
CHAPTER 6 Troubleshooting: Frequently Asked
Questions

Sometimes your programs, even “simple” programs, may not work for some
“inexplicable” reason. After thoroughly checking your code for propram-
ming errors, and before labeling it “a bug in the compiler” (as it may turn out
to be on ram occasions - contact us for a fix!), here are several things to
check first. (Other chapters in this manual contain more detailed explana-
tions on how to perform the functions mentioned.) Note that our webstte
http://www.imagecraft.com contains an up-to-date version of this chapter.

“Hello World” does not work

. Is the baud rate set correctly? BUFFALO sets the baud rate to the default
9600 baud, but if you are running a stand-alone program, you’d have to
set the baud rate yourself.

. The default putchar function uses the SC1 port. Is your RS-232 output on
the microcontroller system coming from the SC1 port? In particular, the
Motorola HCI 1 EVB boards use the ACIA chip instead of the SC1 port.
A solution for the Motorola EVB is to write the putchar function to use
the BUFFALO character output routine instead.

Program hangs after finishing

ICC11 - Cross Compiler for MC68HCll Microcontrollers 43

Troubleshooting: Frequently Asked Questions-

. If your main() function “returns,” the transfer of control goes back to the
code in the start-up file cr t 11 . s, and the default behavior is to execute
an infinite loop. An alternative behavior, especially when executing
under a monitor such ai BUFFALO, is to return control to the monitor
program. Note that under a monitor, a simple “rts” in crtll . s after the
call to main would not suffice since the start-up code loads a new value
to the stack pointer as the first instruction, which is likely different from
the one that the monitor was using, Thus when an rts is executed, it
would not have the correct return address on the stack. To get the desired
behavior, either replace the infinite loop with the “swi” instruction which
would cause an interrupt trap back to BUFFALO or delete the “Ids”
instruction.

Interrupt handlers do not work
s

. Did you enable interrupt via the INTR_ON() macro or the “cli” instruc-
lion?

.

.

.

If you are using a C function as an interrupt handler, you must use the
interrupt-handler pragma before you define the interrupt handler func-
tion.

You need to set up interrupt vectors: stand-alone programs need to use
the vec1ors.c file. Programs running under BUFFALO and NoICEl I
need to use the pseudo vectors in RAM. Note that each entry in BUF-
FALO pseudo-vector entry is 3 bytes long, please refer to BUFFALO’s
documentation for information. Entries in NoICE I’s pseudo vectors are
two bytes each.

In order to use interrupts on some of the hardware subsystems, you must
turn on the interrupt enable bits. For example, the Timer Output Compare
enable bits are in the TMSK I register. In most cases, you must also clear
the interrupted flag by writing a”l” into the flag register in your interrupt
handler. For example, the Timer Output Compare flag bits are in the
TFLG I register.

Printf does not print floating point number

l You must explicitly link in the 1ibfp.a library. “#include <stdio.h>” in
your source code is not sufficient.

l This printf is only a subset. In particular, precision and field width modi-
fiers are not supported.

44 I * ICC11 - Cross Compiler for MC68HClI Microcontrollers

Programs do not work

l Is the COP Watchdog timer enabled accidentally’? The Watchdog timer would
interrupt and reset your target if enabled “on” accidentally. Refer to the HC 1 I
reference manual for details. Basically, ensure that the NOCOP bit is “1” in the
CONFIG register (i.e. the 3rd bit of Ox 103F is I).

l Program areas should nit overlap. Check your .mp map files! In particular, set-
ting data and text to the same address would cause problems.

l If your program is a stand-alone program, then it needs a reset vector!

l BUFFALO has a had habit of writing to location 0x4000 due to an artifact of the
Motorola EVB. You can either delete the offending code in BUFFALO and
burn a new BUFFALO ROM, or use the linker address range to skip over the _
0x4000 location.

Did you accidentally check the “No Startup File” chcckhox in Option->Compiler-
>Linker’! This option is uscl’ul only for building stand-alone module such as ROM
library code.Bootstrap Mode Downloading does not work

l Is the HC Ii running with a 8Mhz clock? Does the target board support boot-
strap mode?

l If you are using one of Technological Arts Adapt- I I boards, make sure that the
“write enable” switch is off every time you power on or reset the hoard. Also
choose the right type of memory device you are downloading in the bootstrap
mode option.

Assembler cannot assemble assembler modules

l The ImageCraft assmbler uses different syntax than Motorola freeware assem-
bler. In particular, the bclr/bset/brclr/brset syntax is different.

l Direct page reference must be preceded wtth the ‘*’ character.

.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 45

Troubleshuoting: Frequently Asked Questions-

46 ‘
I

ICC/I - Cross Compilerfor MC68HCIl Microcontrollers

CHAPTER7 Linker

The purpose of a linker is to comhinc object modules and libraries together
to form an executable image. In the case of ICC I 1, the default executable
image is in the form of a Motorola S record file, which is an ASCII file for-
mat for encoding program and data files. Most HC I I monitors, EPROM
burners, etc. take S record files as their input. You may also generate the cxc-
cutable image in Intel hex format by specifying a command line option to the
linker.

Program Areas or Sections

Sections Logically, an object and an executable file have 3 sections: the executable
instructions are in the code (or text) section. initialized global or static data
are in the data section, and uninitialized global or static data are in the bss _
section. Since there is no operatin,0 system or memory management hard-
ware enforcing these restrictions on HCI I systems, you may put code and
data anywhere you choose. During runtime. a program has access to 2 other
sections, the stack section for local variables and runtime control. and the
heap ‘for dynamic .memory allocation.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 47

Linker-

Text Text area is where your code goes. Typically this is in mad only storage such
as EPROM. During program development, it is typically placed in RAM for
fast download. The power of a relocatable compiler system such as ICC1 I is
that your program does not need IO be recompiled when you change the
placement of your areas. Your program needs only to be relinked for it to
work correctly (unless of course you use hard coded references in assembly
routines).

Data and Idata:
Initialized Global

Initialized global variables, for example

int abc = I;

is located in the data area. In order to initialize the data section with the cor-
rect values, the initialized values of the data area are actually kept in the
“idata“ section. At program startup time, the start-up routine copies the idata
area to the data area. The idata area is located after the text area, so in a
ROM based system. it will also be located in ROM and the content will sur-
vive power off and reset. Normally, you do not need to specify a star1
address for the idata area since it defaults to follow the text area. Since the
startup code does byte-by-byte copying from the idata to data area, the idata
area and the data area must each be contiguous. Thus if you use discontigu-
ous area specifier for the text area (e.,.u -btext:Ox 1400.0x3FFF:0x400 I), then
you will have to specify the start address for idata separately. Otherwise, the
linker gives an error message.

BSS Area Global variables that are not explicitly initialized, for example,

int def;

have zeroes as the initial values by ANSI C rule. They are placed in the BSS
area ‘. The startup code initializes the enttre bss section before calling
main().

Absolute Section Sometimes it is convenient to put objects in absolute address. For example,
for interrupt vectors. In C, you can use the the following pragma:

#pragma abs_address:<address>

#@ragma end_abs_address

I. BSS stands for Block Starts Sectton. a term carried over from the dawn of C-age.

48 1 ICC11 - Cross Compiler for MC68HClI Microcontrollers

Program Areas or Sections

example:

#pragma abs_address:OxFFD6 /* interrupt vectors for hc 11 */

The “abs_address” specifies that all items following arc to be put into memory
starting at the specified address. You may use additional “abs_address” pragmas if
you need to put the additional items at specific locations. An “end_abs_address”
pragma or end of file condition reverts to normal behavior:

For the “abs_address” prayma, the following assembly directives arc generated:

.area memory(abs)

.org <address>

The “(abs)” after the section name “memory” spectfies to the assembler and lanker
that this is an absolute section and dots not need a linker address at link time.

Note that this pragma does not affect the placcmcnt of global or static data that arc
not explicitly initialized since they always go into the bss section.

Symbol The assembler treats an undefined name as an external reference. For example, if
the file contains:

Idd #-heap-start

and there is no definition of _hcap_start in the file, the assembler puts out an
external reference of that symbol in the object file. When the linker combines the
object files together, it will search all the files to find a definttton of that symbol.
Typically the symbol would be found in another object file. For example, the sym-
bol may be an external variable and another file would have a definition of it.

In addition, the linker allows symbols to be defined at link command line. For
example, if the symbol init_sp has the value Ox7FFF. then you can”use the com-
mand:

ice I I -dinit_sp:Ox7FFF file.0 I

or

ilink -dinit_sp:Ox7FFF file.0

In addition to’using a numeric address, you may also use the value defined by a
linker symbol that is previously defined in the linker command options. For exam-
ple,

ICC11 - Cross Compilerfor MC68HCII Microcontrollers 49

Linker-

ilink -d_regs:Ox 1000 -bdata:_regs

Assigns the value Ox 1000 to _regs and puts the data section at that address.

Link Address ’ The complete syntax for address specification is:

-b<name>:<range>[:<range>]

L <range> is <begin_address>[.<end_address>]

For example, >if your system ROM space is at 0x0 to Ox I FFF, and Ox4000,to
OxSFFF, you would write

-btext:OxO.Ox I FFF:0x4000.0x.5FFF

This allows you to maximize the use of discontiguous memory space. The
maximum address is OxFFFFF for ICC 16, and OxFFFF for ICC I I and

ICC 12.

Default Address If you do not specify an address for a section, the linker uses the ending
address of the section preceding the section as its start address. This ordering
is defined simply by the appearances of the section labels in an object file.
Hence a simple way to enforce section orderin,= is to define the sections in
the startup file. The default startup file specifies that the data section starts
right after the code section using this method.

l

50 t ICC1 I - Cross Compiler for MC68HCll Microcontrollers

CHAPTER 8 Assembler

Introduction

The compiler generates assembler code whtch is then processed by the
assembler. The assembler generates a relocatable object file from the Input.
You may also write assembler routines and link them into your C program.
This chapter describes the format of the assembly language accepted by the
assembler. This format is different from the Motorola Freeware Assembler.
The iasl lcvt program translates a file with Motorola syntax to iash I I syn-
tax.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 51

Assemhler-

Relocatable Sections Assembly code is grouped into relocatable or ahbolute sections. The linker
combines together sections of the same names from all the object modules.
At link time, you specify the start address of each relocatable section and the

, linker adjusts symbol references to their final addresses. This process is
known as relocation.

Assembly Source Code Format

Notation

‘i

A <name> is a sequence of 32 or less characters consisting of alphabets. dig-
its, dots (.), dollars ($), or underscores (_). A name must not start with a
dIgit.

A <numben is a sequence of digits In C format: a Ox prefix signifies a hexa-
decimal number. a 0 prefix signifies an octal number and no prefix signifies
a decimal number. In addition, Ob signifies a binary number. You may also
indiciate hex number by using the $ prefix.

An <escape sequence> is C style \n, \t, etc. plus \Oxxx octal constants. \e
refers to the escape character.

A <string> is a C string: a sequence of characters enclosed by double quotes
(“). A double quote within the strmg must be prefixed by the escape charac-
ter backslash (\).

An cexp> is a relocatable expression. It is either:

1. a term, i.e., a dot (which denotes the current program counter value ‘), a
number, an escape sequence, a name, or

2. an expression enclosed with ‘(’ and ‘)‘, or

3. two expressions joined with a binary operator. These binary operators, ”
with the same meanings as in C, are accepted: *

>> << + * I %

& I h

I. Note that some HC I I assemblers also acce’pt a ‘*’ to denote current pro- .
gram counter value. That does not work with this assembler

52 ” ICC1 / - Cross Compiler for MC68HCll Microcontrollers

1

Asscmhiy Source Code Format

or

4. a unary prefix operator applied to an expression:

> upper byte of an expression

< lower byte of an expression

‘ X character “x”

.“ab double byte value of characters “a” and “b”

and the following C style unary operators: .
+

Unlike C. all operators have the same prccedcnt so you may have to insert parcn-
theses to group the expressions. Also note that only one relocutahlc symbol may
appear in an expression.

Direct Page Reference Sn~nc instructions take a direct page reference as an operand. That is, the address of
the operand is m the first 256 bytes of memory. You cannot specify a dtrcct page
vartable tn C, but you can do so in assembly by prefixing a variable or a dtrect
address with a ‘*’ in the references:

bset *_foo,#Ox23

bclr *Ox2O,#Ox32.

You must ensure that a direct page variable is defined within the first 2% bytes.
Otherwise, you will get an error when you link the program.You may do so by put-
ting such variables in an absolute area:

.area memory(abs)

.org 0

_foo:: byte I

Format An assembly file consists of lines of assembly text in the following format. Lbes
greater than 128 characters are truncated:

[label:] operation [oserand I

In addition, comments can be introduced anywhere on the line with the ‘;’ charac-
ter, All characters remaining in the line after the comment character are ignored.

ICC11 - Cross Compiler for MC68HCll Microcorltrollers 53

a
. .

Assemhler-

A label defines a relocatable symbol name. Its value is the program counter
value at the point where the label appears in the final linked executable.
Zero, one, or more labels may exist on a source line. A label must end with a
single colon ‘:‘, or two colons “::“, the latter case signifying that the label is
a global symbol (that is, one that can be referenced from another object mod-
ule).

.An operation is either an assembler directive or an HC I I opcode.

,‘

Assembler Directives

Directives are operations that do not c(lenerate code but affect the assembler
in certain ways. The assembler accepts the following directives:

.text specifies that the following data and Instructions belong to the text set
tion.

.data specifies that the following data and instructions belong to the data
section. If you create any data items in the data section in an assembler mod-
ule, you must define the same values in the idata section immediately fol-
lowing it. At program startup time, the idata section is copied to the data
section and the sizes of the two sections must match. In fact, it is better 10
reserve the space in the data area and define the balues in the corresponding
idata area. For example:

.data

_mystuff.:

.blkb 5

.area idata

.byte I, 2, 3, 4, 5 ; _mystuff gets these at Startup .

.area <name> specifies that the following data and instructions belong to a
section with the given name. .text is a synonym for .area-text and .data is a
synonym for .area data. The compiler only uses the text, data and bss sec-
tions.

<name> may optionally be followed by the attribute “(abs),” signifying that
this area is an absolute section and can contain .org directives.

ICC11 - Cross Compiler for MC68HCll Microconrrollers

4

Assembler Directives

.org <exp> change the program counter to the address specified. This directive is

valid only within an absolute area.

.byte <exp>[,<exp.]* (or .db . ..) allocates bytes and initializes them with the
value(s) specified. For example, this allocates 3 bytes with the values I, 2, and 3.

.byte 1,2,3

.word <exp>[,<exp.]* (or .dw . . .) allocates words and initializes them with the
value(s) specified. For example, this allocates 3 words with the values I, 7. and 3.

.word I .2.3

.blkb <number> reserves r~~rther bytes of atoragc wtthout inittalizing thctr con-
tents.

.blkw <number> reserves nrtnrber words of storage without initializing their con-
tents.

.ascii <string> allocates a block of storage larsc enough to hold the strtng and ini-

ttalizcs it wtth the strtng.

.asciz <string> allocates a block of storage large cnou,(yh to hold the string plus I,
and initializes it with the string followed by a terminating null.

.even forces the current program counter to be even.

.odd forces the current program counter to be odd.

.globl <name>[,<name>]* declares that name(s) are global symbol(s) and can be
referenced outside of this object module. Thts has the same effect as defining the
label with 2 colons following it. That IS

_foo:

; some asm code
.

.plobl _foo

is equivalent to

_foo:i

; some asm code

ICC11 - Cross Compiler for MC68HCll Microcontrollers 55

Assemhler-

.if <exp>, .else, and .endif implement condittonal assembly. If the <exp> is
nonzero, then the assembly code up to the matchmg else or matching .endif
is processed. Otherwise, the assembly code from the matching .else, if it
exists, to the matching .endif is processed. Conditionals may be nested up to
10 levels.

.include <string> opens the file named by the double quoted “stri.ng” and
processes it.

<name> = <exp> assigns the value of the expresston to the name.

i HCll Instructions

You should refer to the Motorola documcntatton for a comprehensive refer-
ence on the HC I I Instructions. Instructton operands, if they exist. take the
form of:

. an expression, which is usually a constant or memory address expressed
using the above format and operators, or

. bclr/brclr and bset/brset use different syntax from that of the motorola
assembler:

bclr [opnd],#mask

brclr [opnd],#mask,label

and

bset [opnd],#mask

brset [opnd],#mask,label

[opnd] must either be a direct page reference (e.g., *_foo. or *Ox IO). or
an indexed operand (e.g., 12,x or 3,~)

. an index addressing mode: a displacement off the X or Y register. For.

example:
l

4 , x

O,Y

56 ‘

1

ICC11 - Cross Compiler for MC68HCIl Microcontrollers

