
Beowulf: Harnessing the Power of Parallelism in a

Pile-of-PCs

Daniel Ridge Donald Becker Phillip Merkey
USRA Center of Excellence in Space Data

and Information Sciences
Code 930.5 NASA Goddard Space Flight Center

Greenbelt, MD 20771
fnewt,becker,merkg@cesdis.gsfc.nasa.gov

Thomas Sterling
High Performance Computing Systems Group

Jet Propulsion Laboratory
Center for Advanced Computing Research

California Institute of Technology
tron@cacr.caltech.edu

Abstract| The rapid increase in performance

of mass market commodity microprocessors and

signi�cant disparity in pricing between PCs and

scienti�c workstations has provided an opportu-

nity for substantial gains in performance to cost

by harnessing PC technology in parallel ensem-

bles to provide high end capability for scien-

ti�c and engineering applications. The Beowulf

project is a NASA initiative sponsored by the

HPCC program to explore the potential of Pile-

of-PCs and to develop the necessary method-

ologies to apply these low cost system con�g-

urations to NASA computational requirements

in the Earth and space sciences. Recently, a

16 processor Beowulf costing less than $50,000

sustained 1.25 Giga
ops on a gravitational N-

body simulation of 10 million particles with a

Tree code algorithm using standard commod-

ity hardware and software components. This

paper describes the technologies and method-

ologies employed to achieve this breakthrough.

Both opportunities a�orded by this approach

and the challenges confronting its application to

real-world problems are discussed in the frame-

work of hardware and software systems as well

as the results from benchmarking experiments.

Finally, near term technology trends and future

directions of the Pile-of-PCs concept are consid-

ered.

Table of Contents

1. Introduction

2. Background

3. Beowulf Architecture Characteris-

tics

4. Grendel Software Architecture

5. Applications Scaling and Performance

6. Discussion and Conclusions

1. Introduction

One of the most remarkable recent technologi-

cal advances has been the accelerated growth of

computational performance. In the last decade,

feature size of integrated circuits has shrunk in

each dimension by an order of magnitude as

yields and die sizes have both increased signi�-

cantly. The result is a three order of magnitude

increase in number of devices per chip, with a

similar increase in total chip speed. In a �eld

that has been revolutionized by those advances,

the PC has been the greatest bene�ciary of that

dramatic success. Over the last �ve years, work-

station microprocessors have experienced a rate

of performance increase of about 50% per year.

As extraordinary as that is, it has been easily

surpassed by the performance increase of PC-

class microprocessors which has exceeded a fac-

tor of two each year for the past four years.

The PC market is two orders of magnitude

larger than the workstation market, and the

resulting economies of scale have allowed PC

prices to decrease while sustaining dramatic

performance increase. Today, PC performance

overlaps the range of workstation performance,

with only the highest speed workstation micro-

processors remaining faster than PC processors.

With such change, so comes opportunities. The

potential of harnessing the power of parallel

processing at the cost of PCs was identi�ed

as of possible importance to NASA mission

critical applications and consistent with that

agency's objective of \cheaper better faster".

In real terms, lower cost computing for large

scale problems means more science performed

per dollar.

In early 1994 the Beowulf project was initi-

ated under the sponsorship of the NASA HPCC

Earth and space sciences project to investigate

the potential of clustered PCs for performing

important computational tasks beyond the ca-

pabilities of contemporary workstations but at

no greater cost. In October of 1996, it was an-

nounced that a Beowulf system had exceeded a

Giga
ops sustained performance on a space sci-

ence application for a total system cost of under

$50K, a breakthrough in performance to price

that may have signi�cant implications and im-

pact on a wide range of industrial applications

including aerospace.

This paper presents the �ndings of the three

year Beowulf project, the techniques employed

to achieve this objective, and recent results from

benchmarking experiments that has demon-

strated the success of this project.

2. BACKGROUND

NASA HPCC program

The NASA HPCC program was initiated in Jan-

uary, 1992 with the far reaching agenda of ad-

vancing the state of massively parallel process-

ing (MPP) and applying it to major compu-

tational problems important to NASA mission

objectives in computational aeroscience (CAS)

and Earth and space sciences (ESS). The ESS

project represents a computational domain that

includes direct manipulation of large data sets

by end user scientists. In this context, the need

for powerful end user terminal capability was

identi�ed early on in the program de�nition.

Whether the large data set comes from the sim-

ulation of large scale physical phenomena, such

as the evolution of the galaxy or plasma convec-

tions in the solar corona, or from remote sensing

platforms such as the planned EOS, scientists

need to acquire, examine, explore, manipulate,

visualize, and sometimes transform large collec-

tions of complex data. Sometimes this may in-

volve numerically compute intensive activities

but it almost always involves large amounts of

data movement.

A component of the ESS project was speci�ed

under the title of \Giga
ops Scienti�c Worksta-

tion". Although it was not clear at the time how

this goal would be addressed, it was recognized

that the principle objective function to be op-

timized was end user response time. For many

workstation requirements this involved the data

access time from secondary storage. Usually,

this data would reside on a shared �le server

via a common local area network (LAN). Iron-

ically, in many cases the same data would have

to be accessed repeatedly during a working ses-

sion because the typical workstation simply did

not have the disk capacity to hold all of the

requisite data. The result was long latencies to

�le servers, sometimes tedious response cycles,

and burdening of shared resources. The Beo-

wulf parallel workstation project was initiated

to address this challenge.

PoPC: A Pile of PCs

A Pile-of-PCs is the term used today to de-

scribe a loose ensemble or cluster of PCs applied

in concert to a single problem. It is similar to

COW cluster of workstations and NOW[1] net-

work of workstations, but emphasizes:

� mass market commodity components,

� dedicated processors (rather than scaveng-

ing cycles from idle workstations), and

� a private system area network (SAN)

all with the goal of achieving the best system

cost/performance ratio.

Beowulf adds to the PoPC model by emphasiz-

ing

� no custom components,

� easy replication from multiple vendors,

� scalable I/O,

� a freely available software base,

� using freely available distribution comput-

ing tools with minimal changes, and

� returning the design and improvements to

the community.

The Pile-of-PCs approach exploits components

that respond to widely accepted industry stan-

dards and bene�ts from prices resulting from

heavy competition and mass production. But

the Pile-of-PCs approach has other intrinsic ad-

vantages that make them of serious interest

for certain niche communities and provide a

complementary computing medium to high end

workstations, symmetric multiprocessors, and

scalable distributed memory systems.

One advantage is that no single vendor owns

the rights to the product. Many vendors pro-

vide essentially identical subsystem types such

as motherboards, peripheral controllers, I/O de-

vices, and packaging. Subsystems provide ac-

cepted, standard interfaces such as PCI bus,

IDE and SCSI interfaces, and Ethernet commu-

nications.

A second advantage is that the Pile-of-PCs

approach permits technology tracking. In a

rapidly changing industry, where a generation

may be less than a year and pricing varies sig-

ni�cantly quarter to quarter, this approach al-

lows computing systems to be acquired with the

best, most recent technology and at the best

price. As an example of this, no two Beowulf

Pile-of-PCs (and there are a number of them

around the country) are exactly the same, al-

though they all run the same software.

This leads to yet another advantage, that of

\just in place" con�guration. User's needs vary,

sometimes dramatically. And its not always

clear what the required con�guration is. The

Pile-of-PCs approach permits extreme
exibil-

ity and user-driven decisions about how such

a system con�guration should evolve. Systems

are not precon�gured by a vendor, limited to

the vendor's current options lists which may be

months out of date. Users can pick and choose

from a wide array of sources, try things out, and

change the con�guration over time.

Beowulf exploits readily available, usually free,

software systems that are nonetheless as so-

phisticated, robust, and e�cient as commer-

cial grade software. The software is derived

from community wide collaborations in operat-

ing systems, languages and compilers, and par-

allel computing libraries. These are comparable

to the quality of vendor o�ered software systems

in many cases.

Two of the most widely used operating sys-

tem in this class of distributed computing are

Linux[2] and BSD: Unix/Posix systems avail-

able over the net at no cost. Both have commer-

cial distributors and available commercial sup-

port services, full X windowing, most popular

shells, and standard compilers for the most pro-

gramming languages. The two major message

passing libraries, PVM and MPI, are both avail-

able for these systems and widely used by the

community. In addition, source code for many

of these is available, permitting easy customiza-

tion and redistribution without legal constraints

typical of proprietary software products. Beo-

wulf uses the Linux operating system for its

better performance, better availability of source

code, better device support, and wide user ac-

ceptance. In particular, Linux based PCs are

becoming a mainstay of academic computer labs

for their sophistication, accessibility, and low

cost.

Two reasons why the Pile-of-PC approach must

be considered relate to technology and industry

trends. In technology, there is a convergence of

workstation and PC microprocessors, with both

outstripping the performance growth of tradi-

tional vector supercomputers. This country's

�rst true Tera
ops computer, being built for the

DOE ASCI program, is being provided by Intel

using components that are almost the same as

those found in Pentium Pro based PCs. The

next generation PC microprocessor is expected

to be included in at least one scalable high per-

formance computer o�ered by a major vendor.

At the high-end, DEC is working hard to mi-

grate their Alpha microprocessor into the PC

market by o�ering low cost motherboards and

compatible software.

In industry the comparatively high performance

computing market cannot cannot sustain a sep-

arate research and development path. This has

been made clear by recent changes in the in-

dustry. Cray Computer Corporation closed its

doors. Convex was acquired by HP. And Cray

Research Inc. was acquired by SGI. With the

possible exception of Tera Computer Company,

there is no computer company dedicated solely

to the production of high performance comput-

ers. Thus, an important convergence is under-

way and, ironically, the Pile-of-PCs approach

may be the asymptote.

Research Issues

While Pile-of-PCs is proving a successful path

to parallel computing, there are many issues in

the realm of applied research that need to be

addressed. These relate primarily to resource

management and the software tools for dis-

tributed computing. The Beowulf project has

been addressing these by identifying key gaps

in available tools and implementing new user

tools to �ll those gaps. The collection of soft-

ware tools coming out of the Beowulf project is

known as \Grendel" and is a continuously evolv-

ing set. Another challenge of the Pile-of-PCs

approach, as exempli�ed by Beowulf, is the rel-

atively long latencies and modest interconnec-

tion bandwidth provided by low cost network-

ing such as Fast Ethernet. This is being ad-

dressed by software performance tuning, aggre-

gating networks, and rich interconnect topolo-

gies.

As has been the case in the past with other dis-

tributed memory parallel computing systems,

applications need to be written using parallel

message passing for explicating the algorithmic

parallelism. But in addition, these algorithms

need to be latency tolerant, overlapping com-

putation with communications for greatest e�-

ciency. This is signi�cantly more di�cult than

sequential programming styles embodied by e.g.

Fortran 77. This approach is becoming increas-

ingly acceptable to the user community because

these systems are primarily used by computa-

tional scientists who have exploited the perfor-

mance bene�ts of MPPs of previous generations

and therefore are familiar with the issues and

methods associated with employing this class of

system. This does not make it good; but does

make it tolerable, and of more importance, of

practical use.

This paper explores the realm of Pile-of-PCs

from the base of experience derived through the

Beowulf project. The intent is to convey to

a potential user community the opportunities

and potential pitfalls of harnessing this emerg-

ing class of low cost high performance computer.

This paper is the �rst reasonably complete pre-

sentation of the diverse topics related to this

new challenge. The paper provides a descrip-

tion of the architectures used to date, the ba-

sic system software and advanced tools being

developed, and accomplishments with applica-

tion programming including performance. By

targeting this paper to a major sector of the

applications community, it is hoped that this

technology may prove of use and accelerate the

process by which high performance computing

is applied to the computational challenges.

3. Beowulf Architecture

Characteristics

Beowulf now represents a family of systems that

have tracked the evolution of commodity PC

hardware and have enjoyed an increasing range

of applications. The Beowulf project is driven

by the need for high performance scienti�c com-

puting within the Earth and Space Sciences

(ESS) community; a community with a diverse

set of requirements that continues to fuel the

evolution of the Beowulf-class machines.

The Beowulf Parallel Workstation architecture,

an important testbed for emerging ideas in

PoPC clusters, was the original response to

the needs of the ESS scientists. There are

two constraints on the workstation architecture:

It must use exclusively commodity hardware

and a Beowulf workstation populated with disk

and memory should cost no more than a high-

performance scienti�c workstation (e.g. a low-

end Origin 200 system from Silicon Graphics),

roughly $50,000.

Earth observing applications have developed

a body of codes for message-passing ma-

chines that port easily to the new architec-

ture. These are large out-of-core classi�cation

and registration problems usually programmed

SPMD (Single Program Multiple Data) style,

with owner-computes data distribution pat-

terns; they present a requirement for high per-

formance image processing coupled with high

aggregate bandwidth disk subsystems that can

take advantage of these data distributions. To

accommodate these needs Beowulf places disks

on every node, makes no distinction between

compute and I/O nodes, and achieves high net-

work bandwidths by aggregating multiple chan-

nels of commodity Fast Ethernet hardware (Fig-

ure 1).

Beowulf-class machines are also used as cost-

e�ective platforms for large multi-body codes

(N-body, particle-in-cell, DSMC) codes. These

large, typically in-core, problems also bene�t

from high
oating-point performance but de-

mand high bandwidth and low latency inter-

processor communications. Along with high

bandwidth interconnect, the broad availability

of small-scale multiprocessor (2 to 4 processors)

system boards provide an extremely cost e�ec-

tive way to increase
oating-point performance

for CPU intensive applications.

Beowulf clusters have been assembled around

every new generation of commodity CPU since

the 1994 introduction of the 100MHz Intel DX4

processor. The current price/performance point

in desktop architectures, Intel's 200MHz Pen-

tium Pro CPU, is the key to a new generation of

Beowulf-class machines that retain workstation-

level end-user costs but perform favorably (brack-

eted by a factor of two) against many commer-

cial distributed memory supercomputer archi-

tectures on a per-node basis: IBM's SP2, the

HP/Convex SPP series, and the Cray T3D.

The latest Beowulf clusters installed at Caltech,

Los Alamos National Laboratory, and NASA

Goddard Space Flight Center, are all 16 node

Pentium Pro machines with con�gurations that

re
ect the speci�c needs of their users. The Cal-

tech and Los Alamos machines (Figures 2 and

3), built for N-body galactic gravitational sim-

ulations, feature some of the fastest networks

available in the commodity marketplace. Cal-

Figure 1: Beowulf Parallel Workstation Architecture

tech's `Hyglac' cluster is interconnected with

degree-1 Fast Ethernet connected to a 16 port

crossbar switch. Los Alamos' machine, `Loki',

has a degree-5 Fast Ethernet topology con-

nected as a degree-4 point-to-point hypercube

plus degree-1 switched network; the switched

network is bypasses long routes through the hy-

percube and avoids the low performance of the

broadcast and multicast operations characteris-

tic of simple hypercubes.

NASA Goddard's latest machine, also a Pen-

tium Pro cluster with 16 nodes, contains 100GB

in distributed disk with an aggregate memory-

to-disk bandwidth in excess if 1 Gbit per sec-

ond. These nodes are connected with the `clas-

sic' Beowulf network | dual Fast Ethernet seg-

ments bonded transparently in software into a

single logical network. This is a general purpose

machine built for applications and software de-

velopment; largely testbed work for the devel-

opment of a mass storage system.

The most aggressive Beowulf-class machine be-

ing considered at this time is the jointly funded,

DARPA and NASA, project to develop a net-

work attached secondary storage system. This

will be a 64 node, 128 processor system with a

terabyte of distributed disk space and aggregate

external bandwidth of a gigabyte/second. This

special-purpose machine would step beyond the

usual $50,000 price point for Beowulf clusters

and will take advantage of a hybrid network

topology to achieve better scaling. The nodes

will be collected into a series of 8-node `meta-

nodes' each connected internally with Fast Eth-

ernet. These meta-nodes will be attached to a

1.2Gbit Myrinet crossbar, building the cluster

into a shallow fat tree. (Figure 4)

On the other end of the Beowulf spectrum, clus-

ters are being built to a slightly di�erent set of

requirements at Universities across the country.

A number of schools: Drexel, GMU, Clemson,

University of Illinois at Urbana-Champaign,

and Caltech among them belong to an academic

Beowulf consortium and assemble machines as

frequently for pedagogical purposes as for re-

search. These machines tradeo� absolute per-

formance for increased parallelism|by substi-

tuting smaller disks, less memory, and slower

CPUs. These machines serve as teaching ma-

chines and application reference platforms for

distributed computing and are built for dollar

amounts within the reach of any university.

4. Grendel Software Architecture

Beowulf-class machines leverage available soft-

ware as well as o�-the-shelf hardware. The Beo-

wulf system is based on the widely available

Linux operating system. Linux is a full-featured

clone of the UNIX operating system originally

designed for x86 processors and extended re-

cently to support all common desktop architec-

tures. In addition to portability, the Linux ker-

nel features POSIX compliance, a TCP/IP pro-

tocol stack with a sockets interface, very broad

device support, dynamically linked shared li-

braries, interprocess communication and an ef-

�cient virtual memory subsystem with uni�ed

bu�er cache. The Linux kernel and much of

CPU
2

Fast Ethernet Switch

CPU
N

CPU
1

Figure 2: Caltech `Hyglac' cluster

1
CPU CPU

CPU CPU

2

3 4

Figure 3: Los Alamos `Loki' cluster

the basic supporting software is distributed un-

der the terms of the Free Software Foundation's

GNU Public License [3] which insures that source

code to the system is available, that we can eas-

ily share improvements, and that there are no

per-node royalties.

The Beowulf software environment, Grendel,

is implemented as an add-on to commercially

available, royalty-free base Linux distributions.

These distributions include all of the software

needed for a networked workstation: the ker-

nel, Linux utilities, the GNU software suite,

and many add-on packages. Initially we used

the very popular Slackware distribution. We

are now migrating to the RedHat [7] distribu-

tion with its better package management and

upgrade system.

The Beowulf distribution includes several pro-

gramming environments and development li-

braries as individually installable packages.

PVM, MPI, and BSP are all available. SYS-

V{style IPC and p-threads are also supported.

A considerable amount of work has gone into

improving the network subsystem of the kernel

and implementing device support. Most of these

changes have been incorporated into the kernel

source code tree.

In the Beowulf scheme, as is common in NOW

clusters, every node is responsible for running

its own copy of the kernel and nodes are gen-

erally sovereign and autonomous at the kernel

level. However, in the interests of presenting a

more uniform system image to both users and

applications, we have extended the Linux kernel

to allow a loose ensemble of nodes to participate

in a number of global namespaces. A guiding

principle of these extensions is to have little in-

crease in the kernel size or complexity and, most

importantly, negligible impact on the individual

processor performance.

Global Process ID Space

Normal UNIX processes `belong' to the kernel

running them and have a unique identi�er within

that context. In a parallel distributed scheme it

is often convenient for UNIX processes to have

24 GB Disk

P6

P6

128MB

RAM

P6

P6 RAM

128 MB

Fast Ethernet

Myrinet

Fast Ethernet

Crossbar

Myrinet

Switch

ESS CAN

TESTBED

BACKBONE

Figure 4: Beowulf Mass Storage System

a process ID that is unique across an entire clus-

ter, spanning several kernels. Some UNIX sys-

tems, notably Linux on the Fujitsu AP1000+

[8] multicomputer, support directly the notion

of a SPMD context of execution where multiple

copies of the same code run on a collection of

nodes and share a UNIX process ID.

A more generally useful scheme is available at

the library layer in PVM. PVM provides each

task running in its virtual machine with a task

ID that is unique across all the hosts partici-

pating in the virtual machine. The PVM API

incorporates library calls that provide the func-

tionality of UNIX kill() and getpid().

Ideally, such a mechanism would be transpar-

ently available to all processes, not just those

written and compiled to use a speci�c library.

We have implemented two Global Process ID

(GPID) schemes. The �rst is independent of ex-

ternal libraries. The second, GPID-PVM, is de-

signed to be compatible with PVM Task ID for-

mat and use PVM as its signal transport. The

traditional UNIX calls kill() and getpid()

work transparently with both schemes.

GPID-PVM makes use of an unde�ned range in

the PVM Task ID space. GPID-PVM reserves

the PID range from 1 to NODE MAX PROCS

for `local' processes { processes (such as init)

that by necessity are replicated across the clus-

ter and would clutter a global process ID space.

With this scheme, children inherit their type

(global or local) from their parent unless the

clone() system call explicitly instructed other-

wise at process creation time. In an example

system, each node might right run a PVM dae-

mon as its master dispatch mechanism. Each

PVMD would clone() itself immediately to mi-

grate into the global PID space; all children

spawned by that daemon would also exist in

the global space. The GPID de�nition includes

�elds inherited from PVM that provide special

IDs for PVM and other dispatch daemons.

Performance Impact

Runtime PID assignment requires no internode

communication; kernels assign PIDs from their

static non-overlapping GPID range. The added

work is only one (or rarely, two) variable ref-

erences per process creation. Remote delivery

of signals is signi�cantly more complicated and

does require internode communication, but this

work is done in what was formerly an error path

for signals to invalid PIDs.

A guiding principle for system services has been

to separate policy from mechanism, embodying

the mechanism within the kernel and the imple-

menting policy outside. Thus setting the pro-

cess ID range, reliable delivery of signals, and

recovering from failures is handled by a user-

level process.

An additional impetus for the combined kernel-

level and user-level implementation is that there

are few paradigms where a kernel is expected to

be an endpoint for communication rather than

merely handling communications on behalf of

user processes. This presents a set of conceptual

challenges that apply broadly to global kernel-

level name-spaces that require communication

for coherence. All kernel-level to user-level com-

munication is required to be stateless in the

kernel for the sake of reliability, and happens

through an interface to the Linux VFS (Virtual

Filesystem Switch).

Uni�ed /proc Filesystem

While the GPID extension is su�cient for cluster-

wide control and signally of processes, it's of

little use with a global view of the processes.

To this end, work is underway on a mechanism

that will allow unmodi�ed versions of standard

UNIX process utilities (ps, top, etc) to work

across a Beowulf cluster.

Linux has an advanced implementation of the

/proc [9] pseudo-�lesystem. System and pro-

cess information is presented in the form of a

\�lesystem" generated in real-time by the ker-

nel. This scheme was originated as a interface

for debuggers, and was popularized with the

Plan 9 [10] operating system. A basic /proc

presents a subdirectory for each process on the

local processor. The Linux implementation ex-

tends /proc to present almost all system infor-

mation in this format.

The /proc �lesystem is used by all of the com-

mon system monitoring tools on Linux, e.g. `ps'

`top'. Most of these tools work unchanged with

the conceptually simple step of combining the

/proc directories of the cluster using the exist-

ing NFS capabilities. The implementation com-

plexity comes from handling pseudo-�les that

have no length until they are read, and there is

performance impact from gathering fresh direc-

tory information with each request.

Programming Models

There are several distributed application pro-

gramming environments available on Beowulf.

The most commonly used are the PVM [12]

and MPI [13] environments, with BSP [15] also

available and used. A distributed shared mem-

ory package is planned.

PVM and MPI

While there are multiple, disparate program-

ming paradigms, the most widely used is mes-

sage passing. Even when hardware systems sup-

port shared memory mechanisms, message pass-

ing is still often used by application program-

mers for portability. Beowulf support the popu-

lar PVM [12] andMPI [13] programming models

with a very slightly modi�ed Oak Ridge PVM

package and an unchanged Ohio State LAM

MPI[11] package.

BSP

Traditional UNIX kernels make a fundamental

distinction between namespaces ; UNIX kernels

manage them by casting them as either explicit

(system call / �lesystem interface) or implicit

(memory interface, mmap()). While it is far

simpler for the systems programmer to provide

coherency across namespaces managed explic-

itly, these sorts of mechanism can be the bane of

application programmers. Using explicit mes-

sage passing techniques to parallelize serial ap-

plications or port parallel codes developed for

shared-memory architectures can be both non-

obvious and tedious. Time to port and develop

must be considered as part of any net produc-

tivity gain from a platform. In many cases,

BSP (Bulk Synchronous Parallel) libraries pro-

vide active messaging to eliminate server-side

message passing application code. However, client-

side remote memory references must still be ex-

plicit. This removes the local/remote address

space transparency that is frequently convenient

and complicates the referencing (indirect or oth-

erwise) of distributed objects.

Distributed Shared Memory

The Linux kernel provides a VFS-like interface

into the virtual memory system. This makes

it simpler to add transparent distributed back-

ends to implicitly managed namespaces. Page-

based systems can be created that allow the en-

tire memory of a cluster to be accessed either

almost or completely transparently.

An additional environment being added to the

Beowulf packages is page-based Network Vir-

tual Memory (NVM), also known as Distributed

Shared Memory (DSM). The initial implemen-

tation is based on the ZOUNDS (Zero Overhead

Uni�ed Network DSM System) system from Sar-

no� [14]. Page-based distributed shared mem-

ory uses the virtual memory hardware of the

processor and a software-enforced ownership and

consistency policy to give the illusion of a mem-

ory region shared among processes running an

application.

A more conventional DSM-NVM implementa-

tion is planned, along with support for a net-

work memory server.

Parallel Filesystem

Beowulf systems can take advantage a number

of libraries written to provide parallel �lesys-

tem interfaces to Networks of Workstations. Jo-

vian (University of Maryland at College Park),

PIOUS, and the Parallel Virtual File System

(PVFS) developed by Clemson in concert with

NASA Regional Data Centers have been run on

Beowulf. Portable Parallel File System (PPFS)

from UIUC runs on systems similar to Beowulf.

MPI-IO is expected to become core software for

new applications. However, PVFS alone will

automatically enable several key NASA appli-

cations. PPFS is being developed alongside the

Scalable IO Initiative; support provides contact

with the multi-agency, multi-vendor initiative

to address the increasing demands on IO sub-

systems within the high performance computing

community. Jovian support makes additional

legacy applications (e.g. Path�nder[18]) avail-

able to Beowulf users.

5. Applications Scaling and

Performance

The Beowulf Architecture provides sites with

the
exibility to build machines tuned to the

particular demands of their application. How-

ever, clusters built to date have retained the bal-

ance of the original while delivering high perfor-

mance to the application. There are a number

of applications which port to Beowulf with little

more than a recompile { MPI, PVM, BSP and

many other common libraries are all available.

One important example application is Warren-

Salmon gravitational N-body codes.

N-body

N-body codes have always been a target appli-

cation for Beowulf-class machines. In the past,

Beowulf machines at NASA Goddard were used

as proxys for larger machines. Codes were de-

veloped and debugged on a Beowulf and migra-

ted to large distributed-memorymachines (T3D,

Paragon, CM5). Recently, however, code has

migrated the other way. Michael Warren and

John Salmon, recipients of the 1992 Gordon Bell

Prize for performance in large-scale scienti�c

computing, have migrated their highly optimized

N-body codes from the ThinkingMachines CM5

onto the clusters installed at both institutions.

The port was reported to take \man-minutes"

| a simple recompile of the existing code that

worked without modi�cation. Rewardingly, each

cluster sustains over 1.2 GigaFlops on 10 million

body problem.

The direct solution to the equations of force for

a system of gravitationally interacting particles

requires an O(N2) calculation. Tree codes are a

collection of algorithms which �nd approximate

solutions by exploiting the naturally locality in

the system. Particle information is sorted into

a tree-based spatial hierarchy; an intermediate

node in the tree is responsible for storing aver-

age quantities (e.g. mass, center of mass, and

high order moments of the mass distribution)

for the particles stored at the leaf nodes \un-

derneath" that node. To approximate the force

on each body, the algorithm searches the tree

and uses the information stored at the inter-

mediate nodes whenever it satis�es certain ap-

proximation criteria. This results inO(N logN)

scaling, but presents di�culties for the parallel

programmer; the tree search is not known a pri-

ori for a given particle, the tree is unstructured

and frequent indirect addressing is required.

The Warren-Salmon algorithm builds the tree

data structure di�erently from standard Barnes-

Hut algorithm by decomposing 3-space into Mor-

ton{order 1-space. In doing so it is able to

control the \shape" of the tree to match the

tree (and the induced communication patterns)

to the granularity of the particular distributed-

memory constraints.

6. Discussion and Conclusions

Advantages

The Beowulf system has been a success on sev-

eral fronts. Beowulf systems have been been

constructed at other sites both for academic and

scienti�c uses. Its price/performance compares

very favorably to other modern parallel archi-

tectures; a Beowulf Pile-of-PCs has equaled

the performance of IBM SP2s with compara-

ble nodes at less than one tenth the price to

the end user for important problems. The abso-

lute performance has surpassed 1 GFLOPS on

a non-trivial application | a goal established

at the beginning of the project. Some of system

software developed as part of this project has

been widely distributed and used. And a site

can retain the low cost of Beowulf and trade-

o� absolute performance for increased paral-

lelism (by substituting larger numbers of less

expensive processors) for pedagogical and in-

structional uses.

Limitations

The Pile-of-PC methodology is still experimen-

tal, and does not match all of the valuable ser-

vices provided by computer vendors. It is not

for everyone. Rather, it is an emerging oppor-

tunity in the high performance computing �eld

and complements rather than competes with

the HPC industry commercial products.

The opportunities made available through this

approach provides a lower entry level price to

parallel computing, thus increasing the parallel

processing user community earlier and helping

build such a market. These initial entry level

users are more likely to acquire higher grade

vendor supplied systems once they have expe-

rienced the advantages and overcome the psy-

chological barriers to parallel computing. Ven-

dors of traditional high performance computers

provide full support and maintenance. Users of

Piles-of-PCs must provide that on their own.

While there are many places where this is easy

to do, such as academic or national laborato-

ries, there are many markets where this would

not work well, such as the business or banking

industries.

Future Work

While much has been accomplished, much re-

mains that can be done. Several projects, as

mentioned throughout this paper, are in progress.

Our goal is to make assembling a cluster an easy

afternoon's activity, with no expert intervention

required. That is not yet the case. Work re-

mains to be done on writing instructions su�-

ciently clear, and preparing a robust packaged

distribution that avoids most pitfalls.

References

[1] K. Castagnera, D. Cheng, R. Fatoohi, et al.

\Clustered Workstations and their Poten-

tial Role as High Speed Compute Proces-

sors," NAS Computational Services Techni-

cal Report RNS-94-003, NAS Systems Di-

vision, NASA Ames Research Center, April

1994.

[2] Linux Documentation Project, Accessible on

the Internet at World Wide Web URL

http://sunsite.unc.edu/mdw/linux.html.

[3] GNU General Public License, Version 2,

June 1991, Free Software Foundation, Inc.,

675 Massachusetts Ave, Cambridge MA

02139.

[4] T. Sterling, D. Becker, D. Savarese, et al.

\BEOWULF: A Parallel Workstation for

Scienti�c Computation," Proceedings of the

1995 International Conference on Parallel

Processing (ICPP), August 1995, Vol. 1, pp.

11-14.

[5] T. Sterling, D. Savarese, D. Becker, B. Fryx-

ell, and K. Olson, \Communication Over-

head for Space Science Applications on the

Beowulf Parallel Workstation," Proceedings

of the Fourth IEEE Symposium on High Per-

formance Distributed Computing (HPDC),

August 1995, pp. 23-30.

[6] C. Reschke, T. Sterling, D. Ridge, D.

Savarese, and D. Becker. \A Design Study of

Alternative Network Topologies for the Beo-

wulf Parallel Workstation,", Proceedings of

the Fifth IEEE Symposium on High Perfor-

mance Distributed Computing (HPDC), Au-

gust 1996.

[7] Red Hat Software, Inc. Homepage, Accessi-

ble on the Internet at World Wide Web URL

http://www.redhat.com.

[8] A. Tridgell, P. Mackerras, D. Sitsky and D.

Walsh, \AP/Linux - A Modern OS for the

AP1000+" Austrailian National University

Technical Report;

http://cap.anu.edu.au/cap/projects/-

linux/index.html.

[9] T.J. Killian, \Processes as Files", USENIX

Summer Conference Proceedings, June 1984.

[10] R. Pike, D. Presooto, K. Thompson, and

H. Trickey, \Plan 9 from Bell Labs", Pro-

ceedings of the Summer 1990 UK Unix User

Group Conference, July 1990, pp. 1-9.

[11] LAM / MPI Parallel Computing Home-

page, Accessible on the Internet at World

Wide Web URL

http://www.osc.edu/Lam/lam.html.

[12] V. Sunderam, \PVM: A Framework for

Parallel Distributed Computing," Concur-

rency: Practice and Experience, December

1990, pp. 315-339.

[13] M. Snir, S. Otto, S. Huss-Lederman, D.

Walker, and J. Dongarra, \MPI: The Com-

plete Reference,", The MIT Press, Cam-

bridge, Massachusetts, 1996.

[14] R. G. Minnich, \ZOUNDS: A Zero Over-

head Unifed Network DSM System" Sarno�

Technical Report;

ftp://ftp.sarnoff.com/pub/mnfs/www/-

docs/cluster.html.

[15] \The Bulk Synchronous Parallel (BSP)

Computing Model Worldwide Homepage"

http://www.bsp-worldwide.org/.

[16] J. E. Barnes and P. Hut, Nature, 324, 1986,

p. 446.

[17] A. Heirich, and J. Arvo, \Scalable Monte

Carlo Image Synthesis", To appear in Par-

allel Computing 1997.

[18] R. Bennett, K. Bryant, A. Sussman, R.

Das, J. Saltz, \Jovian: A Framework for Op-

timizing Parallel I/O", Proceedings of the

1994 Scalable Parallel Libraries Conference.

