
CHAPTER 3 Using the IDE ,

This chapter is a snapshot of the IDE’s online help. While WJC try to maintain
this as up to date as the online verston. the online help always contatns the
latest informatton and should be used as the prtmary reference for the IDE.

The ICC I I Integrated Development Environment (ICC I I IDE) IS a Windows
program that includes a Project Builder, a text editor. a terminal program,
plus integration with the command line comptlcr tools. The tight integration
of tools allows fast edit-compile-download development cycle of HC I I pro-
grams.

The menus are context sensitive in that operations that are not valid are dis-
abled. For example, the compiler menu is only enabled if the active window
is an editor window. The button bar buttons are always enabled but context
sensitive buttons would simply print an error on the status window if they
are not being used in the correct context.

Options

Before you use the IDE, you probably want to set options for the different ,
components of the IDE, especially for the compiler setup.

ICCII - Cross Cornpilerfor MC68HCll Microcontrollers 17

Using the IDE-

1.

2. Specifying address of the data section. If’ you leave the option blank, then
the data section simply follows the text section, which is the case if you
are testing on a RAM based system where both the code and data go into
RAM. Otherwise, specify an address for the data section which usually is
the “bottom” of your RAM.‘lj

3.

4.

Compiler Option This option tab controls the operations of the compiler. There are only a few
items that must be setup for your target before you can run programs. The
details are explained in Chapter 4. Note that hex addresses must be specified
using C notation, preceded by Ox, e.g. 0x8000. Thk easiest way is to click on
the “Setup Wizard” button on the Option->Compiler->Linker tab. This con-
tains a list of configurations that you can select, save, and modify. The
important options are:

Specifying address of the text or code section. This is either ROM or
RAM address depending on your target system.

Specify your initial stack pointer value. Usually this is the top of your
RAM.

Specify heap size. Heap is used only for dynamic memory allocation rou-
tines such as malloc() and free(). If you do not plan to use any heap
space, leave it as 0.

Specify the startup file name. The default is crtll . o. You may use differ-
ent startup files for different tarset setup. You should be able to run pro-
grams after making these changes. If you are testinp with pnntf, then you
may also need to modify the putchar function in the library.

E The compiler options are stored in a Windows .ini file or in a project file if a
project is active.

Target Option This option tab controls the operation of the Target Window, an ANSI com-
patible Terminal Emulator. Additionally. It controls:

1. COM port parameters such as COM port number and the baud’rate. This
does not affect the bootstrap programmlng baud rate.

.
2. The font for the terminal emulator.

For internal EEPROM, you can set the board echo mode to either normal
or MIT Miniboard style. You can also optionally set Bulk Erase mode.
Otherwis:, internal EEPROM bytes are erased a byte at a time if neces-
sary. Bulk Erase also causes the confl,“u register to be programmed to
OxF.5, a typical value for the ‘E2 HC I I.

18 ICC11 - Cross Conpilerfor MC68HCll Microcotlrrollers

Project Builder

You can optionally set the config register to a particular vai~e as part of the
bootload programming process by modifyin,0 the config register edit box.

Bootload programming is always done at 1200 baud, assuming the target having
a 8MHz clock.

Editor Option Editor options include:

1.

2.

3.

4.

,

Autoindent mode.

Editor font.

Print options including whether to print line number and whether to include a
print ‘margin on the left.

Syntax highlighting mode, Note that changin,‘7 this option will not cause the cur-
rent display to switch. It only affects new displays (e.g. moving around in the
editor window).

Project Builder

Typically an executable (s 19 file) is made up of multiple source files (.c and .s
files). The Project Builder manages this kind of multi-file project automatically,
including generating header file dependencies.

You may put project files in any directories but it is usually the best to have a aepa-
rate directory (or directories) to put your source and header files. The name you
give for the project file (<file>.ipj) will bc used as the name of the executable out-
put (ctile>.sl9). When you create or open a project. the Project Builder window
appears.

Project Window The project window lists all the files that are in the project. When you double click
on a file on the list. an editor window opens with that file. Use the “Add” button to
add files to the project. You may select multiple files at once with the file selector
dialog box. Use the “Remove” button to remove any selected files from your
project file list. You can use the standard Windows multiple selection methods: .
Control-mouse-click to select another file, and Shift-mouse-click to select the range
of files.

You can specify a private makefile to be included at the end of the project makefile.
This is useful if you’want to specify your own rules or include non-C or non-assem-
bly source files. You can edit the file name manually or use the “Add” button to
bring up a file open dialog box.

ICC11 - Cross Compiler for MC68HCII Microconrrollers 19

Using the IDE-

Building A Project When you request building a project, the Project Builder generates the
dependency information if necessary, creates a makefile from the project ftle
list and the current compiler opttons, and then invokes the imake utility to
“make” the project.

Note: C header file dependencies are generated only for non-system header
tiles, i.e. header files that are included via double quote syntax and not <>.
Also, C header file dependency generation understands the C preprocessor
directives and compiler options, but the assembly header file generation does
not understand assembler directives such as .if.

Terminal Window

This is where you communicate with your target system using the builtin ter-
minal emulator. The terminal emulator emulates an ANSI terminal (similar
to the DOS ANSISYS driver) so you can have your target output cursor
control directives. File capture is supported.

ASCII Download Downloading support includes simple ASCII downloading. Typically this is
for a target running a monitor such as BUFFALO. You would enter down-
load mode (for BUFFALO, type “load 1”) and use this command to transfer a
.s 19 file lo your target.

Bootstrap Mode
Programming

You can also use the terminal component to program your target using the
bootstrap programming mode of the HC I I. Refer to your target system refer-
ence on how to set the system to run in this mode. By using the bootstrap
programming mode, you can program an HC I 1 target without a monitor run-
ning on the target. Examples of some commercial HC I 1 systems that can uti-
lize use this mode are:

1.

2.

3.

MIT Miniboard, TechArts Adapt- I I Starter Kit and other ‘E2 single chip
based system. The program memory is just the internal 2K of EEPROM.

MIT Handy Boards with battery backed external RAM.

TechArts Expanded Microcontroller Kits with external X68C75
EEPROM and external normal EEPROM and RAM.

The main difference between X68C75 EEPROM and normal external
EEPROM is that the X68C75 requires the Software Data Protection (SDP)

20)
1

ICC11 - Cross Compiler for MC68HCll Microcontrollers

Editor

register to be disabled prior to programmink.7 It’ you want to use the SDP facility of

the X68C75, then you must re-enable this register in your applicatton code.

The bootstrap programmer only programs one type of memory for each download.
as specified in the Option->Target option tab. If you have a system with multiple
memory types (for example, a TechArts expanded kit with both external RAM and
X68C75 EEPROM), then you will have to download the pieces separately.

Bootstrap programming is a two step process: first a small bootload program IS

loaded into the internal RAM at 1200 baud, then the application program is loaded
by the bootload program at 9600 baud. Currently I[only supports bootstrap mode at
1200 baud, thus assuming an 8MHz target. It supports fixed length bootload code
such as for the A series and variable length bootload code such as for ‘EO.

Note that the HC I I variants that accept variable length bootload code such as the
‘EOltgvc a very tight timing constrarnt in they will assume the bootload code IS
loaded when a character does not show up In 4 character time. Due to Wmdows
multi-tasking capabrlity, sometimes II is possible that the inrtial bootstrap 15 not
successful. Simply reset your board and try agarn if this 15 the case. If the problem
persists, try to disable background tasks, especially virtual DOS boxes in your Win-
dows environment.

The IDE verifies each byte as it is written so there is no need for a separate verify
function.

Editor

The editor component understands C syntax, can handle larger than 64K byte files
and contains most of the usual edit control.

Editor Key

Ctrl+Left

Ctrl+Right

Ctrl+Up

Ctrl+Down ’

Home

.
one word left

one word right

to the beginrnnp of the paragraph

to the end of the line

to the beginnrng of the lure Y

I

ICC11 - Cross Compilerfor MC68HCll Microcontrollers 21

Using the IDE-

End to the end of’ the line

Page Up

Page Down

Ctrl+Home

page up

page down

to the beginning of the text

Ctrl+End

Ctrl+PgUp

Ctrl+PgDn

Stut’t

to the end of the text

to the beginning of the vlslble page

to the end of the visible page

When combined with previous keys (including mouse

click), expands the current selection

Insert toggles Insert / overwrlte mode

Delete deletes one character IO the right or the selected text

BkSp deletes one character to the left or the selected text

Miscellaneous
Features

The editor supports the Wtndows standard cut / copy / paste, search and
replace, up to 5 bookmarks. multiple levels of undo and redo, automatic con-
version of Unix ASCII file format (single lincfccd for line termination) to
MS-DOS ASCII format (carriage return followed by linefced for line termi-
nation), goto line command etc. You can also compile or print an opened
file.

Double clicking an error message with the format:

!E <filenamc>(cline #>): . . .

brings up an editor with the file loaded and the cursor pointing at the offend-
ing line.

Double clicking a tile name in the Project Window’s file list,also brings up
the file in an editor window.

.

2 2 ICC1 I - Cross Corn~iler for MC68HCll Microcontrollers

CHAPTER 4 Customizing The Compiler

Since the ICC1 I compiler does not assume any particular target system con-
figuration, you must first customize the compiler hcfore you can use it. The
steps arc as follows:

1. Customize the linker by specifying the locations where you want to put
the code (text) and data sections (c.g. where your system’s ROM and
RAM are), how big the heap is, and where the stack pointer is. This can
be done by invoking the “Setup Wizard” in the IDE’s Option-Xompilcr-
>Linker tab and choosing a configuration that most closely matches
yours.

2. Additional complications exist for the HC I I ‘Fl since the memory selec-
tion logic may need to be setup. This can be done in _HCI ISetup with
the caveat that the first instruction of crtl I .s initializes the stack pointer
and the stack region may not be visible yet! In this case, you’ll have to set
the stack pointer to the top of the internal RAM. calls _HC 1 I Setup, and
then set the stack pointer to the normal value afterward.

3. [optional] If your target system needs to perform special functions (suci
as remapping the IO registers) in the first 64 cycles, you can put the code
in the function _HC I I Setup() and put in the library 1 ibc 11 . a.

4. [optional] Change the header file hell . h where it specifies the base
address of the internal IO registers and the register names.

S. [optional] Create character IO (input / output) routines.

ICC11 - Cross Compilerfor MC68HCll Microcontrollers 23

Customizing The Compiler-

6. [optional] Setup the interrupt vectors.

Runtime Startup File The linker automatically links tn the start-up object file crtll . o before
user specified files’ to generate the executable (It also includes the obJect file
end11 . o and the library file libcll . a after the user input files, but
end11 . o should not need any changes). Thus the entry point of your pro-
gram is the beginning of cr t 11. o, defined by the symbol -start. You can
specify a different startup file by using the lanker -u flag, or IDE’s Option-
Kompiler->Linkcr->“Startup File” edit box. You may want to use different
startup files if you have multiple target boards.

The start-up code performs the following tasks:

1.

I

2.

3.

4.

5.

Inttializes the bss sectton’ to zeroes.

Initializes the stack pointer. The value of the stack pointer is specified x

a linker symbol.

Copies the initialized data from “tdata” scctton to “data” section.

If requested, initializes dynamic memory allocation space after the BSS
section.

Jumps to the user main0 routine.

The stack pointer is set up via this instruction:

Ids #init_sp

You should define the value of init_sp in your linker command option or in
IDE’s Option-Kompiler->Linker:

-dinit_sp:Ox7FFF

A common practice is to put the global data at the bottom of your RAM, and
your stack at the top of your RAM. Since the stack grows downward. this
convention gives the most space to the stack.

I. Specifying the -R switch to the linker disables automatic linking of these files
with your program. This is useful for creating standalone library ROM S.

2. The bss section is where the uninitialized global C variables reside. By ANSI C
definition, they will get initialized to zeroes at program startup time.

24 ICC11 - Cross Corr;piler for MC68HCIl Microcontrollers

Since different target configurations may use different chip selects or have different
hardware setup, you can have multiple start-up files in addition to the default
crtll. o. You use the -u <startup file> option or the IDE Option->Compiler-
>Linker->“Startup File” to select a non-default start-up file.

Crtll . o calls the function _HCI lSetup() after the stack pointer is set up. The
default version in the library libcll . a does nothing but simply returns. If your
system needs initialization code to be performed during the first 64 cycles after
reset, then you can replace this library function with your own.

Dynamic memory allocation heap is controlled by the symbol hcap_stze. If it is
non-zero, then crtll . o calls the heap setup routine _NewHeap to inttialize that
amount of space after the BSS section for use by the memory allocation functions.
You should define the value of heap-size in your linhcr command option or m the
IDE’s Option->Compiler->Linker:

-dheap_size:2000

Note that the call in the start-up file is thcrc and thus the code for -NewHeap will
still be linked into your program and take up code space even if you define
heap-size to be zero. To reclaim the space. you must manually delete the call to
_NewHeap in the start-up file and rccompilc it. This is cspccially useful for limited
memory targets such as the HC I I ‘E? with just the intcrnul 2K EEPROM for pro-
gram storage.

If you modify the start-up .s file, ctvcncratc a new .o and place it into the library
directory. For example:

ice I I -c crts I I .s

copy crts I I .o c:\icc\lib

Link Addresses The compiler allows you to place sections’ at different memory addresses. You can
specify where the text section starts by giving the -b (base) switch to the linker. The
default is 0. For example, specifying

.
-btext:Ox8000

I. By default. the compiler puts code in the “text” section. and global data in the “data” sec-
tion. You can also use absolute section: sections with explicn addresses in them. See the
chapter on Linker for more details on sections.

ICC11 - Cross Compilerfor MC68HCll Microcotttrollers 25

Customizing The Compiler-

to the linker means “place the text section at address 0x8000.” YOU can spec-
ify the data section start address like this

-bdata:Ox2000

This puts the data section at address 0x2000. The complete syntax is very
flexible, allowing you to specify memory ranges, which may be useful if you
have discontiguous memory devices. Note that the linker does not give you a
warning if the sections overlap, and you must ensure that this situation does
not occur. Similarly, the bss section normally starts at the end of the data sec-
tion, but you may specify a starting address for the bss section with the -b
switch to the linker.

If you are using the IDE, you can specify the section addresses by choosing
“Option->Compiler->Linker.” If you arc not using the IDE. you can specify
the -h switches in the ICCll_LINKER_OPTS, usually set in the
iccllset.bat file.

in a ROM based system, you probably would give text and data sections sep-
arate addresses, putting them into ROM and RAM respectively. In a RAM
based system, you probably would just specify the address for the text sec-
tion, and let the data section begins where the text section ends. This is the
default behavior if you don’t specify a starting address for the data section.

26.
>

ICC11 - Cross Compiler for MC68HCll Microcontrollers

_HCllSetup() If you need to perform some target specific configuration in the early part of your
program after reset, you may do so by putting the code in the function
_HCI lSetup() and replacing it into the library. The assembly name is
_HC 1 I Setup (two underscores) and the symbol must be’made global:

_HC I I Setup::

; whatever

rts

The assembly file name must be named setup. s. After assembling it, YOU replace
it into the library by using the librarian:

ilib -a libc I I .a setup.0

Hb1l.H The file HC I I .h contains the addresses of the internal registers. If you wish to use
the file, you must adjust the value IO-BASE if it is not at the default address 01
Ox 1000. You may also need to add more entries for other variants of the target pro-
cessors. It also defines enum for baud rate for a system with 8 MHz system clock.

Character IO Routine If you wish to use any of the library output functtons such as printf(), you must
implcmcnt the function putchar which writes out one character. The supplied rou-
tines putchar and pctchar() arc in the file iochar _ o. They use the SC1 port in
polling mode. If your IO system uses some other method (e.g. you want to ouput to
a LCD device) or 11' the IO base is not at the default address, you will need to make
the modificatmns and then compile iochar . c and replace them Into the library:

ilib -a libc I I .a iochar.0

Call the function sctbaud() if your application needs to set up the SCI. This is usu-
ally the case unless your program is runntng under something like BUFFALO
where it inittalizes the SC1 port:

setbaud(BAUD9600)

This function initializes the SC1 to the specified baud rate and enables the transmit-
ter and receiver functions of the SCI. The baud rate is specified as a C enum which
is defined in hell . h also. It assumes the default system clock so if your system is
different, you will need to modify hell . h and recompile seria1.c in your library
source. If your IO registers are not at the default locations, you will need to modify
hc 11 . h and recompile seria1.c:

ilib -a libc I E.a serial.0

ICC11 - Cross Cotnpilerfor MC68HCll Microcontrollers 27

Customizing The Compiler-

Interrupt Vectors The file vectrsll . c in the example directory contains the table of inter-
rupt vectors. If you are putting your code in a ROM-based system (i.e. run-
ning without a monitor on the target), then you will need to use this file to
setup the interrupt vectors. The file uses a C pragma to force loading of the
vectors at the vector address. If your system moves the vectors somewhere
else, you should modify this address. To use this file, you either create a
multiple file project and include vectrsll . c as one of the project files
(the IDE makes it easy to set up multiple file project), or you can simply
“#include” this file at the bottom of you main program if you just want to use
a single source file and not wish to set up multiple file project.

Each entry in the table is stmply a functton potntcr. Therefore to put in your
own entries, declare your interrupt handler functions in vectrsll . c and
then put the names of the functions in the table entries, replacing whatever
dummy entries that are in there. The file vet trsll . c contains comments
and examples on how to do this.

Pseudo Vectors If you are using a monitor such as BUFFALO or NoICEl I. then your code is
in RAM and these monitdrs usually provide a set of pseudo vectors mirror-
ing the real vectors. For example, BUFFALO uses pseudo vectors at OxC4 to
OxFF. Unlike the real interrupt vector entry, each BUFFALO’s psuedo vector
entry is 3 bytes long, the first byte being the instruction “JMP” and the last
two bytes being the address of the interrupt routine for that interrupt. Since
they are in RAM, you should modify them at runtime, typically early in your
main0 function. For example,

void toc5_handler() ;

main0

(
. . . .

*(unsigned char *)Oxd3 = Ox7E; /* 7E is “jmp” */

*(void (**)())Oxd4 = toc5_handler;

This will setup toc5_handler to handle the Timer Output Compare 5 inter-
rupts under BUFFALO. Normally you would need to use the “#pragma
interrupt-handler ,..” statement to declare a function as an interrupt handler.
See “Interrupt Routines” on page 36.

28 ICC11 - Cross Compilerfor MC68HCll Microcontrollers

Examples of Customizing of ICC11 System

Examples of Customizing of ICC11 System

The IDE’s Option->Compiler->Linker->“Setup Wizard ” contains setup informa-

tion for many of the popular HC I I boards. Below is a sample:

Generic Single Chip
Mode System

Since the HCll has on chip ROM, RAM, and EEPROM. a minimal system consists
of just the chip running in single chip mode. In this example, we will assume you
are using an HC8 I 1 E2. The HC I I E2 has:

. 2K bytes of EEPROM at OxF800, relocatable to the top of any 4K memory

page.

l 256 bytes of RAM starting 0x0000.

In this example, we will put the code in the EEPROM, data and stack in RAM. We
will need to compile vectorsc:

cd \icc I I\examples

ice I I -c vectors.c

copy vectorso <my prog dir>

Next we change the ICCll_LINKER_OPTS environment variable to the fol-
‘lowing: (all in one line)

set ICC1 l_LINKER_OPIS=-btext:OxFSOO -bdata:OxO -dinit_sp:OxFF -
dheap_size:O

If you plan to USC other interrupts, you will need to add them to the
interrupt-vectors entries. The initial stack pointer is set to OxFF, the top of internal
RAM.

Since there are only 256 bytes of RAM for both the data and stack, the program
must not use too much stack space (e.g., allocatin,0 large amount of local variables
or performing many levels of function calls) or data space (e.g., global variables).
We probably do not want to do dynamic memory allocation in this setup due to _
small amount of RAM; therefore we the heap-size symbol is set to 0.

Note that if you use a program to download the internal EEPROM, be aware that it
cannot download data to RAM. Therefore you should not have any initialized glo-
bal data.

Finally compile your fite (say foot) and link with vectors.0:

ICC11 - Cross Compiler for MC68HCll Microcontrollers 29

Customizing The Compiler-

ice 11 fo0.c vectors.0

Generic Expanded
Mode System with
BUFFALO

In this example, we will assume you have an HCI I system with 32K bytes
of external RAM starting at address 0x0000 and internal BUFFALO ROM.
Program download and execution is done through BUFFALO. We will not
be using vect0rs.c in this case since BUFFALO controls the interrupt vec-
tors.

Since the on-chip RAM and registers have priority over the external RAM,
we will not be able to access the external RAM at addresses where they con-
flict with the internal resources (e.g., 256 bytes at address 0x0, and 64 bytes
at Ox 1000). We will therefore set our code section to start at Ox 1800, with the
data and bss sections following the code section, and the stack starting at the
end of external RAM at Ox7FFF and growing downward. First change the
definition for the environment variable ICCll_LINKER_OPTS. Since
BUFFALO overwrites location 0x4000, that location should not be used:

set ICC I I _LINKER_OFTS=-
btext:Ox 1800.0x3FFF:()x4002.0x7FFF -dinit_sp:Ox7FFF -
dheap_size:O

NOW we can compile and download programs with BUFFALO.

30 ICC1 I - Cross Compiler for MC68HCll Microcontrollers

