
&L

CHAPTER 11

I ,

Make

Introduction I

A typical program consists of ob.jcct files from multiple source files. It is
tedious and error-prone to manually compile and link the fiics togcthcr. and
especially to remember which files wcrc changed. Also. if a header file
changes, then you will have to recompile all source files that include the
header tile. By using imake and makcfilc. you Ict imake handles all this ’
details for you. Imake is a make utility for managing dependencies between
a set of files. You create a description file that describes the dcpcndcncies
between the set of files in a program, and invoke imake to compiic files that
have changed or compile files that include a header file that has changed
since the last time the program was built.

The IDE’s Project Builder makes this even easier by generating the makefile’
and dependencies for you automatically. This chapter is only for those who
want to write their own makefiles, or those who are not usrng the IDE.*

Imake reads an input file containing a listing of dependencies between files
and associated rules to maintain the dependencies. The format is generally a
target fike name, followed by a list of files that it is dependent upon, followed
by a set of commands to be used to recreate the target from the dependents.
Each dependent is in its own right a target, and so the maintenance of each

ICC11 - Cross Compilerfor MC68HCll Microcontrollers 67

Make- ~

dependent is performed recursively, before attempting to maintain the cur-
rent target. If after processing its all of its dependencies, a target he is found
either to be mtssing, or to be older than any of its dependency files. imakc
uses the supplied commands or an implicit rule to rcbutld tt.

The input file defaults to “makefile,” but you may override it with a com-
mand line optton -f <filename>.

If no target is specified on the command line. imake uses the first target
defined in makcfilc.

Examples of Using imake

You may use the file sample. mak in the examples directory as a starting
point for writing your own rnakefilc. It looks something like this

you can create the ice I I .opt file by ustng, the IDE

Option->Compiler->SaveToDisk command. Its contents

look somethmg like this:

#

#CFLAGS = -c -Id:\icc I I\include

#LFLAGS = -btext:Ox I800 -Ifp -Ld:\icc I I\lib

#.SUFFIXES: .c .o .s .s19

#.c.o:

ice I I

$(CFLAGS) $<

.RESPONSE:

iccll

include ice I I .opt

FILES = foo.o bar.0 # list of files, replace with your list

a l l : $(FILES)

ice I I -0 myprog $(LFLAGS) QFILES)

the above creates a myprog.s I9

68 ’ ICC11 - Cross Compiler for MC68HCll Microcontrollers

Using the description tile ‘makefile’.

If you are using the IDE, set up your compiler options and then create the
iccll . opt file by using “Option->Compiler->SaveToDisk” command. Other-
wise, uncomment the lines starting with “CFLAGS” down to the line above
“include” and delete the “include” line. You will need to make changes to CFLAGS
and LFLAGS (although the content of LFLAGS can also bc set by using the
ICCll_LINKER_OPTS variable).

All you need is to replace the list of files in the “FILES” variable and change the
name of the output file. By using a makefile, you can modify any file in the file list
and iimake will recompile any changed file for you. You can even setup imake to
compile a source file if a dependency header file changes. For example, you may
specify that a source file includes a header file so if that header file changes. the
source file should be recompiled:

, foo.0: header.h

The rest of this chapter describes how Imakc works in detail.

Using the description file ‘makefile’.

When more than one -f <filename> argument pair appears, imake uses the concatc-
nation of those tiles, in order of appearance.

Rule DerivaJion
*

If ;1 target has no makefile entry, or if its entry has no rule. imake attempts to derive
a rule by each of the following methods:

implicit rules, read in from a user-supplied makefile.

standard implicit rules typically read in from the file default .mk.

the rule from the .DEFAULT: entry target, if there is such an entry in the make-

file.

If there is no makefile entry for a target, and no rule can he derived for bullding it.’
and if no file by that name is present. imake issues an error me%qe and stops.

Startup Processing When imake first st$rts, it reads the env$nment setting of MAKEFLAGS and
scans all present options. Then it reads the command line for a list of options, after
which it reads in a default makefile that typically contains predefined macro defini-
tions and target entries fdr implicit rules. If present, imake uses the file

ICC11 - Cross Compiler for MC68HClI Microcontrollers 69

Make-

default .mk in the current directory. Othcrwisc it looks for this file along
the search path.

Finally, imakc reads in all macro definitions from the command line. These
override macro definitions in the makefile.

makejile Components

The makefile may contain a mixture of comment lines, macro definitions,
include lines, and target lines. Lines may be continued across input lines by
escaping the NEWLINE with a backslash ‘\‘.

*

Comment

Include

Macro

A comment line is any lint whose first non-space character is a ‘#‘. The
comment ends at the next unescaped NEWLINE.

An include line is used to include the text of another makefile. The first
seven letters of the line is the word “include” followed by a space. The string
that follows is taken as a filename (without double quotes) to include at this
line.

If you are using the IDE, you may save the compiler settings that you set in
the IDE “Option-Sompiler” page in a file so that you can use the same
options in your makefile.

A macro definition line has the form of ‘WORD=text...‘. The word to the left
of the equal sign (without surrounding white space) IS the macro name. Text
to the right is the value of the macro. Leading white space between the = and
the first word of the value is ignored. A word break following the = is
implied. Trailing white space (up to but not including a comment character)
is included in the value.

Macros are referenced with a $, The following character, or the parenthe-
sized () or bracketed () string, is interpreted as a macro reference. imake
expands the reference (including the $) by replacing it with the macro’s
value, If a macro contains another macro, the interior one is expanded first.
Note that this may lead to infinite expansion, if a macro references itself.

70 ICC11 - Cross Compilerfor MC68HCll Microcmtrollers

4

makefile Components

Predefined Macros The MAKE macro is special. It has the value “imakc” by default, and temporarily

overrides the -n option (which means no executron mode: i.e. commands are
printed but not executed) for any line in which it is referred to. This allows nested
invocations of imake written as:

$(MAKE) . .

to run recursively, with the -n flag in effect for all commands hut imake.

There are several dynamically maintained macros that arc useful as abbreviations
within rules. They arc shown here as references; it is best not to define them explic-
itly.

l $* refers to the basename of the current target, derived as if selected for use with
an implicit rule.

l $< rcfcrs to the name of a dependency file, derived as if sciccted for USC with an
implicit rule.

l $6) refers to the name of the current target.

Bccausc imakc assigns $< and $* as it would for implicit rules (according to the
suffixes list and the directory contents), they may be unreliable when used within
explicit target entries.

A line of the form ‘WORD += text...’ IS used to append the given text to the end ot
a macro. The += must be surrounded by white space.

Target Rule A target entry in the makefile has the following format:

target: dependency...

rule

The first line contains the name of a target, or a list of target names separated by
white space. This may be followed by a dependency, or a dependency list that
imake checks in order. Subsequent lines in the target entry begin with a space or
TAB, and contain shell commands. These commands comprise a rule for buildtng
the target.

If a target is named in more than one colon-terminated target entry, the dependen-
cies and rules’are added to form the target’s complete dependency list and rule I$

ICC11 - Cross Compiler for MC68HCll Microcontrollers 71\

Make-

.

,

To rebuild a target, imake expands macros, strips off initial TABS, and
passes each command line to a shell for execution. The first line that does
not begin with a space, TAB or # begins another target or macro definition.
Macros are expanded during input, for target lines. All other lines have
macro expansion delayed until absolutely required.

Special Targets When used in a makefile, the following target names perform special-func,-
tions. Many of them act as commands to imake.

.DEFAULT

The rule for this target is used to process a target when there is no other
entry for it, and no rule for building it. imake ignores any dependencies
for this target.

.DONE

imake processes this target and its dependencies after all other targets arc
b u i l t .

.IGNORE

imake ignores non-zero error codes returned from commands.

.INIT

This target and its dependencies are built before any other targets are pro-
cessed.

.SILENT

imake does not echo commands before executing them.

SUFFIXES

This denotes the suffixes list for selecting implicit rules.

.RESPONSE

indicates that the following command can take a response file (i.e. @-
file) if the command gets too long. For example,

.RESPONSE:

ilink
l

says that if a command line for ilink gets too long, then imake will put the
command line into a temporary file and use the @-file option with these
commands.

72 ICC1 I - Cross Compiler for MC68HClI Microcorltrollers

maketile Components

Rule When processing rules, the first non-space character may imply special handling.
Lines begmning with the follow%(7 special characters are handled as follows:

l

.

imake ignores any nonzero error code. Normally, imake terminates when a com-
mand returns a nonzero status, unless the -i option or the .IGNORE target is

used.

@

imake does not print the command line before executing it. Normally. each line
is displayed before bein,(7 executed. unless the -s option or the SILENT target is
used.

When any combination of - or @ appear as the first characters after the spaces or
TABS, all apply. None arc passed to the shell.

Implicit Rules A target file rwnc is made of a bascname and a suffix. The suffix may bc null.
When a target has no explicit target entry, imake looks for an implicit target made
of an element from the suffixes list concatenated with the suffix of the target. If
such an implicit target exists. a depcndcncy file name consisting of the hascname
and the suffix from the suffix list is recursively made. If successful. the implicit rule
is invoked to build the target.

An implicit rule is a target of the form:

.DsTs:

rule

where .Ts is the suffix of the target. .Ds is the suffix of the dependency file. and
‘rule’ is the implicit rule for building such a target from such a dcpcndcncy file.

The Suffix List The suffix list is given as the list of dependencies for the .SUFFIXES: speclal-func-
tion target. The default list is contained in the SUFFIXES macro. You can define
additional SUFFIXES: targets; a SUFFIXES target with no dependencies clears-
the list of suffixes. Order IS significant within the list; imake selects a rule that cor-
responds to the target’s suffix and the first dependency-file suffix found in the list.
To place suffixes at the head of the list, clear the list and replace tt with the new suf-
fixes, followed by, the default list:

.SUFFIXES:

.SUFFIXES: suffixes $(SUFFIXES)

~~
ICC11 - Cross Compiler for MC68HCll Microcontrollers 73

Make-

Examples

This makefile says that pgm.exe depends on two files 11.0 and ho, and that
they in turn depend on their corresponding source files (a.c and b.c) along

with a common file inc1.h:

pgm.exe: a.0 b.o

$(CC) a.0 b.0 -0 $0
XO: inc1.h a.c

$(CC) -c a.c

b.o: inc1.h b.c ’

$(CC) -c b.c

The following makefile uses impllcit rules to express the same depcndcn-
CICS:

pgm.cxc: 3.0 b.o

$(CC) a.0 b.o -0 pgm.exc

a.0 b.o: inc1.h

l

74 ‘ ICC11 - Cross Compiler for MC68HClI Microcontrollers

Cornpit& and Utilities Command Line Options-

ICCllIDE - Windows Integrated
Development Environment

Parameters to a Windows program such as ICC I I IDE can be set by modify-
ing the “properties” of the program icon.

Format:

ice I I ide <ini file directory>

Normally ICC I I IDE uses iccll . ini in your Windows directory to store
option settings (or the project file if a project is active). Thts dots not work
well if the Wtndows directory is write-protected such as in a network envi-
ronment. You may specify an arbitrary directory where the IDE stores the ini
file as a parameter to the program.

The setup configuration file iccllwiz. ini IS normally stored in the
* directory where the IDE resides (e.g. c:\rcc\bin). If you specify a parameter

to the IDE, then that directory is used instead.

.

.

76 ICC/l - Cross Compiler for MC68HCll Microcontrollers

ICC11 - Compiler Driver

ICC11 - Compiler Driver

You usually only interact with the compiler driver and do not need to UK the other
tools individually when you are compiling. The compiler driver takes your input
files and processes them &cording to your specified options. the default options,
and the input file types. Some options are passed to the compiler passes directly,
such as the -D switch to define macro names. In any case, you can pass any option
you want to a parttcular compiler pass by using the -W option.

If any of the passes returns a failure code, the compiler driver aborts with the sub-

program failure code.

You may request the compilation process to stop after a particular pass. For exam-
plc, -S means compile to assembly only.

Unknown options and file types are passed directly to the linker.

Format:

ice I I [options] file I filc2 . . .

The following options arc recognized. Unrecognized opttons are passed to the
linker.

-A Warn about function declarations without prototypes, and other non-conform-
ance with strict ANSI C rcquircmcnts.

-c Produce object files only. Do not link.

-D<name>(<=def>]

Define a preprocessor macro name. If no definition is given, then the value I is
implied. For example,

iccl I -Dfoo=bar -Dbaz foo.c

is the same as writing

#define foo bar
I ,’

#define baz 1

in the source file.

-E Preprocess the input C files only. Do not compile, assemble or link. The gener-
ated output has the same name as the input C file but with a .i extension.

-e Turn on the preprocessor extension which accepts C++ style comments.

ICC11 - Cross Compiler for MC68HCll Microcontrollers 77

Compiler and Utilities Command Line Options-

-g Produce debugging information for NoICE I. -1Includc path. The pre-
processor uses include paths to search for system include files (ones that
are enclosed in c and >). You may supply multiple -I options. In addition.
the preprocessor searches the directory specified by the environment
variable ICCll_INCLUDE after these paths.

-I Emit interspersed C and assembly code. Implies -g.

-I<f>

Link in the library file lib<f>.a. For example, use -IfpI I to include the
floating point capable printf function,

-L<dir>

-0

-P

-R

-S

-s

Specify the directory in which to search for the Itbrary files, crt I I .o and
end I 1 .o.

<file>

Name the output executable S record file. The executable has the default
extension .s 19 (or .ihx).

Generate function declarations with prototypes from the input Lyle This
is useful when the input file uses old style K&R function declarations
without prototypes and you wish to convert the file to strict ANSI C con-
formance.

Do not link tn startup file crt I I .o and end I I .o.

Be silent. By default. if you spcctfy more than one input file. the driver
prints out each file name as it is processed.

Produce assembly files only. Do not assemble or link.

-U<name>

- V

-w

ice I 1 -Ufoo

is the same as writing

#undef foo

in the source file.

Be verbose. Print out the command lines used to invoke the other passes
and print out version information. If you specify -v.more than once, then

it prints the commands but does not actually execute them.

Suppress warning diagnostics such as unreferenced variables.

-W<passXarg> ,

Undefine a preprocessor macro name, For cxamplc

78
,b

ICC11 - Cross Compilerfor MC68HCll Microcontrollers

a

ICC11 - Compiler Driver

Pass an argument to a particular compiler pass. <pass> must be p, f. a. or 1;
referring to the preprocessor (icpp), the parser and code generator (iccom 1 I).
the assembler (ias I I), and the linker (ilink) respectively. <arg> is passed
directly to the compiler so you will need to specify the switch character ‘-’ if it
is a switch option. For example:

ice II -WI-m fo0.c

passes the -m swatch to the linker.

.

ICC.11 - Cross Compiler for MC68HClI Microcontrollers 79
”

-
Compiler and Utilities Command Line Options-

,

ICPP - C Macro Preprocessor
The preprocessor reads the input file, processes the macro preprocessor
directives in the tile, and writes the output.

Format:

iw [options] <input file> [<output file> 1

The input file usually has a .c extension and the output file has an .i extcn-
sion. The following are the valid options. If no output file is specified, then
the prcproccsscd text is written to standard output.

-I I

, Assume an HC I I target. Use the ICC1 I specific environment vartables
and files. If spcctfied, this must be the first argument to ~cpp. The default
is to USC ICC 1 I environment variables.

-D<nanioj<=dcf>)

Dcfinc a prcproccssor macro name. If no dcfinmon IS given. then the

-E

-e

-I

value I IS implied. For example.

~cpp -Dfoo=bnr -Dba~ foo.c

is the same as writing

#define foo bar

#define haL I

in the source file.

Ignore errors and return success status except when files cannot hc wrtt-
ten.

Turn on the preprocessor extension which accepts C++ style comments.

Include path. The preprocessor uses include paths to search for system
include files (ones that are enclosed In < and >). YOU may supply multi-
ple -I options. In addition, the preprocessor searches the directory speci-
fied by the environment

-U<name> Undefine a preprocessor macro name. For example

icpp -Ufoo

c

is the same as writing

#undef foo

in the source file.

80 ” ICC1 I - Cross Compiler for MC68HCll Microcontrollers

ICCOMll - Compiler Parser and Code Generator

ICCOMll - Compiler Parser and Code
Generator

This is the main piece of the compiler system. It takes a preprocessed C input file
and generates an assembly output file. The compiler accepts ANSI C language and
not the older K & R style C.

Format:

tccoml 1 [options] <input file> [<output file>]

Typically, the input file has a .i cxtcnsion and the output has a .s extension. If you
do not specify an output file, then the output is written to standard output. Note that
if a C program does not have any prcproccssor directive, you may pass it to
iccom I I directly.

The valid options arc.

-A Warn about function declarations wrthout prototypes, and other non-contorm-
ancc with strict ANSI C rcquircments.

-data:<name>

Use <name instead of “data” for the name of the data section. Note: data not
put in the “data” data section will not get intialized by the startup code.

-e<number>

-e

-I

-P

Set the error limit. The compiler aborts when the number of errors reaches the
error limit. The default is 20.

Produce debugging information. Emit P&E compatible debug map file and
other debugging information.

Emit interspersed C and assembly code, The source file must have a .c cxten-
sion.

Generate function declarations with prototypes from the input file,.This is useful
when the input file uses old style K&R function declarations without prototypes
and you wish to convert the file to strict ANSI C conformance. z

-text:<name>

Use <name> instead of “text” for the name of the text section.

-w Suppress warning diagnostics such as unreferenced variables.

ICC1 I - CA Compiler for MC68HCll Microcontrollers 81

Compiler and Utilities Command Line Options-

IAS6811 - Assembler

The assembler processes an assembly file as input and produces a relocatable
object file as output. Assembler directives include condittonals and inclusion
of other files. The assembler also generates a listmg file (.lis) with the
assembly code and the relative code address. Use the lanker option -m to
generate a full listing with final addresses.

Format:

ias I I [options] <input file>

The options arc:

-o<file>

Specify the name of the output file. The default is the base name of the
input with a .o extension.

c

ICC11 - Cross Contpilerfor MC68HCll Microcontrollers
/

ILINK - Linker

-/

ILINK - Linker
-_--

Ilink combines object files together to form an executable image. It automatically
includes the start-up file crtll . o, end11 , o and the library file libcll . a.
The linker searches library files last after the object files are processed, so you may
place a library anywhere on the link command line.

You may either use the -L flag or the environment variable ICC-LIB to specify
where the start-up and the library files are. You may also put linker command line
options in the environment variable ICCll_LINKER_OPTS. For example,

set ICC I I_LINKER_OPTS=-btext:Ox8000 -bdata:Ox2000

Options contained in the environment variable are read before the options specified
in the command line.

Format:

ilink [options] <filcl> <filc2> ..~

Valtd options are:

-II * \

Assume an HC I I target, Use the ICC I I specific envtronment variables and
files. If specified, this must be the first argument to tlink. The default is to use
ICC 1 I environment variables.

-btext:<start addrcss>[.end address][:<start address>[.<end address>]]*

Set the address ranges of the text section. Default IS 0 to OxFFFF.

-bdata:<start address>[.end address][:<start address>[.<end address>]]*

Set the address ranges of the data sectton. Default is immediately after the text
section to OxFFFF.

-b<section name>:<start address>[.end address]]:<start address>[.<end .
address>]]*

Set the address ranges of the named section. Default is immediately after the Ias,
section encountered.

-d<symbol>:<value>

Define a linker symbol which can be used to satisfy a unresolved reference or as
a value for defining a section (-b flag) address.

-g Generate a *map file for use with P&E Microcomputer compatible debugger.
For ICC1 I, also generate a cmd file for NoICEl I.

ICC11 - Cross Compiler for MC68HCl I Microcontrollers 83

Compiler and Utilities Command Line Options-

-i Generate an Intel hex format file Instead of the default Motorola S record

file. The extension is .ihx instead of ~19. Not valid for ICC 16.

-l<f>

Link in the library tile lib<f>.a.

-L<dir>

Specify the directory in which to search for the library files. including
crt 11 .o and end.o.

-m Create a map file with a name based on the output file but with a .mp
extension and create a .Ist file from concatenated .lis files with final

addresses.

-R Do not link in startup file crt I 1 .o and end I I .o.

-O<filO

, Specify the name of the output file. which will automatically be given a
.s\9 extension unless -i is also spccificd. The default name is the base

name of the first input file name.

-s<old>:<ncw>

Treat the section named <new> as if it has the name <old>.

-u<startup tile>

Spccrfy a non-default startup file. The dct< 15 crt 1 I .O

-w Do not emit warning messages.

.

ii4 ICC1 1 - Cross Compiler for MC68HCll Microcontrollers

ILIB - Library Arkhiver

ILIB - Library Archivet

The library archiver creates and manipulates libraries of object modules.

Format:

ilib [options] <library archive> <object file I> <object file 2> .

Note that the library tile (e.g., 1ibc.a) must appear before any object files, after the
options. Valid options are:

Examples:

-a Add the object modules to the archive. Create the archive if it does not extst. It
the object module already exists in the archive, it is replaced.

-t Print the names of the object modules in the archive.

-x Extract the named object modules from the archive. This overwrttes any exist-
ing object files of the same name

-d Delete the object modules from the archtve.

To place a new-version of putchar.o into the library:

ilib -a libc I I .a putchar.

To list the contents of a library:

ilib -t libc I I .a

.

ICC11 - Cross dompiler for MC68HCll Microcontrollers 85

Compiler and Utilities Command Line Options-

IASllCVT - Converts Motorola Syntax File

Ias 1 lcvt converts a file written in Motorola assembly syntax to one in
ias I1 syntax. No manual adjustment is usually needed after the conver-
sion. The original comments are retained whenever possible.

Format:

iasl lcvt &file> [<outfile>]

The options are:

&file>

Name of the input tile

<outfile>

Name of the output file. If not specified, then the output is written to std-
out.

86 ICC1 I - Cross Compiler for MC68HCll Microcontrollers

IMAKE - Make Utility

IMAKE - Make Utility

The make utility is used to maintain, update, and regenerate groups of programs.

Format:

imake [-f filename] [options] [target . ..] [macro=value . ..]

If no makefile is specified with a-f option, make reads a file named ‘makefile’. if
it exists. If no target is specified on the command line, make uses the first target
defined in maketile. If there is no makefile entry for a target, and no rule can be
derived for butlding it, and if no file by that name is present, make issues an error
message and stops.

-f <makefile>c

Use the description file ‘makefile’. A - as the makefile argument denotes the
standard input. The contents of ‘makcfile’, when present, override the standard
set of implicit rules and prcdcfincd macros. When more than one -f maketilc
argument pair appears, make uses the concatenation of those files, in order of

Lappearance.

-d Display the reasons why make chooses to rebuild a target: make displays any
and all dependencies that are newer.

-F Force all target updates. Build target and all dependencies even when no update
is needed according to file time/date.

-i Ignore error codes returned by commands. Equivalent to the special-function
target .IGNORE:.

-k Abandon building the current target as soon as an error code is returned during
building. Continue with other targets.,

-n No execution mode. Print commands, but do not execute them. Even lines
beginning with an @ are printed. However, if a command line contams a refer-
ence to the $(MAKE) macro, that line is always executed.

-r Do not read in the default file (default.mk).

-s Silent mode. Do not print command lines before executing them. Equivalent to
l

the special-function target SILENT:.

-S Undo the effect of the -k option. With this switch, the -k option is undone,
which means that any error code returned by a child process during building
will halt make ,and display the error code.

-t Touch the target files (bringing them up to date) rather than performing their
rules.

ICC11 - Cross*Compiler for MC68HCll Microcontrollers 87

Compiler and Utilities Command Line Options-

-v List the current version number of make.

macro=value

Macro definition. This definition remains fixed for the make invocation.
It overrides any regular definition for the specified macro within the
maketile itself.

c

88 ICC11 - Cross Compiler for MC68HCIl Microcontrollers

