
CHAPTER 5 Compiler Runtime Architecture & C
. Programming Topics

Introduction

This chapter describes the software conventions that the ICC1 I compiler
uses.

Implernerztation Characteristics

Base Data Type Char data are I byte each, short and int are 2 bytes. Long data type are 4
bytes each. Char data type is equivalent to the signed char data type. Float
and double are 4 bytes each. usin,0 the IEEE single precision format with I
bit of sign, 8 bits of exponent biased with a value of 127, and 23 bits of man-
tissa.

.

You must declare a function that accepts a non-int argument (including float,
double, long, and struct) or returns a non-int result before calling it since
these function have different calling conventions. For example, you must
include the file math. h before calling any of the floating point library func-
tions and s tdl ib . h if you use the atof() function.

ICC11 - Cross Compiler for MC68HCII Microcontrollers 31

Compiler Huntime Architecture & C Programming Topics-

Global and Static Data

Idata

M i s c e l l a n e o u s

The floating point support library uses oulobal data and thus is not reentrant.
If you use floating point code under a multitasking environment, you must
ensure that a floating point computation finishes of it may be preempted by
another floating point computation.

“Uninitialized” C global data are put in the bss sectlon. and explicitly initial-
ized global and static data are put In the data section. The start-up routine mi-
tializes the bss section to zero when the program is run. Since the data
section is typically in RAM, for each entry in the data section, there is a cor-
responding entry in the idata section with the inltlalized value. The start-up
routine copies the bytes from the idata area to data area so the global data
would have the correct values even after a power reset. The idata area must
be placed in non-volatllc memory and IS loaded after the text area by default.

Note: only items in the data area with the default name “data” gets inltlnllLed
by the start-up code. So if you change the data area name. those data will not
get initialized by entrles in the idata area!

If you have inltializcd constant data that you don’t modify, you may put
them In the text section in which case they would not occupy space in the
data and idata areas. You may do this by specifying the data as const in C:

const int table[] = (1. 2. 3) ; /* in .text */

int table2[] = (4, 5. 6); /* in .data */

As mentioned, idata contains the initial values of the global and static data in
the area “data.” Normally, you do not need to specify a start address for the
idata area since it defaults to follow the text area. Since the startup code does
byte-by-byte copying from the idata to data area, the Idata area and the data
area must each be contiguous. Thus if you use discontiguous area ?;pecifier
for the text area (e.g. -btext:Ox 1400.0x3FFF:0x4001)~ then you will have to
specify the start address for idata separately. Otherwise, the linker gives an
error message.

External names are significant up to 32 characters.

Arguments are evaluated from right to left, and bitfields are allocated from
left to right. (

32’ ICC11 - Cross Compiler for MC68HCIl Microcor~trollers

Assemhly Code and Calling Conventions

The compiler allocates an argument block for a function on function entry. There-
fore it does not generate explicit argument pushings and poppings when a function
is called. This generates shorter and faster code.

Local variables and function parameters are addressed via the X index register.
Even though the HCl 1 has a limitation of only allowing 8 bit offset (256 bytes)
from an index register, the compiler generates correct code to access items that are
more than an 8 bit displacement away. However, it requires several instructions to
do the extra computation, so if you are concerned about code size or speed, you
may try not to use more than 256 bytes of local storage.

The X register is used as the frame pointer and must be rc.storcd to its original value
at function exits.

Since floating point computation uses a fair amount of code space, II IS likely that
programs using floating point would not fit In a single chip mode system because

such a system only contains a small amount of code storage.

Assembly Code and Calling Conventions

Interface With
Assembly Routines

Time or space critical code can be written in assembler language routines or
embedded assembly code in your C source (chapter 6 descrihcs the assembler syn-
tax and operations).

The compiler prepends an underscore to all c4obal functions and data names. Thus,
to access such objects in assembly code. you must prcpcnd an underscore to the
name of the object:

Idd _foo ; load the C variable “foe”

Arguments are promoted to their natural sizes, and pushed from right to left on the
stack, except for the first argument which is passed in the D register ’ unless the
first argument is a structure, floating point, or long. The natural size for integer
types, including char and short, is int. The natural size for floating point types is

I. To’call a function that returns a structure or float. the compiler generates code to pass the
address of a (temporary) structure using the D register. This structure holds the return

value of the function when the function returns.

ICC11 - Cross Compilerfor MC6BHCII Microcontrollers 33

Compiler Runtime Architecture & C Programming Topics-

double, and the natural size for a structure is simply the size of the structure.
On entry to a function not returning structure or floating point, the stack.
looks like this:

argument 3

argument 2

return address

The stack pointer SP points to one byte below the return address . A typical
function prologue sequence pushes the first argument from the D register on
the stack, then pushes the previous frame pointer X on the stack, and finally
sets the X register to the current stack pointer. It then adjusts the stack
pointer by the amount of local storage the function needs and transfers the
stack pointer to index register X. All local variables and arguments arc refcr-
enced by using a displacement off the X rcgistcr.

A routine dots not have to prcscrvc any rcgistcrs except SP and X which
must have the same values when the function is cntcrcd. The D register is
used to pass the first argument and to return intcgcr values from the function.

The two long “registers” arc allocated at -4 and -8 bytes below the frame
pointer X. The two floating point “registers*’ are global variables and hence
routmcs that USC lloatmg point arc non-reentrant.

For example, the following putchar() assembly routine takes a C character
and calls a BUFFALO routine to output the character. Since BUFFALO
expects to be called with the arguments in registers, this routine moves the
argument to the right place before making the actual call:

; void putchar(int c)

; output ‘c’ as an ASCII character using BUFFALO

.text ; code

_putchar: ; note the prepended underscore

tba ; ‘c’ is at B, move to A

jsr Oxffaf ; BUFFALO output routine

rts

3 4
i

ICC1 I - Cross Compiler for MC68HCIl Microcowtrdlers

HCll Specific Functions

Embedded ASM
Statements

In addition to linking with assembly modules, you may embed arbitrary assembly
statements in your C programs. The format is:

asm(“asm string”);

The compiler inserts a tab at the bcginmn,u of each line and a ncwline at the end of
the specified string, C escape sequences such as \n can also be used to embed a
series of assembly instructions with a single asm call. Inside the supplied string, a
reference in the form %<variable name>, where <variable name> is an in-scoped
data variable, will be replaced by the assembly reference to the variable. Note that
the peephole optimizer ignores the instructions inside an asm() statement. This
means branches across asm() statements will always be long branches.

To generate multiple line embedded assembly statcmcnts, you may write multiple
asm() calls, or use the ‘\n’ escape character, combined with the string concatenation
feature of ANSI C:

int i;

asm(“ldd %i\n” /* note no comma */

“std Ox lOOO\n” /* 7ci will be replaced by */

“bra .-4”); I* ?,x *I

You can only use asm() in an expression staremcnt context (i.e., only by itself and
not as part of a larger expression), or outside a function definition. You must be
careful to preserve the X register in embedded asm since it is the frame pointer.

HCll Specific Functions

Accessing On-Chip
Peripherals

On chip ROM, RAM and IO registers are addressed like all memory addresses.

One efficient way is to use pointer indirections. For example. to access PORTA at
c

address Ox 1000, you write:

I* write one to port a *I

*(volatile unsigned char *)0x 1000 = I.; /* or “l

PORTA = I ; /* if chc I I .h> is included */

/* read content of port a to a variable *I

ICC11 - Cross Compiler for MC6XHCII Microcontrollers 35

Compiler Runtime Architecture & C Programming Topics-

i = *(volatile unsigned char *)0x1000; /* or *!

i = PORTA;

The header file hell . h includes macro definitions for the internal registeis
so they may be referred 10 using mnemonics such as PORTA. If you relocate
the IO register block to other than the default base address, you will need to

modify one entry in this file.

EEPROM is read like other memory locations. However, writing 10

EEPROM requires special taming routines. The function write_eeprom()
gives you an example on how to program an EEPROM cell.

Some lrtnguagcs or pseudo-C systems require you 10 use routines such as
PEEK or POKE to access memory. They are not necessary in C since C
allows memory indirection as shown above.

Bit-Twiddling
Examples

Often accessing and using the HC I I Integrated functions such as the timers
and the AD converters mvolvcd “bit-twiddling” of the IO registers. In most
cases, C allows you to write this kind of code with ease. Here are some
examples:

DDRD = OxOF; I* port D, bit 0 to 3 are output */

DDRD &= -0xOF; /* Port D, turn off bit 0 to 3 as output */

TFLG2 = 0x80; /* CLEAR the TOF bit */

TFLG2 I= 0x80; /* enable the TO1 */

Interrupt Routines To implement an interrupt handler as a C function, you must do the follow-
ing:

1. You must declare the function as an interrupt handler so that the compiler
will generate a rti (return from interrupt) instead of the rts (subroutine
return) instruction. You do this by using the following pragma:

#pragma interrupt-handler <name> [<name>]*
c

For example:

#pragma interrupt-handler foo

void foo() (/*this is an interrupt handler*/)

36 ICC1 I - Crok Compiler for MC68HCll Microcontrollers

1

HCll Specific Functions

Example: Pulse Width
Modulation Generator

2. You must assign the function address to the interrupt vector. Y OU either use vec-
tors.c for a ROM based system, or assigning it at runtime for a RAM based sys-
tem under monitor control. See “Interrupt Vectors” on page 28.

As an example, here arc some code fragments to implement Pulse Width Modula-
tion (PWM) using the Output Compare interrupt functions of the HC I I. PWM is
useful for controlling devices such as servo motors. ,

Each of the output compare functions has a 16 bit compare register and an output
pin associated wtth it. In its simplest operation, whenever the value of the free run-
rung system clock matches the value in the compare register of a output compare
functton, its output pin goes to a preprogrammed state and an interrupt gets trig-
gered.

Let’s define a system clock cycle as the time for the timer to start from 0 and ovcr-
flows to 0 again. This is just 64K times the cycle time, or 32.768 ms. for a 2 Mhz
system with a 8Mhz clock. In this example, we will generate a pulse width defined
by the constant PULSE-WIDTH every system clock cycle. WC will USC Output
Compare function five, pin A3.

First, here is the interrupt function:

#@ragma interrupt-handler PWMDriver

void PWMDriver()

1
static int state = 0;

TFLG 1 = 0x08;

if (state == 0)

TOC.5 = PULSE-WIDTH;

TCTLI = (TCTLI c(i -0x3) 10x1;

1
else

1
TOC5 = 0;

TCTLI I= 0x3;

c

ICC11 - Cross Compilerfor MC68HCll Microcontrollers 37

Compiler Runtime Architecture ~2% C Programming Topics-

1
/

1
state *= I;

Basically, every time the interrupt handler function PWMDriver is called, it:

1. specifies when the next interrupt should happen,

2. what the output pin value should then be,

3. toggles a static variable so the two paths c“ct executed alternately, and

4. returns with the rti instruction (done automatically by declaring this as an
interrupt handler).

The ftrst path sets up an interrupt to trigger at a ttmc cqual to
PULSE-WIDTH. at whtch potnt the output ptn e(*oes low. The second path
sets up an interrupt to trigger at time cqual to 0. at which point the output pin
goes high.

The various dcfincs for TCTLI, TMSKI, etc. can be found in the supplied
header file hc I I .h.

All we have to do next is to initialize the interrupt vector, which is done in
the file vect0rs.c. The main function needs to perform other initialization:

main0

(
TCTL I I= 0x3:

TMSKI I= 0x4:

asm(” cl?‘); /* enable interrupt */

I* just loop forever *I

while (I 1

.

main0 simply turns on the appropriate control registers, enables the interrupt
and finally just loops forever.

38 ’
i

ICC1 I - Cross Compiler for MC68HCll Microcontrollers

Volatile Type Qualifier

t
I

Volatile Type Qualifier

In C, you use the volatile type qualifier to tell the compiler that a data item may
change in ways that are not apparent to the compiler. For example, memory mapped
peripheral registers are good examples. Normally, the compiler may optimize cer-
tain memory accesses away. For example, if you are reading alocation immediately
after writing to it, the compiler may reuse the temporary value in a register instead
of reloadin it. For memory mapped registers, the effect is incorrect if the read is
not done. qherefore, the peripheral registers must be accessed using volatile type
qualifier, which is the case if you use the defines in the provided header file.

Debugging

What TO Do If Your
Program Does Not
Work

You should examine the .mp ‘map file (-m to the driver) to check that the memory
addresses arc rr_asonable and within the memory map of your system. For example.
when using a single chip system and downloading using a program such as pcbug
or dim, you cannot have any data that is 2ooinc into RAM (e.g., at address 0 and up)._
Also, the memory allocation routines uses memory just beyond that of the variable
1. FreeList.” If you put code or data after this variable make sure that they will not
beoverwritten by the dynamic memory (memory allocation is done within blocks
of memory created by the _NeivHeop calls. Thcrc is a &fault one in the startup

file).

It is also possible that your stack is overrunning your code or data. If that’s the case.
you must either relocate the stack at a different address and give it more space or
change your program structure.

Liberal uses of printf and even primitive debuggers such as BUFFALO and can be
used to pinpoint problem areas. You can also use the optional NoICE I 1 to debug
RAM based code (which after debugged, you can put into ROM).

l

Also, BUFFALO overwrites location 0x4000. Make sure your program does not
use that space, perhaps by using the linker memory range options.

1. The previous versions of the compilers use . map extension instead of .mp. However,
since the compilers now support the P&E format .map file. the extension name has been
changed.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 39

Compiler Runtime Architecture & C Programming Topics-

,

Debugging Support The compiler produces symbol table compatible with P&E debuggers.
Before startintg debugging, please refer to the chapter “Troubleshooting:
Frequently Asked Questions” ‘on common problems that users have experi-
enced. In addition to provide some source level information such as source
line number and file name, and global symbol addresses for use with
NoICEl 1. The compiler also provides:

1. A List of Local Variable Offsets

Global and static variables are allocated from the data area and show up
in the generated assembly code as symbolic labels in the data or bss sec-

tions. Thus they show up in assembly listings and linker map files and
you can find out their physical addresses in the final program. In contrast,
local variables are allocated on the stack and do not have fixed addresses.
Rather, they arc referenced usin,(7 the X index register plus an offset.

For each function, the compiler generates a list of the mapping between a
local variable and its assembly reference and inserts them as comments
in the assembly file. For example, for this C function fragment:

main(int argc. char *argv[])

(
int a, b, c;

. . .

The compiler may generate this list:

-main:: ; function entry

; argv -> 8,x

; argc -> 6.x

; a -> 2,x

point

2. Interspersed C and assembly output file.

The compiler emits C source lines interspersed with the generated assem-
bly code if the -I switch is specified. This switch also directs the driver
not to delete the assembly file once the assembler is run.

I. See ‘Troubleshooting: Frequently Asked Questions” on page 43.

.

4 0
.t

ICC11 - Cross Compilerfor MC68HCll Microcontrollers

*
Debugging

3. The linker generated listing file (.I% also controlled by the -m flag to the linker)
contains all your assembly listing (.lis) files concatenated with the final
addresses. The .map map file is a debug file compatible with P&E Microcom-
puter Inc. debug tool. You use the -g fla,u to generate the .map file. The listing
file format is compatible with the TECI ICE emulator.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 41

*
Compiler Runtime Architecture & C Programming Topics-

.

42 ICC/l - Cross Compiler for MC68HCll Microcontrollers

