLE(*), ERRORS(*), IERROR
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82 CHAPTER 8. REAL-TIME MPI

MPIRT MONITOR REQUEST RESET(info, monitor handle, count, errors)

IN info array of monitor information of length count (info)

IN monitor handle handle array of length count (handle)

IN count number of handles (non-negative integer)

OUT errors speci�es error for each monitor handle(array of inte-

gers)

int MPIRT Monitor request reset( MPI Info info[],

MPIRT Monitor handle monitor handle[], int count,

int *errors[])

MPIRT MONITOR REQUEST RESET(INFO, MONITOR HANDLE, COUNT, ERRORS, IERROR)

INTEGER INFO(*), MONITOR HANDLE(*), COUNT, ERRORS(*), IERROR

MPI/RT Monitoring Management - Communicator

The following three functions provide monitoring over a communicator.

MPIRT MONITOR COMM CREATE(comm, monitor info, monitor handle, errcode)

IN comm communicator to monitor (handle)

IN monitor info monitor information (info)

OUT monitor handle monitor handle (handle)

OUT errcode indicates reason for failure (integer)

int MPIRT Monitor comm create(MPI Comm comm, MPI Info Monitor info,

MPIRT Monitor handle *monitor handle, int *errcode)

MPIRT MONITOR COMM CREATE(COMM, MONITOR INFO, MONITOR HANDLE, ERRCODE,

IERROR)

INTEGER COMM, MONITOR INFO, MONITOR HANDLE, ERRCODE, IERROR

MPIRT MONITOR COMM DELETE(comm, monitor handle)

IN comm communicator to monitor(handle)

INOUT monitor handle monitor handle (handle)

int MPIRT Monitor comm delete(MPI Comm comm,

MPIRT Monitor handle *monitor handle)

MPIRT MONITOR COMM DELETE(COMM, MONITOR HANDLE, IERROR)

INTEGER COMM, MONITOR HANDLE, IERROR
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MPIRT MONITOR COMM RESET(comm, info, monitor handle, errcode)

IN comm communicator to monitor (handle)

IN info monitor information (info)

IN monitor handle monitor handle (handle)

OUT errcode indicates reason for failure(integer)

int MPIRT Monitor comm reset(MPI Comm comm, MPI Info info,

MPIRT Monitor handle monitor handle, int *errcode)

MPIRT MONITOR COMM RESET(COMM, INFO, MONITOR HANDLE, ERRCODE, IERROR)

INTEGER COMM, INFO, MONITOR HANDLE, ERRCODE, IERROR

8.14.3 MPI/RT Monitoring Control

Monitoring control includes starting and stopping monitoring. Monitoring may be started

and stopped at any time after MPI MONITOR CREATE has been called and before

MPI MONITOR DELETE is completed.

When monitoring requests, monitoring may be started and stopped at any time after

MPI MONITOR REQUEST CREATE has been called and before MPI MONITOR REQUEST DELETE is

completed.

When monitoring over a communicator, monitoring may be started and stopped at any

time after MPI MONITOR COMM CREATE has been called and before MPI MONITOR COMM DELETE

is completed.

When monitoring is stopped, all 
ags are set to the default settings. When monitoring

is started, the user may specify which speci�c elements (options) are to be monitored during

the session, by de�ning the parameters.

MPI/RT Start and Stop Monitoring

The ability to start and stop monitoring is accomplished with the following basic functions:

MPIRT MONITOR START(monitor handle, monitor params, errcode)

IN monitor handle monitor handle (handle)

IN monitor params parameters for monitoring (choice)

OUT errcode indicates reason for failure (integer)

int MPIRT Monitor start(MPIRT Monitor handle monitor handle,

void monitor params, int *errcode)

MPIRT MONITOR START( MONITOR HANDLE, MONITOR PARAMS, ERRCODE, IERROR)

INTEGER MONITOR HANDLE, MONITOR PARAMS, ERRCODE, IERROR
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MPIRT MONITOR STOP(monitor handle)

IN monitor handle monitor handle (handle)

int MPIRT Monitor stop(MPIRT Monitor handle monitor handle)

MPIRT MONITOR STOP( MONITOR HANDLE, IERROR)

INTEGER MONITOR HANDLE, IERROR

Since speci�c monitoring may be mutually exclusive in speci�c systems, error codes are

a convenient mechanism for monitoring to report con
icts; if the implementation handles

this level of discrimination.

Discussion: Proposal to Start and Stop Monitoring for Layered Libraries: A proposal was

made to have more than one type of start and stop monitoring functions to accommodate layered

libraries which require an additional level of granularity.

8.14.4 MPI/RT Interface to External Monitor

Discussion: A proposal was made to add an interface to accommodate independent third party

monitoring capabilities. Some of this capability may be achieved with info handles which are imple-

mentation dependent.

8.14.5 MPI/RT Metrics

Real-time instrumentation for MPI/RT provides metrics that will help the user determine

QOS parameters for an application request. These metrics will include as a minimum set:

number of timeouts (collective operations, channel operations); frequency and periods of

timeouts.

Advice to implementors. Examples of information of interest for MPI/RT perfor-

mance measures may include execution times, timeouts, counts and workloads.

1. Execution times

Total MPI/RT execution time is time spent executing services for MPI/RT from

a de�ned start point to a de�ned end point.

execution time = (end time - start time)

Some general categories for MPI/RT execution times may include time spent in

a channel operation, a collective operation or a communicator group.

2. Counts

The number of processes, number of times an MPI/RT communication is com-

pleted and the number of timeouts can be correlated with execution times to

measure performance. This is a measure of quality of service.

Timeout Counts are con�ned to timeouts of MPI/RT communications, and are

extensible to collective operations and communicator groups.
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Collective operations counts may include a count of the number of processes

participating and the number of MPI/RT communications completed.

Communicator group counts may include a count of the number of MPI/RT

communications completed, total number MPI/RT communication timeouts and

the number of MPI/RT collective operations completed

3. Workload

Workload is a measure of the message sizes and tra�c load over time and may

de�ned per communication group. To develop metrics for workload, the following

information may be collected per communicator:

� message sizes (large small)

� frequency large number of large messages

� frequency small number of small messages

� monitoring frequency of recordings taken

Where message size de�nition (large and small) is recommended by the imple-

mentor.

Time is determined by the start and end time in the snapshot created by the

MPI/RT start and stop monitoring bindings.

(End of advice to implementors.)

8.14.6 MPI/RT Misc Monitor Operations

The ability to use monitoring information as heuristics for conditional branching decisions

in the system may be achieved with existing MPI/RT functionality.

Discussion: Proposal to Trigger Event in Response To Monitor: The ability to associate a

special function with a monitor may be accomplished by using the MPI/RT guarded functions and

event registration. These functions are described in JOD 8.10). The purpose of this activity would

be to process the current results of a monitoring activity. These results would be available to the

user and could provide heuristics.

8.14.7 MPI/RT Output Monitoring Results

This function is provided for systems that do not o�er a mechanism for outputting the per-

formance information (metrics) automatically and for support of decision analytic heuristics.

MPIRT MONITOR RESULTS(request, monitor handle, fn, params)

IN request request to output monitoring (handle)

IN monitor handle handle for monitoring (handle)

IN fn function to execute (MPIRT Function)

IN params parameters for function (choice)

int MPIRT Monitor results(MPI Request request,

MPIRT Monitor handle monitor handle, MPIRT Function fn,

void params)
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MPIRT MONITOR RESULTS(REQUEST, MONITOR HANDLE, FN, PARAMS, IERROR)

INTEGER REQUEST, MONITOR HANDLE, FN, PARAMS, IERROR

The monitoring information is returned locally to the user. This function may not

be called before MPIRT MONITOR STOP and must be called before

MPIRT MONITOR DELETE is called.

No provisions are planned to allow cancellation of monitoring.

8.14.8 Monitoring Other Software Services

In addition to theMPI/RT instruments described in this section, an option for distinguishing

other services related to MPI/RT is available.

MPI calls are supported with software services. For each MPI implementation, there is

a software layer between the hardware and the MPI application layer bindings. This layer

may di�er for each architecture and may consist of operating system services, vendor speci�c

MPI services and/or other services. The overhead from software services with respect to an

MPI call may be of interest to the user and/or implementor. Some systems are not capable

of accurately collecting timing information for these services. Implementations that can not

support this option, return a warning message when the option is selected.

This option can provide a level of granularity to the MPI/RT instruments de�ned in

this section. Typical information derived from monitoring other services might be the time

spent in operating system calls. These operating system calls would be con�ned to those

that support MPI/RT.

8.15 Fault Handling

A fault tolerant system can continue the correct performance of its speci�ed tasks in the

presence of hardware and/or software faults [11]. Faults can result in errors and errors

can lead to failures. Fault handling includes the ability to assess operability, detect faults

and recover from failures. Operability assessment is preventive, while fault detection, fault

recovery and recon�guration are generally late response indicators.

Faults, errors and failures occur in the physical, informational and user universes re-

spectively. The detection, location, and containment of faults contributes to successful

fault recovery. Faults di�er in duration ranging from transient to monotonic. The source

of faults may be hardware and/or software. Faults originating in the physical universe may

propagate errors into information space. Eventually, user space will become aware of these

errors, and failures are reported [11]. The ability to minimize system degradation from the

time a fault is detected through recovery is an important aspect of fault tolerance.

Operability assessment is an early response indicator for prevention of system degra-

dation in the presence of faults. Using metrics provided in MPI/RT instrumentation and

heuristic algorithms, MPI/RT communication faults may be detected early and errors con-

tained before error propagation can occur.

Multiprocessor fault tolerance is characterized by replication and replacement poli-

cies [11]. Replication is designed to prevent data loss by providing full redundancy. Re-

placement policies are vulnerable to data loss, if the replacement policy is in response to a

late indicator. Replacement for MPI/RT will include recoverable communicators and fully

redundant communicators with recon�guration.
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8.15. FAULT HANDLING 87

Real-time systems can have integrated support for fault tolerance at all levels in the

system design including the operating system, hardware, software, and application pro-

grams. The e�ects of real-time system recovery and recon�guration on MPI/RT in
uences

the ability of MPI/RT to meet its quality of service requirements.

Discussion: Issues in fault tolerance. In general, error containment is more easily controlled
in distributed systems. Recovery and process distribution is more easily implemented in shared
memory systems [11]. Distributed shared memory systems are a hybrid of the two. This is of
interest to implementors. Consequently, the MPI/RT standard should attempt to compensate for
natural biases imposed by any fault tolerance policy or o�er implementation advice.

Another important issue in the MPI/RT fault tolerance design is at what level(s) is fault han-
dling provided. An assumption is made that fault handling will include early warning error detection,
and recovery (redundancy and recon�guration).

Object redundancy and quality of service extensions are proposed to implement fault tolerance
for all MPI communication. This is invisible to the user, but some of the associated fault handling
must be de�ned by the implementor and user. Instrumentation monitoring provides metrics to
support real-time system fault monitoring. The metrics are visible to the user, but the algorithmic
implementations that use the metrics can be hidden from the user. In addition, there are explicit
MPI/RT fault handling functions that are visible to the user.

� Redundancy of channels

� Recon�guration by recreating a communicator

� Recon�guration of a redundant communicator

These MPI/RT functions must be designed and implemented to consider allocation of resources,

fault handling, error handling and restoration of services.

8.15.1 Early Indicators

Operability assessment is an early warning indicator for error detection and supports er-

ror containment. Real-time systems can integrate a global fault tolerance for early error

detection and containment. The ability to support these global fault handling schemes

will be provided with MPI/RT instrumentation and monitoring. MPI/RT will not de�ne

heuristic algorithms, voting algorithms or software reliability algorithms for MPI. Instead,

the MPI/RT monitoring section will de�ne metrics that are speci�c to MPI/RT parame-

ters of execution that can support real-time system fault tolerance. Consequently, no new

functions are expected in this section.

Discussion: Proposal: The de�nition of and indicators for an MPI/RT fault must be de�ned

before metrics can be identi�ed. This section is TBD until the functions to collect metrics are de�ned

in the MPI/RT monitoring section. A discussion of the origins of these metrics will be provided in

this section.

8.15.2 Replication and Redundancy

Replication in a real-time system includes spatial and temporal techniques implementing

forward, backward and rollback redundancy. A system provides redundancy in the form

of replicated processes or physical nodes [2]. When failure occurs, duplicate process(es)

or physical node(s) may already be executing to prevent data loss. Characteristically, the
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88 CHAPTER 8. REAL-TIME MPI

redundant node or process does not output data, but instead dumps data until conscripted

into service. Redundant units are often referred to as online-standby.

Redundant Channels

For MPI/RT, some replication is provided with channel redundancy. By allowing redun-

dant channels, data loss is minimized as a tradeo� to performance. The user may choose

redundancy for MPI/RT channels with a potential sacri�ce to performance portability.

Discussion: The following function is proposed:

MPIRT CHANNELS REPLICA(bufs, errors)

IN bufs array of send or receive bu�ers(array)

OUT errors speci�es success/non-success(integer)

All channel requests for these bu�ers will be subject to redundancy after this function is called.
Redundancy can not be cancelled for the duration of the application after it is de�ned.

The ability to create redundant channels could be handled by the MPI implementation in the

structure that controls object fault tolerance. The design of this function assumes that MPI/RT fault

tolerance for objects is implemented and that a strategy for alternate fault tolerance mechanisms is

part of the schema. This is a very controversial function, since it assumes that speci�c fault handling

is available in MPI/RT and implementable. It also duplicates resource allocation for each channel

created for these bu�ers. This makes it a very restrictive function.

Discussion: Proposal: Some mechanism to associate the redundant channels (standby online)
to the on-line channels is required. When a channel fault occurs, the on-line standby channel will be
conscripted into service. This can be accomplished with an MPI fault handler. An alternative is to
have the MPI implementation be responsible. Under these conditions, there must be a structure that
couples the two sets of channels, and the structure must be accessible to the MPI implementation,
but hidden from the user.

If redundant channels are designed into a structure as an alternate control mechanism for fault
tolerance, then when a request to allocate an object is made, an attempt is made to satisfy the

temporal redundancy level for each request. If the temporal redundancy level requirement includes
a redundant channel, then it may be more di�cult to satisfy this request.

The proposal on MPI object fault tolerance attempts to address some of these issues.

Redundant Real-Time System Components

Redundancy can be integrated into various components of the real-time system in support

of both static and dynamic fault handling.

Discussion: Real-time system redundancy approaches are independent of but also in
uence
MPI/RT. For example, rollback recovery schemes may be unique to shared memory, distributed
memory, distributed shared memory and database systems. Special hardware is often required to
support these recovery schemes, and software algorithms may also be implemented. For techniques
such as rollback recovery with checkpoints, complications arise for MPI/RT implementations.

This complex set of recovery schemes for various system components will require a simple

interface to MPI/RT. Performance monitoring in the MPI/RT instruments section will provide some
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8.15. FAULT HANDLING 89

of this interface.

8.15.3 Recon�guration

The ability to recon�gure MPI/RT communication groups in response to both early warning

and late response indicators supports fault tolerance recovery. The di�culty in meeting

real-time quality of service commitments and implementing recon�guration is a non-trivial

problem.

Discussion: Proposal: Basis for Recon�guration. There are two perspectives for supporting
recon�guration. A communication group can be created as a subset of an existing group (recoverable
communicator) or may be replaced by a fully redundant communicator group.

MPI/RT can guarantee no data loss only to the level of assurance provided by the system
implementation.

Channels are not recon�gurable. This will undoubtly create severe confusion in the real-time

application domain.

Recoverable Communicator

Seamless replacement without degradation is an optimal goal of fault tolerance policies.

When a fault is detected, a new comm group may be created by the application using the

following MPI-2 functionality MPI COMM CREATE and/or MPI COMM SPLIT.

The user responds to the fault by adding a group of processors to to the new communi-

cator MPI COMM CREATE. This is the simplest approach and is e�ective only if there is a

transient non-fatal fault and the user continues to monitor the fault. This puts responsibility

on the user.

If the faulty communicator can be split and new communicators created, then fault

tolerance can also be achieved. This requires using MPI COMM SPLIT followed by

MPI COMM CREATE. The user can pull the faulty group and build a new communicator

from the split communicator.

These techniques imply a high risk of data loss and are probably more e�ective as a

recovery mechanism to early indicators. In addition, critical sections of the applications

will probably not be able to tolerate the timing demands imposed by these strategies.

Redundant Recon�gurable Communicators

Redundant communicators have origins in both redundancy and recon�guration policies.

No data loss occurs, since the redundant communicator is designed to concurrently execute

with the on-line communicator. If the on-line communicator fails, then the recovery pol-

icy transitions to a recon�guration policy. This is di�cult to implement, since the failed

communicator must eventually be restored and made available again. This operates on an

optimistic policy that errors are detectable, recoverable and infrequent.

Discussion: Proposal for a redundant communicator function.
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90 CHAPTER 8. REAL-TIME MPI

MPIRT COMM CREATE REDUNDANT(comm, dupcomm, status)

IN comm communicator to be duplicated (handle)

IN dupcomm redundant communicator (handle)

When the redundant communicator is placed on-line, the user will be responsible for assigning
the new redundant communicator to back it up. To avoid maintenance problems, faulty communi-
cators must be maintained by the user. The alternative is to force the MPI/RT implementation to
use MPI COMM SPLIT and/or MPI COMM CREATE to keep track of faulty groups and create new
ones. This is not practical.

The following is an example of an MPI/RT redundant, recon�gurable communicator:

� In response to a fault, the user places the redundant communicator on-line. This is accom-
plished by the MPI/RT function MPIRT RECONFIGURE. The implementation keeps track
of redundancy relationships. If redundancy is not speci�ed after recon�guration, then it is
automatically cancelled.

� The user may assign a new redundant communicator for on-line standby using
MPIRT COMM CREATE REDUNDANT.

� The faulty communicator is reconstructed into new communicators using MPI COMM SPLIT
followed by MPI COMM CREATE.

This is the responsibility of the user and placed on a user-de�ned list. This is similar to a
free-list.

The user must keep track of these redundant communicators and not misuse the commu-

nicators. When a on-line standby communicator transitions to on-line the implementation must

e�ectively transition the output behavior associated with the new communicator. This could be

a formidable task for the implementation. Consequently, when the new redundant unit is de�ned,

the new mappings between the on-line communicator and the redundant must also be made by the

implementation.

8.15.4 MPI Communication Fault Handling

If undetected, communication faults can lead to system degradation, data loss and non-

recoverable errors [2, 3].

Timeouts for Traditional MPI Functionality

In this section, the proposal to add timeouts to MPI-1.1 and MPI-2 functions is a step

towards an underlying fault tolerance prevention schema for MPI.

An example of an MPI function with a timeout is TBD.

MPI Objects

Discussion: Proposal: Fault Handling and MPI Objects. To implement realistic global real-time
MPI fault handling, the design must accommodate fault detection, recovery, and recon�guration. To
support MPI executing in real-time, timeouts were added to all MPI functions. Real-time system
fault tolerance can take advantage of these timeouts for object redundancy schemes. Redundancy of
executing objects promotes safety and reliability in the presence of faults. The major disadvantage
is resource consumption. The following is an example of how redundant objects may be designed
and implemented.
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8.15. FAULT HANDLING 91

A joint is a dedicated pointer that extends the current MPI object model and utilizes timeouts
to support fault handling. A joint is a bridge between accessed objects and contexts (handles) that
attempt to access the objects. A joint has the following attributes [1]:

� context independent pointer to object body.

� object owner/user justi�cation - No users can be linked to an owner object that is to be
deleted.

� resource requirements

� protection scheme - Authorization determined before binding to user's context. Authorization
refers to action required, not the path to �nd the object. Identi�cation refers to path.

� time constraint for executable object - Supported by the proposal in this section to add
timeouts to all MPI functions.

� replica/alternate control mechanism for fault tolerance scheme

By implementing an object model for MPI opaque objects, a global MPI fault handling could
be achieved. The MPI opaque object model separates opaque objects managed by system memory
(not directly accessible by user) and provides handles in user space to manage the objects. When
each request to allocate an object is made, a temporal redundancy level must be satis�ed. When
the temporal redundancy level can not be satis�ed, the fault handling alternate control mechanism
in the joint is consulted.

This fault tolerance, designed to handle monotonic and transient faults, is based on an allocation

algorithm. If a system constructed from objects and resources is a computation, then when allocation

is initiated, the following are speci�ed: fault tolerance objectives; alternatives for carrying out the

computation; computation timing constraints. The computational alternatives must satisfy physical

and temporal redundancy as de�ned by the user [1].

Quality of Service Extensions

Discussion: Proposal: Fault handling and Extensions to QOS MPI quality of service guarantees
that all messages are delivered to all destinations. IfMPI/RT extends this requirement to all messages
delivered correctly to all destinations or NO messages are delivered to any destination, then some
level of fault tolerance can be achieved. The addition of timeouts to all MPI functions supports
these criteria. The line of demarcation between guaranteeing correct delivery and not delivering any
messages is left to the implementor.

It is conceivable that MPI/RT should also support the following:

� All receives will receive the messages in the same order sent [1].

This is a more di�cult requirement to satisfy, although it is implied in the real-time quality of

service parameter.

8.15.5 Fault Handling De�nitions

This section will de�ne an MPI/RT fault and the mechanism for handling a fault including:

� What is an MPI/RT fault?

� How is an error detected?
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92 CHAPTER 8. REAL-TIME MPI

� How is an error reported?

� How do system faults a�ect MPI/RT and MPI?

� What are the responses to a fault?

8.16 Communicator Semantics with Channels

One of the most important features of MPI is its support of safe communication spaces.

The introduction of persistent channels that refer back to communicators opens up issues

of inheritance of such channels during an MPI COMM DUP.

Because channels are not explicitly attached to collective operations, but rather quality

of service, there is no speci�c issue here.

By default, a duplicated communicator would have no real-time properties, and the

channels of the parent communicator would not be available for use by the child communi-

cator. This is clearly suboptimal in certain circumstances.

Qualities of service come in two forms: intensive and extensive. Extensive quality

of service includes bandwidths, rates, and so on, and would have to be shared, or used

exclusively when communicators are duplicated. Intensive properties, of which priority

is the prime example, do not need to be subdivided but can be shared without loss of

generality.

Thus, the following discussion is needed:

� To support passage of channels through a duplicated communicator

� To provide a means to duplicate a persistent collective operation, whether real-time

or regular (Collective Chapter),

� To distinguish intensive and extensive quality of service, so that some may be shared,

and others used duplicatively.

8.17 Errors and Error Codes

Discussion: Error codes will be discussed in this section.

8.18 APPENDIX A: Deadlock Avoidance/Recovery

This section contains old discussions saved for later reference on fault tolerance. It is

important to be able to prevent, avoid or in the worst case detect and recover from deadlocks.

The problem of deadlocks is di�cult in distributed real-time systems and it is exacerbated

with prioritization.

Two related issues are as follows:

� Livelock | it happens when two interacting tasks miss deadlines due to one doing

some secondary activity when the other tries to rendezvous.

� Orphan processes | in the presence of spawn capability (a process creating other

processes) and failures.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



8.18. APPENDIX A: DEADLOCK AVOIDANCE/RECOVERY 93

MPI/RT will utilize timeouts to help applications deal with deadlock in the face of

possible remote faults or remote resource exhaustion. Both sender- and receiver-based

timeouts are to be considered.

Speci�cally, we expect non-blocking, persistent communication to be used to recover

from deadlock. The following allows one to asynchronously start a receive, and then wait

immediately for its completion, with a de�ned timeout.

MPI_Status status;

MPI_Request request;

MPI_Receive_init(buf, count, datatype, src, tag, comm, &request);

...

for(;;)

{

MPI_Start(request);

MPI_Wait_timeout(request, &status);

}

Alternatively, a single call,

MPI_Start_and_wait(request, status, timeout);

could be considered, and might have value in that it is atomic. To be complete, this

proposal should address \all" modes, as well as single persistent operations.

A similar sequence of calls would be used to achieve send with timeout. This approach

makes only an additive addition to the number of calls in MPI.
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