
C51 Primer 

C51 Primer
by Mike Beach, Hitex (UK) Ltd.

HTML version by
Steffen Duffner, Irena & Olaf Pfeiffer

Last modified on 03/03/96.

Click here for the Table of Contents

About The C51 Primer

If you've flicked through this publication, you may be left thinking that it is necessary to be an expert 
to produce workable programs with C51. Nothing could be further from the truth. It is perfectly 
possible to write real commercial programs with nothing more than a reasonable knowledge of the 
ANSI C language. 

However, to get the maximum performance from the 8051, knowing a few tricks is very useful. This 
is particularly true if you are working on a very cost-sensitive project where needing a bigger RAM or 
EPROM can result in an unacceptable on-cost. After all, if cost was not a consideration, we would all 
be using 80C166s and 68000s! 

Whilst the C51 Primer is really aimed at users of the Keil C51 Compiler, it is applicable in part to 
other compilers. However, some compilers do not allow such low-level access and have fewer 8051-
specific extensions. They are less likely to be used on projects where getting maximum performance 
is essential. 

The C51 Primer Will Help You 

●     Find your way around the basic 8051 architecture.
●     Make a sensible choice of memory model and special things to watch out for.
●     Locate things at specific addresses. 
●     Make best use of structures.
●     Use bit-addressable memory. 
●     Think in terms of chars rather than ints.
●     Get the best out of the various pointer types.
●     Get a modular structure into programs.

http://www.esacademy.com/automation/docs/c51primer/ (1 di 6) [09/11/01 11.02.45]

http://www.hitex.co.uk/
http://www.hitex.com/hitools/ffkeil.htm


C51 Primer 

●     Access on and off-chip ports and peripherals.
●     Deal with interrupts.
●     Use registerbanks.
●     Deal with the stack.
●     Understand RAM overlaying.
●     Interface to assembler code.
●     Use special versions like the 80C517 and 87C751.
●     Use assembler tricks in C.
●     Help the optimiser to produce the smallest, fastest code. 

The C51 Primer Will Not Help You

●     Program in ANSI C - get a good reference like Kernighan & Ritchie. 
●     Write portable code - simply use the compiler without using any extensions. 
●     Set-up each and every on-chip peripheral on all of the 90 different 8051 variants! Some are, 

however, covered in the appendices. 

This guide should be read in association with a good C reference such as Kernighan and Ritchie and is 
not meant to be a definitive work on the C language. It covers all the 8051-specific language 
extensions and those areas where the CPU architecture h as an impact on coding approach.

Contents
❍     About The C51 Primer
❍     1 Introduction
❍     2 Keil C51 Compiler Basics - The 8051 Architecture

■     2.1 8051 Memory Configurations
■     2.1.1 Physical Location Of The Memory Spaces
■     2.1.2 Possible Memory Models
■     2.1.3 Choosing The Best Memory Configuration/Model
■     2.1.4 Setting The Memory Model - #Pragma Usage

■     2.2 Local Memory Model Specification
■     2.2.1 Overview
■     2.2.2 A Point To Watch In Multi-Model Programs

❍     3 Declaring Variables And Constants
■     3.1 Constants
■     3.2 Variables

■     3.2.1 Uninitialised Variables
■     3.2.2 Initialised Variables

■     3.3 Watchdogs With Large Amounts Of Initialised Data

http://www.esacademy.com/automation/docs/c51primer/ (2 di 6) [09/11/01 11.02.45]



C51 Primer 

■     3.4 C51 Variables
■     3.4.1 Variable Types
■     3.4.2 Special Function Bits
■     3.4.3 Converting Between Types
■     3.4.4 A Non-ANSI Approach To Checking Data Type

❍     4 Program Structure And Layout
■     4.1 Modular Programming In C51
■     4.2 Accessibility Of Variables In Modular Programs
■     4.3 Building A Real Modular Program -

■     4.3.1 The Problem
■     4.3.2 Maintainable Inter-Module Links

■     4.4 Task Scheduling
■     4.4.1 8051 Applications Overview
■     4.4.2 Simple 8051 Systems
■     4.4.3 Simple Scheduling - A Partial Solution
■     4.4.4 A Pragmatic Approach

❍     5 C Language Extensions For 8051
■     5.1 Accessing 8051 On-Chip Peripherals
■     5.2 Interrupts

■     5.2.1 The Interrupt Function Type
■     5.2.2 Using C51 With Target Monitor Debuggers
■     5.2.3 Coping Interrupt Spacings Other Than 8
■     5.2.4 The Using Control

■     5.3 Interrupts, USING, Registerbanks, NOAREGS In C51
■     5.3.1 The Basic Interrupt Service Function Attribute
■     5.3.2 The absolute register addressing trick in detail
■     5.3.3 The USING Control
■     5.3.4 Notes on C51's "Stack Frame"
■     5.3.5 When To Use USING
■     5.3.6 The NOAREGS pragma
■     5.3.7 The REGISTERBANK Control Alternative To NOAREGS
■     5.3.8 Summary Of USING And REGISTERBANK
■     5.3.9 Reentrancy In C51 - The Final Solution
■     5.3.10 Summary Of Controls For Interrupt Functions
■     5.3.11 Reentrancy And Library Functions

❍     6 Pointers In C51
■     6.1 Using Pointers And Arrays In C51

■     6.1.1 Pointers In Assembler
■     6.1.2 Pointers In C51

■     6.2 Pointers To Absolute Addresses
■     6.3 Arrays And Pointers - Two Sides Of The Same Coin?

http://www.esacademy.com/automation/docs/c51primer/ (3 di 6) [09/11/01 11.02.45]



C51 Primer 

■     6.3.1 Uninitialised Arrays
■     6.3.2 Initialised Arrays
■     6.3.3 Using Arrays
■     6.3.4 Summary Of Arrays And Pointers

■     6.4 Structures
■     6.4.1 Why Use Structures?
■     6.4.2 Arrays Of Structures
■     6.4.3 Initialised Structures
■     6.4.4 Placing Structures At Absolute Addresses
■     6.4.5 Pointers To Structures
■     6.4.6 Passing Structure Pointers To Functions
■     6.4.7 Structure Pointers To Absolute Addresses

■     6.5 Unions
■     6.6 Generic Pointers
■     6.7 Spaced Pointers In C51

❍     7 Accessing External Memory Mapped
■     7.1 The XBYTE And XWORD Macros
■     7.2 Initialised XDATA Pointers
■     7.3 Run Time xdata Pointers
■     7.4 The volatile Storage Class
■     7.5 Placing Variables At Specific Locations -
■     7.6 Excluding External Data Ranges From Specific

❍     8 Linking Issues And Stack Placement
■     8.1 Basic Use Of L51 Linker
■     8.2 Stack Placement
■     8.3 Using The Top 128 Bytes of the 8052 RAM
■     8.4 L51 Linker Data RAM Overlaying

■     8.4.1 Overlaying Principles
■     8.4.2 Impact Of Overlaying On Program Construction

■     8.4.2.1 Indirect Function Calls With Function Pointers
■     8.4.2.2 Indirectly called functions solution
■     8.4.2.3 Function Jump Table Warning (Non-hazardous)
■     8.4.2.4 Function Jump Table Warning Solution
■     8.4.2.5 Multiple Call To Segment Warning (Hazardous)
■     8.4.2.6 Multiple Call To Segment Solution

■     8.4.3 Overlaying Public Variables
❍     9 Other C51 Extensions

■     9.1 Special Function Bits
■     9.2 Support For 80C517/537 32-bit Maths Unit

■     9.2.1 The MDU - How To Use It
■     9.2.2 The 8 Datapointers

http://www.esacademy.com/automation/docs/c51primer/ (4 di 6) [09/11/01 11.02.45]



C51 Primer 

■     9.2.3 80C517 - Things To Be Aware Of
■     9.3 87C751 Support

■     9.3.1 87C751 - Steps To Take
■     9.3.2 Integer Promotion

❍     10 Miscellaneous Points
■     10.1 Tying The C Program To The Restart Vector
■     10.2 Intrinsic Functions
■     10.3 EA Bit Control #pragma
■     10.4 16 Bit sfr Support
■     10.5 Function Level Optimisation
■     10.6 In-Line Functions In C51

❍     11 Some C51 Programming Tricks
■     11.1 Accessing R0 etc. directly from C51
■     11.2 Making Use Of Unused Interrupt Sources
■     11.3 Code Memory Device Switching
■     11.4 Simulating A Software Reset
■     11.5 The Compiler Preprocessor - #define

❍     12 C51 Library Functions
■     12.1 Library Function Calling
■     12.2 Memory-Model Specific Libraries

❍     13 Outputs From C51
■     13.1 Object Files
■     13.2 HEX Files For EPROM Blowing
■     13.3 Assembler Output

❍     14 Assembler Interfacing To C Programs
■     14.1 Assembler Function Example
■     14.2 Parameter Passing To Assembler Functions
■     14.3 Parameter Passing In Registers

❍     15 General Things To Be Aware Of
■     15.1
■     15.2
■     15.3
■     15.4
■     15.5
■     15.6
■     15.7 Floating Point Numbers

❍     16 Conclusion

http://www.esacademy.com/automation/docs/c51primer/ (5 di 6) [09/11/01 11.02.45]



C51 Primer 

http://www.esacademy.com/automation/docs/c51primer/ (6 di 6) [09/11/01 11.02.45]



Introduction

  

1 Introduction

C can be a rather terse and mystifying language. Widely quoted as being a high level language, C does 
indeed contain many such features like structured programming, defined procedure calling, parameter 
passing, powerful control structures etc.

However much of the power of C lies in its ability to combine simple, low-level commands into 
complicated high-level language-like functions and allow access to the actual bytes and words of the 
host processor. To a great extent then, C is a sort of universal assembly language. Most programmers 
who are familiar with C will have been used to writing programs within large machines running Unix 
or latterly MS-DOS. Even in the now cramped 640KB of MSDOS, considerable space is available so 
that the smallest variable in a program will be an int (16 bits). Most interfacing to the real world will 
be done via DOS Ints and function calls. Thus the actual C written is concerned only with the 
manipulation and processing of variables, strings, arrays etc. 

Within the modern 8 bit microcontroller, however, the situation is somewhat different. Taking the 
8051 as an example, the total program size can only occupy 4 or 8K and use only 128bytes of RAM. 
Ideally, real devices such as ports and special function registers must be addressed from C. Interrupts 
have to be serviced, which require vectors at absolute addresses. Special care must be taken with a 
routine's data memory allocation if over-writing of background loop data is to be avoided. One of the 
fundamentals of C is that parameters (input variables) are passed to a function (subroutine) and results 
returned to the caller via the stack. Thus a function can be called from both interrupts and the 
background without fear of its local data being overwritten (re-cutrancy).

A serious restriction with the 8051 family is the lack of a proper stack; typically with a processor such 
as the 8086, the stack pointer is 16 bits (at least). Besides the basic stack pointer, there are usually 
other stack relative pointers such as a base pointer etc..

With these extra demands on the stack control system, the ability to access data on the stack is crucial. 
As already indicated, the 8051 family is endowed with a stack system which is really only capable of 
handling return addresses. With only 256 bytes of stack potentially available, it would not take too 
much function-calling and parameter-passing to use this up. 

From this you might think that implementing a stack-intensive language like C on the 8051 would be 
impossible. Well, it very nearly has been! While there have been compilers around for some years 
now that have given C to 8051 users, they have not been overly effective. Most have actually been 
adapted from generic compilers originally written for more powerful micros such as the 68000. The 
approach to the stack problem has largely been through the use of artificial stacks implemented by 
using 8051 opcodes. 

http://www.esacademy.com/automation/docs/c51primer/c01.htm (1 di 3) [09/11/01 11.02.48]



Introduction

Typically, an area in external RAM is set aside as a stack; special library routines manage the new 
stack every time a function is called. While this method works and gives a re-entrant capability, the 
price has been very slow runtimes. The net effect is that the processor spends too much time executing 
the compiler's own code rather than executing your program! 

Besides the inherent inefficiency of generating a new stack, the compiled program code is not highly 
optimised to the peculiarities of the 8051. With all this overhead, the provision of banked switch 
expanded memory, controlled by IO ports, becomes almost a necessity! 

Therefore, with the 8051 in particular, the assembler approach to programming has been the only real 
alternative for small, time-critical systems. 

However, as far back as 1980, Intel produced a partial solution to the problem of allowing high-level 
language programming on its new 8051 in the shape of PLM51. This compiler was not perfect, having 
been adapted from PLM85 (8085), but Intel were realistic enough to realise that a full stack-based 
implementation of the language was simply not on. 

The solution adopted was to simply pass parameters in defined areas of memory. Thus each procedure 
has its own area of memory in which it receives parameters and passes back the results. Provided the 
passing segments are internal the calling overhead is actually quite small. 

Using external memory slows the process but is still faster than using an artificial stack. 

The drawback with this "compiled stack" approach is that re-entrancy is now not possible. This 
apparently serious omission in practice does not tend to cause a problem with typical 8051 programs. 
However the latest C51 versions do allow selective re-entrancy, so that permitting re-entrant use of a 
few critical functions does not compromise the efficiency of the whole program.

Other noteworthy considerations for C on a microcontroller are: 

1.  control of on and off-chip peripheral devices
2.  servicing of interrupts
3.  making the best use of limited instruction sets
4.  supporting different ROM/RAM configurations
5.  a very high level of optimisation to conserve code space
6.  control of registerbank switching
7.  support of enhanced or special family variants (87C751, 80C517 etc..). 

The Keil C51 compiler contains all the necessary C extensions for microcontroller use. This C 
compiler builds on the techniques pioneered by Intel but adds proper C language features such as 
floating point arithmetic, formatted/unformatted IO etc. It is, in fact, an implementation of the C 
language ANSI standard specifically for 8051 processors.

http://www.esacademy.com/automation/docs/c51primer/c01.htm (2 di 3) [09/11/01 11.02.48]



Introduction

  

http://www.esacademy.com/automation/docs/c51primer/c01.htm (3 di 3) [09/11/01 11.02.48]



Keil C51 Compiler Basics

  

2 Keil C51 Compiler Basics - The 8051 Architecture

The Keil C51 compiler has been written to allow C programmers to get code running quickly on 8051 systems 
with little or no learning curve. However, to get the best from it, some appreciation of the underlying hardware is 
desirable. The most basic decision to be made is which memory model to use. 

For general information on the C language, number and string representation, please refer to a standard C textbook 
such as K & R

2.1 8051 Memory Configurations

2.1.1 Physical Location Of The Memory Spaces

Perhaps the most initially confusing thing about the 8051 is that there are three different memory spaces, all of 
which start at the same address. 

Other microcontrollers, such as the 68HC11, have a single Von Neuman memory configuration, where memory 
areas are located at sequential addresses, regardless of in what device they physically exist. 

Within the CPU there is one such, the DATA on-chip RAM. This starts at D:00 (the 'D:' prefix implies DATA 
segment) and ends at 07fH (127 decimal). This RAM can be used for program variables. It is directly addressable, 
so that instructions like 'MOV A,x' are usable. Above 80H the special function registers are located, which are 
again directly addressable. However, a second memory area exists between 80H and 0FFH which is only indirectly 
addressable and is prefixed by I: and known as IDATA. It is only accessible via indirect addressing (MOV A,@Ri) 
and effectively overlays the directly addressable sfr area. This constitutes an extended on-chip RAM area and was 
added to the ordinary 8051 design when the 8052 appeared. As it is only indirectly addressable, it is best left for 
stack use, which is, by definition, always indirectly addressed via the stack pointer SP. Just to confuse things, the 
normal directly addressable RAM from 0-80H can also be indirectly addressed by the MOV A,@Ri instruction! 

Fig.1. - The 8051's Memory Spaces. 

http://www.esacademy.com/automation/docs/c51primer/c02.htm (1 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

A third memory space, the CODE segment, also starts at zero, but this is reserved for the program. It typically runs 
from C:0000 to C:0FFFFH (65536 bytes) but as it is held within an external EPROM, it can be any size up to 
64KB (65536 bytes). The CODE segment is accessed via the program counter (PC) for opcode fetches and by 
DPTR for data. Obviously, being ROM, only constants can be stored here.

A fourth memory area is also off-chip, starting at X:0000. This exists in an external RAM device and, like the 
C:0000 segment, can extend up to X:0FFFFH (65536 bytes). The 'X:' prefix implies the external XDATA segment. 
The 8051's only 16 bit register, the DPTR (data pointer) is used to access the XDATA. Finally, 256 bytes of 
XDATA can also be addressed in a paged mode. Here an 8 bit register (R0) is used to access this area, termed 
PDATA. 

The obvious question is: "How does the 8051 prevent an access to C:0000 resulting in data being fetched from 
D:00?"

The answer is in the 8051 hardware: When the cpu intends to access D:00, the on-chip RAM is enabled by a purely 
internal READ signal - the external /RD pin is unchanged.

    MOV   A,40      ; Put value held in location 40 into the accumulator.
                      This addressing mode (direct) is the basis of the
                      SMALL memory model. 
    MOV   R0,#0A0H  ; Put the value held in IDATA location 0A0H into
    MOV   A,@R0     ; the accumulator 

This addressing mode is used to access the indirectly addressable on-chip memory above 80H and as an alternative 
way to get at the direct memory below this address.

A variation on DATA is BDATA (bit data). This is a 16 byte (128 bit) area, starting at 020H in the direct segment. 
It is useful in that it can be both accessed byte-wise by the normal MOV instructions and addressed by special bit-
orientated intructions, as shown below: 

    SETB  20.0  ;
    CLRB  20.0  ;

The external EPROM device (C:0000) is not enabled during RAM access. In fact, the external EPROM is only 
enabled when a pin on the 8051 named the PSEN (program store enable) is pulled low. The name indicates that the 
main function of the EPROM is to hold the program. 

The XDATA RAM and CODE EPROM do not clash as the XDATA device is only active during a request from 
the 8051 pins named READ or WRITE, whereas the CODE device only responds when the PSEN pin is low. 

To help access the external XDATA RAM, special instructions exist, conveniently containing an 'X'.... 

MOV   DPTR,#08000H
MOVX  A,@DPTR       ; "Put a value in A located at address in the
                       external RAM, contained in the DPTR register (8000H)".

The above addressing mode forms the basis of the LARGE model. 

    MOVX  R0,#080H  ;  
    MOVX  A,@R0     ;

http://www.esacademy.com/automation/docs/c51primer/c02.htm (2 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

This alternative access mode to external RAM forms the basis of the COMPACT memory model. Note that if Port 
2 is attached to the upper address lines of the RAM, it can act like a manually operated "paging" control. 

The important point to remember is that the PSEN pin is active when instructions are being fetched; READ and 
WRITE are active when MOVX.... ("move external") instructions are being carried-out. 

Note that the 'X' means that the address is not within the 8051 but is contained in an external device, enabled by 
the READ and WRITE pins. 

2.1.2 Possible Memory Models

With a microcontroller like the 8051, the first decision is which memory model to use. Whereas the PC 
programmer chooses between TINY, SMALL, MEDIUM, COMPACT, LARGE and HUGE to control how the 
processor segmentation of the RAM is to be used (overcome!), the 8051 user has to decide where the program and 
data are to reside. 

C51 currently supports the following memory configurations: 

1.  ROM: currently the largest single object file that can be produced is 64K, although up to 1MB can be 
supported with the BANKED model described below. All compiler output to be directed to Eprom/ROM, 
constants, look-up tables etc., should be declared as "code".

2.  RAM: There are three memory models, SMALL, COMPACT and LARGE
3.  SMALL: all variables and parameter-passing segments will be placed in the 8051's internal memory.
4.  COMPACT: variables are stored in paged memory addressed by ports 0 and 2. Indirect addressing opcodes 

are used. On-chip registers are still used for locals and parameters. 
5.  LARGE: variables etc. are placed in external memory addressed by @DPTR. On-chip registers are still 

used for locals and parameters.
6.  BANKED: Code can occupy up to 1MB by using either CPU port pins or memory-mapped latches to page 

memory above 0xFFFF. Within each 64KB memory block a COMMON area must be set aside for C library 
code. Inter-bank function calls are possible.

See the section on BL51 for more information on the BANKED model.

A variation on these models is to use one model globally and then to force certain variables and data objects into 
other memory spaces. 

This technique is covered later.

2.1.3 Choosing The Best Memory Configuration/Model

With the four memory models, a decision has to be made as to which one to use. Single chip 8051 users may only 
use the SMALL model, unless they have an external RAM fitted which can be page addressed from Port 0 and 
optionally, Port 2, using MOVX A,@R0 addressing. 

This permits the COMPACT model. While it is possible to change the global memory model half way through a 
project, it is not recommended! 

SMALL: Total RAM 128 bytes (8051/31) 

http://www.esacademy.com/automation/docs/c51primer/c02.htm (3 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

Rather restricting in the case of 8051/31. Will support code sizes up to about 4K but a constant check must be kept 
on stack usage. The number of global variables must be kept to a minimum to allow the linker OVERLAYer to 
work to best effect. With 8052/32 versions, the manual use of the 128 byte IDATA area above 80H can allow 
applications up to about 10-12K but again the stack position must be kept in mind. 

Very large programs can be supported by the SMALL model by manually forcing large and/or slow data objects in 
to an external RAM, if fitted. Also variables which need to be viewed in real time are best located here, as dual-
ported emulators like the Hitex T51 can read their values on the fly. This approach is generally best for large, time-
critical applications, as the SMALL global model guarantees that local variables and function parameters will have 
the fastest access, while large arrays can be located off-chip.

COMPACT: Total RAM 256 bytes off-chip, 128 or 256 bytes on-chip.

Suitable for programs where, for example, the on-chip memory is applied to an operating system. The compact 
model is rarely used on its own but more usually in combination with the SMALL switch reserved for interrupt 
routines. 

COMPACT is especially useful for programs with a large number of medium speed 8 bit variables, for which the 
MOVX A,@R0 is very suitable. 

It can be useful in applications where stack usage is very high, meaning that data needs to be off-chip. Note that 
register variables are still used, so the loss of speed will not be significant in situations where only a small number 
of local variables and/or passed parameters are used.

LARGE: Total RAM up to 64KB, 128 or 256 bytes on-chip. 

Permits slow access to a very large memory space and is perhaps the easiest model to use. Again, not often used on 
its own but in combination with SMALL. As with COMPACT, register variables are still used and so efficiency 
remains reasonable.

In summary, there are five memory spaces available for data storage, each of which has particular pros and cons. 

Here are some recommendations for the best use of each: 

DATA: 128 bytes; SMALL model default location

Best For:

Frequently accessed data requiring the fastest access. Interrupt routines whose run time is critical should use 
DATA, usually by declaring the function as "SMALL". Also, background code that is frequently run and has many 
parameters to pass. If you are using re-entrant functions, the re-entrant stacks should be located here as a priority.

Worst For: 

Any variable arrays and structures of more than a few bytes. 

IDATA; Not model-dependant 

Best For: 

http://www.esacademy.com/automation/docs/c51primer/c02.htm (4 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

Fast access data arrays and structures of limited size (up to around 32 bytes each) but not totalling more than 64 or 
so bytes. As these data types require indirect addressing, they are ideally placed in the indirectly addressable area. 
It is also a good place to locate the stack, as this is by definition indirectly addressed. 

Worst For:

Large data arrays, fast access words. 

CODE: 64K bytes 

Best For: 

Constants and large lookup tables, plus opcodes, of course! 

Worst For:

Variables! 

PDATA: 256bytes; COMPACT model default area 

Best For: 

Medium speed interrupt and fast background char (8 bit) variables and moderate-sized arrays and structures. Also 
good for variables which need to be viewed in real time using an emulator.

Worst For: 

Very large data arrays and structure above 256 bytes.

Very frequently used data (in interrupts etc..).

Integer and long data.

XDATA; LARGE model default area 

Best For: 

Large variable arrays and structures (over 256 bytes)

Slow or infrequently-used background variables. Also good for variables which need to be viewed in real time 
using an emulator. 

Worst For: 

Frequently-accessed or fast interrupt variables.

2.1.4 Setting The Memory Model - #Pragma Usage

The overall memory type is selected by including the line #pragma SMALL as the first line in the C source file.

http://www.esacademy.com/automation/docs/c51primer/c02.htm (5 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

See Section 2.1.3 for details on specific variable placement. SMALL is the default model and can be used for quite 
large programs, provided that full use is made of PDATA and XDATA memory spaces for less time-critical data.

Special note on COMPACT model usage

The COMPACT model makes certain assumptions about the state of Port 2. The XDATA space is addressed by 
the DPTR instructions which place the 16 bit address on Ports 0 and 2. The COMPACT model uses R0 as a 8 bit 
pointer which places an address on port 0. Port 2 is under user control and is effectively a memory page control. 
The compiler has no information about Port 2 and unless the user has explicitly set it to a value it will be 
undefined, although generally it will be at 0xff. The linker has the job of combining XDATA and PDATA 
variables and unless told otherwise it puts the PDATA (COMPACT default space) at zero. Hence, the resulting 
COMPACT program will not work. 

It is therefore essential to set the PPAGE number in the startup.a51 file to some definite value - zero is a good 
choice. The PPAGEENABLE must be set to 1 to enable paged mode. Also, when linking, the PDATA(ADDR) 
control must be used to tell L51 where the PDATA area is, thus: 

L51 module1.obj, module2.obj to exec.abs PDATA(0)XDATA(100H) 

Note that the normal XDATA area now starts at 0x100, above the zero page used for PDATA. Failure to do this 
properly can result in very dangerous results, as data placement is at the whim of PORT2! 

2.2 Local Memory Model Specification

2.2.1 Overview

C51 version 3.20 allows memory models to be assigned to individual functions. Within a single module, functions 
can be declared as SMALL, COMPACT or LARGE thus

#pragma COMPACT 
/* A SMALL Model Function */ 
fsmall() small { 
   printf("HELLO") ;
   } 
/* A LARGE Model Function */ 
flarge() large { 
   printf("HELLO") ;
   } 
/* Caller */ 
main() { 
   fsmall() ;  // Call small func.
   flarge() ;  // Call large func. 
   } 

See pages 5-20 in the C51 reference manual for further details. 

2.2.2 A Point To Watch In Multi-Model Programs

A typical C51 program might be arranged with all background loop functions compiled as COMPACT, whilst all 
(fast) interrupt functions treated as SMALL. The obvious approach of using the #pragma MODEL or command 

http://www.esacademy.com/automation/docs/c51primer/c02.htm (6 di 7) [09/11/01 11.02.56]



Keil C51 Compiler Basics

line option to set the model can cause odd side effects. The problem usually manifests itself at link time as a 
MULTIPLE PUBLIC DEFINITION error related to, for instance, putchar().

The cause is that in modules compiled as COMPACT, C51 creates references to library functions in the 
COMPACT library, whilst the SMALL modules will access the the SMALL library. When linking, L51 finds that 
it has two putchars() etc. from two different libraries. 

The solution is to stick to one global memory model and then use the SMALL function attribute, covered in the 
previous section, to set the memory model locally. 

Example:

    #pragma COMPACT
    void fast_func(void) SMALL{
    /*code*/
    }

  

http://www.esacademy.com/automation/docs/c51primer/c02.htm (7 di 7) [09/11/01 11.02.56]



Declaring Variables and Constants

  

3 Declaring Variables And Constants

3.1 Constants

The most basic requirement when writing any program is to know how to allocate storage for program data. Constants are 
the simplest; these can reside in the code (Eprom) area or as constants held in RAM and initialised at runtime. Obviously, 
the former really are constants and cannot be changed.

While the latter type are relatively commonplace on big systems (Microsoft C), in 8051 applications the code required to set 
them up is often best used elsewhere. Also, access is generally faster to ROMmed constants than RAM ones if the RAM is 
external to the chip, as ROM "MOVC A,@DPTR" instruction cycle is much faster than the RAM "MOVX A,@DPTR".

Examples of Eprommed constant data are:

    code unsigned char coolant_temp = 0x02 ;
    code unsigned char look_up table[5]='1','2','3','4''} ;
    code unsigned int  pressure = 4 ;

Note that "const" does not mean "code". Objects declared as "const" will actually end up in the data memory area 
determined by the current memory model.

Obviously, any large lookup tables should be located in the CODE area - a declaration might be:

    /* Base FuelMap    */
    
    /* x = Load : y = engine speed : output = Injector PW, 0 - 8.16ms */
    
    /* (x_size,y_size,
        x_breakpoints,
        y_breakpoints,
        map_data)    
    */
    
    code unsigned char default_base_fuel_PW_map[] = { 

                0x08,0x08,
                0x00,.0x00,0x00,0x09,0x41,0x80,0xC0,0xFF,
                0x00,0x00,0x13,0x1A,0x26,0x33,0x80,0xFF,
                0x00,0x00,0x00,0x09,0x41,0x80,0x66,0x66,
                0x00,0x00,0x00,0x09,0x41,0x80,0x66,0x66,
                0x00,0x00,0x00,0x00,0x4D,0x63,0x66,0x66,
                0x00,0x00,0x00,0x02,0x4D,0x63,0x66,0x66,
                0x00,0x00,0x00,0x05,0x4A,0x46,0x40,0x40,
                0x00,0x00,0x00,0x08,0x43,0x43,0x3D,0x3A,
                0x00,0x00,0x00,0x00,0x2D,0x4D,0x56,0x4D,
                0x00,0x00,0x00,0x00,0x21,0x56,0x6C,0x6F
    
            } ;
                

http://www.esacademy.com/automation/docs/c51primer/c03.htm (1 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

With large objects like the above it is obviously important to state a memory space. When working in the SMALL model in 
particular, it is very easy to fill up the on-chip RAM with just a single table!

RAM constants would be:

    unsigned char scale_factor = 128    ;
    unsigned int fuel_constant = 0xFD34 ;

These could, however, have their values modified during program execution. As such, they are more properly thought of as 
initialised variables - see section 3.2.2

3.2 Variables

3.2.1 Uninitialised Variables

Naturally, all variables exist in RAM, the configuration of which is given in section 2.1.1.

The #pragma SMALL line will determine the overall memory model. In this case, all variables are placed within the on-
chip RAM. However, specific variables can be forced elsewhere as follows:

    #pragma SMALL
      .
      .
      xdata unsigned char engine_speed ;
      xdata char big_variable_array[192] ;

This will have engine_speed placed in an external RAM chip. Note that no initial value is written to engine_speed, so the 
programmer must not read this before writing it with a start value! This xdata placement may be done to allow 
engine_speed to be traced "on the fly", by an in-circuit emulator for example.

In the case of the array, it would not be sensible to place this in the on-chip RAM because it would soon get filled up with 
only 128 bytes available. This is a very important point - never forget that the 8051 has very limited on-chip RAM.

Another example is:

      .
    #pragma LARGE
      .
      .
      .
      function(data unsigned char para1)
      {
      data unsigned char local_variable ;
      .
      .
      .
      .
      }

Here the passed parameters are forced into fast directly addressed internal locations to reduce the time and code overhead 
for calling the function, even though the memory model would normally force all data into XDATA.

In this case it would be better to declare the function as SMALL, even though the prevailing memory model is large. This is 

http://www.esacademy.com/automation/docs/c51primer/c03.htm (2 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

extremely useful for producing a few fast executing functions within a very big LARGE model program.

On a system using paged external RAM on Port 0, the appropriate directive is "pdata".

See notes in section 2.1.3 for details on how to best locate variables.

3.2.2 Initialised Variables

To force certain variables to a start value in an overall system setup function, for example, it is useful to be able to declare 
and initialise variables in one operation. This is performed thus:

    unsigned int engine_speed = 0 ;

    function()
      {
      .
      .
      .
      }

Here the value "0" will be written to the variable before any function can access it. To achieve this, the compiler collects 
together all such initialised variables from around the system into a summary table. A runtime function named "C_INIT" is 
called by the "startup.obj" program which writes the table values into the appropriate RAM location, thus initialising them. 

Immediately afterwards, the first C program "main()" is called. Therefore no read before write can occur, as C_INIT gets 
there first. The only point to note is that you must modify the "startup.a51" program to tell C_INIT the location and size of 
the RAM you are using. For the large model, XDATASTART and XDATALEN are the appropriate parameters to change.

3.3 Watchdogs With Large Amounts Of Initialised Data

In large programs the situation may arise that the initialisation takes longer to complete than the watchdog timeout period. 
The result is that the cpu will reset before reaching main() where presumably a watchdog refresh action would have been 
taken.

To allow for this the INIT.A51 assembler file, located in the \C51p\LIB directory, should be modified.

;__________________________________________________________;  
This file is part of the C-51 Compiler package Copyright KEIL ELEKTRONIK  GmbH 1990 
;__________________________________________________________;
INIT.A51:  This code is executed if the application program contains initialised 
variables at file level. 
; _________________________________________________________;
;  User-defined Watch-Dog Refresh. 
; 
;  If the C application containing many initialised variables uses a watchdog it 
;  might be possible that the user has to include a watchdog refresh in the 
;  initialisation process. The watchdog refresh routine can be included in the 
;  following MACRO and can alter all CPU registers except DPTR. 
; 
WATCHDOG    MACRO
            ;Include any Watchdog refresh code here
        P6 ^= watchdog_refresh  ;Special application code
        ENDM 
;____________________________________

http://www.esacademy.com/automation/docs/c51primer/c03.htm (3 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

        NAME    ?C_INIT

?C_C51STARTUP SEGMENT CODE
?C_INITSEG    SEGMENT CODE  ; Segment with Initialising Data

              EXTRN CODE (MAIN)
              PUBLIC    ?C_START
              RSEG    ?C_C51STARTUP INITEND:    LJMP    MAIN

?C_START:    
              MOV    DPTR,#?C_INITSEG

LOOP:
              WATCHDOG   ;<<_ WATCHDOG REFRESH CODE ADDED HERE!
              CLR    A
              MOV    R6,#1
              MOVC    A,@A+DPTR
              JZ    INITEND
              INC    DPTR
              MOV    R7,A
. 
. 
. 
.  Large initialisation loop code 
. 
. 
.
        XCH    A,R0
        XCH    A,R2
        XCH    A,DPH
        XCH    A,R2
        DJNZ    R7,XLoop
        DJNZ    R6,XLoop
        SJMP    Loop
        LJMP MAIN              ; C51 Program start

        RSEG    ?C_INITSEG
        DB    0
        END

A special empty macro named WATCHDOG is provided which should be altered to contain your normal watchdog refresh 
procedure. Subsequently, this is automatically inserted into each of the initialisation loops within the body of INIT.A51.

3.4 C51 Variables

3.4.1 Variable Types

Variables within a processor are represented by either bits, bytes, words or long words, corresponding to 1, 8, 16 and 32 bits 
per variable. C51 variables are similarly based, for example:

bit            =1 bit         0 - 1
char           =8 bits        0 - +/- 127
unsigned char  =8 bits        0 - 255  
int            =16 bits       0 - +/-32768
unsigned int   =16 bits       q0 - 65535

http://www.esacademy.com/automation/docs/c51primer/c03.htm (4 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

long           =32 bits       0 - +/- 2.147483648x109
unsigned long  =32 bits       0 - 4.29496795x109
float          =32 bits       +/-1.176E-38 
                              to +/-3.4E+38
pointer        =24/16/8 bits  Variable address

Typical declarations would be:
    xdata unsigned char battery_volts ;
    idata int correction_factor       ;
    bit flag_1 ;       
              

(Note: bit variables are always placed in the bit-addressable memory area of the 8051 - see section 2.1.1)

With a processor such as the 8086, int is probably the commonest data type. As this is a 16 bit processor, the handling of 16 
bit numbers is generally the most efficient. The distinction between int and unsigned int has no particular impact on the 
amount of code generated by the compiler, since it will simply use signed opcodes rather than the unsigned variety.

For the 8051, naturally enough, the char should be the most used type. Again, the programmer has to be aware of the 
thoroughly 8 bit nature of the chip. Extensive use of 16 bit variables will produce slower code, as the compiler has to use 
library routines to achieve apparently innocuous 16 by 8 divides, for example.

The use of signed numbers has to be regulated, as the 8051 does not have any signed arithmetic instructions. Again, library 
routines have to do the donkey work.

An interesting development has been the Siemens 80C537, which does have an extended arithmetic instruction set. This 
has, for instance, 32 by 16 divide and integer instructions. Indeed, this device might be a good upgrade path for those 8051 
users who need more number crunching power and who might be considering the 80C196. A suite of runtime libraries is 
available from Keil to allow the compiler to take advantage of the 80C537 enhancements.

3.4.2 Special Function Bits

A major frustration for assembler programmers coming to C is the inability of ANSI C to handle bits in the bit-addressable 
BDATA area directly. Commonly bit masks are needed when testing for specific bits with chars and ints. In C51 version 3 
however, it is possible to force data into the bit-addressable area (starting at 0x20) where the 8051's bit instructions can be 
used directly from C.

An example is testing the sign of a char by checking for bit = 1.

Here, the char is declared as "bdata" thus:

    bdata char test ;
    sign_bit is defined as:
    sbit sign ^ 7   ;

To use this:
  
void main(void) {
     test = -1 ;
     if(test & 0x80) { // Conventional bit mask and &
        test = 1 ;     // test was -ve
        }
     if(sign == 1) {   // Use sbit
        test = 1 ;     // test was -ve

http://www.esacademy.com/automation/docs/c51primer/c03.htm (5 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

        }
      }

Results in the assembler:

    RSEG  ?BA?T2 
test:            DS  1 
sign    EQU    test.7
; 
; bdata char test ; 
; sbit sign = test ^ 7 ; 
; 
; void main(void) {
main: 
;   test = -1 ;
    MOV      test,#0FFH
; 
;   if(test & 0x80) { // Conventional bit mask and &
    MOV      A,test
    JNB      ACC.7,?C0001
; 
;      test = 1 ;        // test was -ve
    MOV      test,#01H
;    } 
?C0001: 
; 
;   if(sign == 1) {      // Use sbit
    JNB      sign,?C0003
; 
;        test = 1 ;      // test was -ve
    MOV      test,#01H
;    } 
;       
;    }
?C0003:
    RET      

Here, using the sbit, the check of the sign bit is a single JNB instruction, which is an awful lot faster than using bit masks 
and &'s in the first case! The situation with ints is somewhat more complicated. The problem is that the 8051 does not store 
things as you first expect. The same sign test for an int would still require bit 7 to be tested. This is because the 8051 stores 
int's high byte at the lower address. Thus bit 7 is the highest bit of the higher byte and 15 is the highest bit of the lower. 

Byte Number: test_int(high) 20H Bit Number: 0,1,2,3,4,5,6,7 

Byte Number: test_int+1(low) 21H Bit Number: 8,9,10,11,12,13,14,15

Bit locations in an integer

3.4.3 Converting Between Types

One of the easiest mistakes to make in C is to neglect the implications of type within calculations or comparisons

Taking a simple example:

http://www.esacademy.com/automation/docs/c51primer/c03.htm (6 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

    unsigned char x ;
    unsigned char y ;
    unsigned char z ;
    
    x = 10 ;
    y = 5  ;
    
    z = x * y ;

Results in z = 50 

However:

    x = 10 ;
    y = 50 ;
    
    z = x * y ;

results in z = 244. The true answer of 500 (0x1F4) has been lost as z is unable to accommodate it. The solution is, of course, 
to make z an unsigned int. However, it is always a good idea to explicitly cast the two unsigned char operands up to int 
thus:

    unsigned char x ;
    unsigned char y ;
    unsigned int z ;

    z = (unsigned int) x * (unsigned int) y ;

While C51 will automatically promote chars to int, it is best not to rely on it! It could be argued that on any small 
microcontroller you should always be aware of exactly what size data is.

3.4.4 A Non-ANSI Approach To Checking Data Type

A very common situation is where two bytes are to be added together and the result limited to 255, i.e. the maximum byte 
value. With the 8051 being byte-orientated, incurring integers must be avoided if maximum speed is to be achieved. 
Likewise, if the sum of two numbers exceeds the type maximum the use of integers is needed.

In this example the first comparison uses a proper ANSI approach. Here, the two numbers are added byte-wise and any 
resulting carry used to form the least significant bit of the upper byte of the notional integer result. A normal integer 
compare then follows. Whilst C51 makes a good job of this, a much faster route is possible, as shown in the second case.

; #include <reg51.h>
;
;
; unsigned char x, y, z ;
;
; /*** Add two bytes together and check if ***/
; /***the result has exceeded 255 ***/ 
; 
; void main(void) {
    RSEG  ?PR?main?T
    USING    0
main:
            ; SOURCE LINE # 8

http://www.esacademy.com/automation/docs/c51primer/c03.htm (7 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

; 
;    if(((unsigned int)x + (unsigned int)y) > 0xff) {
            ; SOURCE LINE # 10
    MOV      A,x
    ADD      A,y
    MOV      R7,A
    CLR      A
    RLC      A
    MOV      R6,A
    SETB     C
    MOV      A,R7
    SUBB     A,#0FFH
    MOV      A,R6
    SUBB     A,#00H
    JC       ?C0001
; 
;       z = 0xff ;   // ANSI C version
            ; SOURCE LINE # 12

    MOV      z,#0FFH
;       }
            ; SOURCE LINE # 13

In this case the carry flag, "CY", is checked directly, removing the need to perform any integer operations, as any addition 
resulting in a value over 255 sets the carry. Of course, this is no longer ANSI C as a reference to the 8051 carry flag has 
been made.

?C0001: 
; 
;    z = x + y ;
            ; SOURCE LINE # 15
    MOV      A,x
    ADD      A,y
    MOV      z,A
; 
;    if(CY) {
            ; SOURCE LINE # 17
    JNB      CY,?C0003
;  
;       z = 0xff ;   // C51 Version using the carry flag
            ; SOURCE LINE # 19
    MOV      z,#0FFH
;       }
            ; SOURCE LINE # 20
; 
; 
;    
; 
;    }
            ; SOURCE LINE # 25
?C0003:
    RET      

http://www.esacademy.com/automation/docs/c51primer/c03.htm (8 di 9) [09/11/01 11.03.00]



Declaring Variables and Constants

The situation of an integer compare for greater than 65535 (0xffff) is even worse as long maths must be used. This is almost 
a disaster for code speed as the 8051 has very poor 32 bit performance. The trick of checking the carry flag is still valid as 
the final addition naturally involves the two upper bytes of the two integers.

In any high performance 8051 system this loss of portability is acceptable, as it allows run time targets to be met. 
Unfortunately, complete portability always compromises performance!

  

http://www.esacademy.com/automation/docs/c51primer/c03.htm (9 di 9) [09/11/01 11.03.00]



Program Structure And Layout

  

4 Program Structure And Layout

4.1 Modular Programming In C51

This is possibly not the place to make the case for modular programming, but a brief justification might be appropriate.

In anything but the most trivial programs the overall job of the software is composed of smaller tasks, all of which must be 
identified before coding can begin. As an electronic system is composed of several modules, each with a unique function, so a 
software system is built from a number of discrete tasks. In the electronic case, each module is designed and perfected 
individually and then finally assembled into a complete working machine. With software, the tasks are the building blocks 
which are brought together to achieve the final objective.

The overall program thus has a loosely-predefined modular structure which could sensibly form the basis of the final software 
layout. The largest identifiable blocks within the program are the tasks. These are in turn built from modules, which 
themselves are constructed from functions in the case of C. 

The modules are in reality individual source files, created with a text editor. Grouping the software sections together according 
to the function with which they are associated is the basis of modular programming.

Using the CEMS engine control system again as a real example, the task of running the engine is divided into the following 
tasks:

    Task 1
    Provide Timed Sparks For Ignition

    Task 2
    Provide controlled pulsewidths for fuel injection

    Task 3
    Allow alteration of tune parameters via terminal

Considering Task 1, this is in turn composed of modules thus:

    Task 1, Module 1
    Determine crank shaft position and speed

    Task 1, Module 2
    Measure engine load

    Task 1, Module 3
    Obtain required firing angle from look-up table

Taking module 2, a C function exists which uses an A/D converter to read a voltage from a sensor. It is part of the overall 
background loop and hence runs in a fixed sequence. In module 1 an interrupt function attached to an input capture pin 
calculates engine speed and generates the ignition coil firing pulse. Module 3 is another function in the background loop and 
takes speed and load information from the other modules constituting the ignition function, to calculate the firing angle. 
Obviously, data must be communicated from the data collecting functions to the processing functions and thence to the signal 
generation parts across module boundaries.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (1 di 13) [09/11/01 11.03.09]



Program Structure And Layout

In this case, the data flows are thus:

Commonly, the variables used are declared in the module that first supplies them with data. Hence the engine_load would be 
defined in Module 2 as that is where its input data comes from.

In this system the data would be declared thus:

Module_1.c                      Module_3.c                          Module_2.c 

/* Global Data Declaration */   /* Global Data Declaration */       /* Global Data 
Declaration */

unsigned char engine_speed      unsigned char advance               unsigned char 
engine_load

/* External Data References */  /* External Data References */      /* External Data 
References */

extern unsigned char advance    extern unsigned char engine_speed   extern unsigned 
char engine_load 

The most important thing to note is how the data defined in another module is referenced by redeclaring the required data item 
but prefixed with "extern". 

Now, with a complete program spread across many different source files, the problem arises of how data is communicated 
between modules (files) and how separate C functions which lie outside of the home module may be accessed.

The next section illustrates how the linkage between modules is undertaken.

4.2 Accessibility Of Variables In Modular Programs

A typical C51 application will consist of possibly five functional blocks (modules) contained in five source files. Each block 
will contain a number of functions (subroutines) which operate on and use variables in RAM. Individual functions will 
(ideally) receive their input data via parameter passing and will return the results similarly. Within a function temporary 
variables will be used to store intermediate calculation values. As used to be done years ago in assembler, all variables (even 
the temporary ones) will be defined in one place and will remain accessible to every routine.

This approach is very inefficient and would seriously limit the power of C programs, as the internal RAM would soon be used 
up. The high-level language feature of a clearly defined input and output to each function would also be lost.

Similarly, an entire C program might be written within one single source file. As has been said, this practice was common 

http://www.esacademy.com/automation/docs/c51primer/c04.htm (2 di 13) [09/11/01 11.03.09]



Program Structure And Layout

many years ago with simple assemblers. Ultimately the source program can get so big that the 640K of a PC will get full and 
the compiler will stop. Worse than this, the ideal of breaking programs into small, understandable chunks is lost. Programs 
then become a monolithic block and consume huge amounts of listing paper... 

There should therefore be a hierarchical arrangement of variables and functions within a program; complete functional blocks 
should be identified and given their own individual source files or modules. Use should be made of the ability to access 
external variables and functions to achieve small program files! 

The following should help explain:

MODULE1.c: **************************************************************
   unsigned char global1 ;    (1)
   unsigned char global2 ;
   extern unsigned char ext_function(unsigned char) ;    (2)

/* Utility Routine */
   int_function(x)      (3)
   unsigned char x ;    (4)
   {
   unsigned int temp1  ;    (5)
   unsigned char temp2 ;
   temp 1 = x * x ;
   temp2  = x + x ;
 
   x = temp1/temp2 ;
 
   return(x)    (6)
   }

/* Program Proper */
   main()    (7)
   {
   unsigned char local1 ;    (5)
   unsigned char local2 ;
   local2 = int_function(local1) ;    (8)
   local1 = ext_function(local2) ;    (9)

   }
end of MODULE1.c **************************************************************

MODULE2.c: **************************************************************
   extern unsigned char global1 ;    (10)

   ext_function(y)
   unsigned char y ;
   {
   unsigned char temp ;
   static unsigned char special ;    (11) 
   
   special++ ;
   y = temp * global1 ;    (12)  

   return(y) ;
   )

Line (1) declares variables which will be accessible from all parts of the program. Ideally, such global usage should be avoided 
but where an interrupt has to update a value used by the background program, for example, they are essential.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (3 di 13) [09/11/01 11.03.09]



Program Structure And Layout

Line (2) makes an external reference to a function not defined in the current module (block). This line allows all the functions 
in this MODULE to call the external function.

Line (3) declares a function which is to be used by another function in this module. These utility functions are placed above 
the calling function (here "main()").

Line (4) declares the variable which has been passed-over by the calling function. When the variable left "main()", it was 
called "local1". Within this function it is known simply as "x". The byte of ram is allocated to "x" only while the 8051's 
program counter is within this function. At the closing }, x will vanish.

Line (5) like "x" above, these variables are simply used as intermediate values within the function. They have no significance 
outside. Again, the byte of RAM will be re-assigned within another function. However the locals defined in "main()" will 
always exist as the C program is entirely contained within "main()".

Line (6) allows the result of the calculation to be passed back to the calling function. Once back in "main()" the value is placed 
in "local2".

Line (7) defines the start of the C program. Immediately prior to the point at which the program counter reachs main(), the 
assembler routine "STARTUP.A51" will have been executed. This in turn starts at location C:0000, the reset vector. Note that 
no parameters are passed to "main()". 

Line (8) effectively calls the function defined above, passing the value "local1" to it.

Line (9) is like 8, but this time a function is being called which resides outside of the current module.

Line(10) links up with line(1) in that it makes "global1" visible to function within MODULE 2.

Line(11) declares a variable which is local to this function but which must not be destroyed having exited. Thus it behaves like 
a global except that no other function can use it. If it were placed above the function, accessibility would be extended to all 
functions in MODULE 2.

The physical linking of the data names and function names between modules is performed by the L51 linker. This is covered in 
detail in section 8.

4.3 Building A Real Modular Program -

The Practicalities Of Laying Out A C51 Program

The need for a modular approach to program construction has been outlined earlier. Here the practicalities of building easily 
maintainable and documentable software is given, along with a trick for easing the development of embedded C programs 
using popular compilers such as the Keil C51.

4.3.1 The Problem

The simplest embedded C program might consist of just

/* Module Containing Serial Port Initialisation */ /* V24IN537.C */
void v24ini_537(void)
   {

   /* Serial Port Initialisation Code */
   }

/* Module Containing Main Program */ /* MAIN.C */
/* External Definitions */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (4 di 13) [09/11/01 11.03.09]



Program Structure And Layout

extern void v24ini_537(void) ;

void main(void) {
   v24ini_537() ;
   while(1) {
      printf("Time = ") ;
      }

This minimal program has only one purpose - to print an as yet incomplete message on the terminal attached to the serial port. 
Obviously, a single source file or "module" is sufficient to hold the entire C program. 

Any real program will of course contain more functionality than just this. The natural reaction is to simply add further code to 
the existing main function, followed by additional functions to the MAIN.C source file. Unless action is taken the program will 
consist of one enormous source file, containing dozens of functions and interrupts and maybe hundreds of public variables.

Whilst compilers will still compile the file, the compilation time can become greatly extended, meaning that even the smallest 
modification requires the entire program to be re-compiled. A monolithic program is usually symptomatic of a lack of proper 
program planning and is likely to contain suspect and difficult to maintain code.

The next stage in the sample program development is to add some means of generating the time thus:

/* Module Containing Timer0 Initialisation */ 
/* T0INI537.C */

   void timer0_init_537(void) {
        /* Enable Timer 0 Ext0 interrupts */ 
        } /*init_timer_0*/

/* Module Containing Timer0 Service Routine */ 
/* RLT_INT.C */
/* Local Data Declarations */
/* Clock Structure Template */

struct time { unsigned char msec ;
              unsigned char sec  ; } ;

/* Create XDATA Structure */

struct time xdata clock ;
bit clock_run_fl = 0 ;  // Flag to tell timer0 interrupt
                        // to stop clock

/* External References */

extern bit clock_reset_fl // Flag to tell timer0 interrupt                             
// to reset clock to zero

/***  INTERRUPT SERVICE FOR TIMER 0  ***/
   void timer0_int(void) interrupt 1 using 1 {
     if(clock.msec++ == 1000) {
        clock.sec++ ;
        if(clock.sec == 60) {
           clock_sec = 0 ;
           }
        }
     }

http://www.esacademy.com/automation/docs/c51primer/c04.htm (5 di 13) [09/11/01 11.03.09]



Program Structure And Layout

To make this 4 module program useful, the main loop needs to be altered to:

/* Module Containing Main Program */
/* MAIN.C */

#include <reg517.h>

/* External Definitions */

extern void v24ini_537(void) ;
extern void timer0_init_537(void) ;

/* General Clock Structure Template */

struct time { unsigned char secs  ;
              unsigned char msec  ; } ;

/* Reference XDATA Structure In Another Module */

extern struct time xdata clock ; extern bit clock_reset_fl // Flag to tell timer0 
interrupt to reset clock to zero
/* Local Data Declaration */
bit clock_run_fl ;  // Flag to tell timer0 interrupt
                    // to stop clock
void main(void) {
   v24ini_537() ;
   timer0_init_537() ;
   while(1) {
      printf("Time = %d:%d:%d:%d",clock.hours,
                                  clock.mins,
                                  clock.secs,
                                  clock.msecs) ;
      }
   if(P1 | 0x01) {
      clock_run_fl = 1 ; // If button pressed start clock 
      }
   else {
      clock_run_fl = 0 ; // If button released stop clock
      }
   if(P1 | 0x02) {
      clock_reset_fl = 1 ; // If button pressed clear clock 
      }
   }

4.3.2 Maintainable Inter-Module Links

The foregoing program has been contructed in a modular fashion with each major functional block in a separate module (file). 
However even with this small program a maintenance problem is starting to become apparent The source of the trouble is that 
to add a new data item or function, at least two modules need to be edited - the module containing the data declaration plus any 
other module which makes a reference to the additional items. With long and meaningful names common in C and complex 
memory space qualification widespread in C51, much time can be wasted in getting external references to match at the linking 
stage. Simple typographic errors can waste huge amounts of time!

In large programs with many functions and global variables, the global area preceding the executable code can get very untidy 
and cumbersome. Of course, there is an argument that says that having to add external references to the top of a module when 
first using a new piece of global data is good practice, as it means that you are always aware of exactly which items are used. It 
is preferable to the common approach of having a single include file incorporated as a matter of course in each source file, 
containing an external reference for every global item, regardless of whether the host file actually needs them all.

http://www.esacademy.com/automation/docs/c51primer/c04.htm (6 di 13) [09/11/01 11.03.09]



Program Structure And Layout

This latter method inevitably leads to the undesirable situation where an original data declaration in the source module is 
sitting alongside its external reference in the general include file.

A solution to this is to have "module-specific" include files. Basically, for each source module ".c" file, a second ".h" include is 
created. This auxilliary file contains both original declarations and function prototypes plus the external references. It is 
therefore similar in concept to the standard library .h files used in every C compiler. The trick is, however, to use conditional 
compilation to prevent the original declarations and the external versions being seen simultaneously. 

When included in their home modules, i.e. the ".c" file having the same root, only the original declarations are seen by C51 
whereas, when included in a foreign module, only the external form is seen. To achieve this apparent intelligence, each source 
module must somehow identify itself to the include file. 

The means to achieve this is to place a #define at the top of each module giving the name of the module. When included in its 
"home" module, the #ifdef-#else#-endif will cause the preprocessor to see the original declarations. When placed in foreign 
modules not sharing the same root, the preprocessor will see the external equivalents. Keil supports __FILE__ but it is not of 
practicle use in this context, as its "value" cannot be used for a #define name.

By only including module-specific header files in those modules that actually need to access an item in another module, the 
operation of powerful make utilities such as Polymake or Keil's own AMAKE, is improved; provided the dependency list is 
kept up to date, any changes to a .h file will cause all modules that reference it to be recompiled automatically. Thus a 
modified program cannot be built for testing unless all modules referencing the altered item successfully re-compile. This 
usefully relieves the linker from being alone responsible for symbol attribute cross-checking - something which some linkers 
cannot be relied upon to do. 

In most embedded C dialects this can be a major help in program development as, for example, a change in a widely-used 
function's memory model attribute can easily be propagated through an entire program; the change in the intelligent header file 
belonging to the function's home module causing the AMAKE to recompile all other modules referencing it. Likewise, a 
change in a variable's memory space from say XDATA to PDATA needs only one header file to be edited - AMAKE will do 
the rest!

Here's how it's done in practice:

/* Module Containing Main Program - MAIN.C */
#define _MAIN_
/* Define module name for include file control */
#include <reg517.h>       // Definitions for CPU 
#include <v24ini537.h>  // External references from V24INI.C #include <t0ini537.h>   
// External references from 
                //T0INI537.C 
#include <rlt_int.h>   
// External references for RLT_INT.C 

void main(void) {

   v24ini_537() ;

   timer0_init_537() ;

   while(1) {

      printf("Time = %d.%d",clock.secs,clock.msecs) ;
      }
   if(P1 | 0x01) {
      clock_run_fl = 1 ; // If button pressed start clock 
      }
   else {

http://www.esacademy.com/automation/docs/c51primer/c04.htm (7 di 13) [09/11/01 11.03.09]



Program Structure And Layout

      clock_run_fl = 0 ; // If button released stop clock
      }
   if(P1 | 0x02) {
      clock_reset_fl = 1 ; // If button pressed clear clock 
      }
   }

/* Module Containing Timer0 Service Routine - RLT_INT.C */
#define _RLT_INT_  /* Identify module name */

/* External References */
extern bit clock_reset_fl // Flag to tell timer0 interrupt to
                        // reset clock to zero

/***  INTERRUPT SERVICE FOR TIMER 0  ***/
   void timer0_int(void) interrupt 1 using 1 {
     if(clock.msec++ == 1000) {
        clock.sec++ ;
        if(clock.sec == 60) {
           clock_sec = 0 ;
           }
        }
     }
Taking the include files:

/* Include File For RLT_INT.C */

/* General, non-module specific definitions */
/* such as structure and union templates */
/* Clock Structure Template - Available To All Modules */
struct time { unsigned char secs  ;
              unsigned char msec  ; } ;

#ifdef _RLT_INT_
/* Original declarations - active only in home module */
/* Create XDATA Structure */
struct time xdata clock ;
bit clock_run_fl = 0 ;  // Flag to tell timer0 interrupt to stop clock
#else
/* External References - for use by other modules */
extern struct time xdata clock ;
extern bit clock_run_fl = 0 ;  // Flag to tell timer0 interrupt to stop clock
#endif

/* Include File For MAIN.C */
#ifdef _MAIN_
/* Local Data Declaration */
bit clock_run_fl =  0 ;  // Flag to tell timer0 interrupt to stop clock
#else 
/* External References - for other modules */
extern bit clock_run_fl ;  // Flag to tell timer0 interrupt to stop clock
#endif

/* Include File For V24INI537.C */
#ifdef _V24INI537_
/* Original Function Prototype - for use in V24INI537.C */
void v24ini_537(void) ;
#else
/* External Reference - for use in other modules */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (8 di 13) [09/11/01 11.03.09]



Program Structure And Layout

extern void v24ini_537(void) ;
#endif

Now, should any new global data be added to, for example, RLT_INT.C, adding the original declaration above the "#endif" 
and the external version below, this makes the new item instantly available to any other module that wants it.

To summarise, the basic source module format is:

#define _MODULE_
#include <mod1.h>#include <mod2.h? 
. 
. 
.
functions()

The include file format is:

/* General, non-module specific definitions such as structure and union templates */
#ifdef _MODULE_
/* Put original function prototypes and global data declarations here */
#else
/* Put external references to items in above section here */
#endif

Standard Module Layouts For C51

To help integrate this program construction method, the following standard source and header modules shown overleaf may be 
used. 

Standard Source Module Template

#define __STD__          
/* Define home module name */
***********************************************************/
***********************************************************/ 
/* Project:        X                                      */
/* Author:         X          Creation Date:  XX\XX\XX    */
/* Filename:       X          Language:       X           */
/* Rights:         X          Rights:         X           */
/*                                                        */
/* Compiler:   X                   Assembler:  X          */
/* Version:    X.XX                Version:    X.XX       */
/**********************************************************/
/* Module Details:                                        */ 
/**********************************************************/ 
/* Purpose:                                               */    
/*                                                        */    
/*                                                        */         
/**********************************************************/
/* Modification History                                   */
/**********************************************************/
/* Name:           X                     Date:  XX\XX\XX  */
/* Modification:   X                                      */
/*                                                        */                                         
/* Name:           X                      Date:  XX\XX\XX */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (9 di 13) [09/11/01 11.03.09]



Program Structure And Layout

/* Modification:   X                                      */
/*                                                        */
/* Name:           X                      Date:  XX\XX\XX */
/* Modification:   X                                      */
/*                                                        */
/**********************************************************/
/**********************************************************/ 
/* External Function Prototypes                           */ 
/**********************************************************/
#include ".h"                                          
/* Standard ANSI C header files                           */
/**********************************************************/ 
/* Global Data Declarations                               */ 
/**********************************************************/
#include ".h"                                          
/* Home header file                                       */
/**********************************************************/ 
/* External Declarations                                  */ 
/**********************************************************/
#include  ".h"                                    
/* Header files for other modules                         */
/**********************************************************/ 
/* Functions Details:                                     */ 
/**********************************************************/ 
/* Function Name:                                         */ 
/* Entered From:                                          */  
/* Calls:                                                 */  
/**********************************************************/ 
 /*********************************************************/ 
/* Purpose: main loop for training program                */ 
/*                                                        */ 
/**********************************************************/ 
/* Resource Usage:                                        */ 
/*                                                        */ 
/* CODE      CONST      DATA       IDATA      PDATA       */
/* n/a        n/a        n/a        n/a        n/a        */
/*                                                        */
/* Performance:                                           */ 
/* Max Runtime:                    Min Runtime:           */
/*                                                        */
/*                                                        */ 
/**********************************************************/
/* Executable functions                                   */
/**********************************************************/
/**********************************************************/ 
/* End Of STD.c                                           */ 
/**********************************************************/

Standard Include Header File Template

/**********************************************************/ 
/* Project:        X                                      */
/* Author:         X            Creation Date:  XX\XX\XX  */
/* Filename:       X            Language:       X         */
/* Rights:         X            Rights:         X         */
/*                                                        */

http://www.esacademy.com/automation/docs/c51primer/c04.htm (10 di 13) [09/11/01 11.03.09]



Program Structure And Layout

/* Compiler:   X                Assembler:  X             */
/* Version:    X.XX             Version:    X.XX          */
/**********************************************************/
/* Modification History                                   */ 
/**********************************************************/ 
/* Name:           X                     Date:  XX\XX\XX  */
/* Modification:   X                                      */
/*                                                        */
/* Name:           X                     Date:  XX\XX\XX  */
/* Modification:   X                                      */
/*                                                        */
/* Name:           X                     Date:  XX\XX\XX  */
/* Modification:   X                                      */
/*                                                        */
/**********************************************************/
/**********************************************************/ 
/* Global Definitions                                     */ 
/**********************************************************/
/* Structure and union templates plus other definitions   */

#ifdef _STD_             
/* Check for inclusion in home module                    */ 
/*********************************************************/
/*********************************************************/ 
/* Within Module Function Prototypes                     */ 
/*********************************************************/
/* Function prototypes from home module                  */
/*********************************************************/ 
/* Within Module Data Declarations                       */ 
/*********************************************************/
/* Data declarations from home module                    */
/*********************************************************/ 
#else
 
/*********************************************************/ 
/*********************************************************/ 
/* External Function Prototypes                          */ 
/*********************************************************/
/* External function prototypes for use by other modules */
/*********************************************************/ 
/* External Data Declarations                            */ 
/*********************************************************/
/* External data definitions for use by other modules    */
/*********************************************************/

#endif

Summary

Provided the necessary module name defines are added to the first line of any new module and the new globals placed into the 
associated ".h" file, the overall amount of editing required over a major project is usefully reduced. Compilation and, more 
particularly, linking errors are reduced as there is effectively only one external reference for each global item in the entire 
program. For structures and unions the template only appears once, again reducing the potential for compilation and linking 
problems.

4.4 Task Scheduling

http://www.esacademy.com/automation/docs/c51primer/c04.htm (11 di 13) [09/11/01 11.03.10]



Program Structure And Layout

4.4.1 8051 Applications Overview

When most people first start to learn to program, BASIC is used on a PC or similar machine. The programs are not usually too 
complicated; they start when you type _"RUN" and finish at END or STOP. In between, the PC is totally devoted to executing 
your "HELLO WORLD" program. When it is finished you are simply thrown back to the BASIC editor/"operating 
environment".

All this is very good and you think you now know how to program. However, when writing for an embedded microcontroller 
like the 8051, the problem of where does the program start and finish suddenly presents itself. The average 8051 software 
system consists of many individual programs which, when executed together, contribute towards the fulfilment of the overall 
system objective. A fundamental problem is then how to ensure that each part is actually run.

4.4.2 Simple 8051 Systems

The simplest approach is to call each major sub-function in a simple sequential fashion so that after a given time each function 
has been executed the same number of times. This constitutes a background loop. In the foreground might be interrupt 
functions, initiated by real time events such as incoming signals or timer overflows.

Data is usually passed from background to foreground via global variables and flags. This essentially simple program model 
can be very successful if some care is taken over the order and frequency of execution of particular sections.

The background-called functions must be written so that they run a particular section of their code on each successive entry 
from the background loop. Thus each function is entered, a decision is taken as to what to do this time, the code is executed 
and finally the program is exited, probably with some special control flags set up to tell the routine program what to do next 
time. Thus each functional block must maintain its own control system to ensure that the right code is run on any particular 
entry.

In this system all functional blocks are considered to be of equal importance and no new block can be entered until its turn is 
reached by the background loop. Only interrupt routines can break this, with each one having its own priority. Should a block 
need a certain input signal, it can either keep watching until the signal arrives, so holding up all other parts, or it can wait until 
the next entry, next time round the loop. Now there is the possibility that the event will have been and gone before the next 
entry occurs. This type of system is OK for situations where the time-critical parts of the program are small.

In reality many real time systems are not like this. Typically they will consist of some frequently-used code, the execution of 
which is caused by or causes some real-world event. This code is fed data from other parts of the system, whose own inputs 
may be changing rapidly or slowly.

Code which contributes to the system's major functionality must obviously take precedence over those sections whose purpose 
is not critical to the successful completion of the task. However most embedded 8051 applications are very time-critical, with 
such parts being attached to interrupts. The need to service as many interrupts as quickly as possible requires that interrupt 
code run times are short. With most real world events being asynchronous, the system will ultimately crash when too many 
interrupt requests occur per unit time for the cpu to cope with. 

Fast runtimes and hence acceptable system performance are normally achieved by moving complex functions into the 
background loop, leaving the time-critical sections in interrupts. This gives rise to the problem of communication between 
background code and its dependant interrupt routine. 

The simple system is very egalitarian, with all parts treated in the same way. When the cpu becomes very heavily loaded with 
high speed inputs, it is likely that major sub-functions will not be run frequently enough for the real-world interrupt code to be 
able to run with sufficiently up to date information from the background. Thus, system transient response is degraded.

4.4.3 Simple Scheduling - A Partial Solution

The problems of the simple loop system can be partially solved by controlling the order and frequency of function calling. One 

http://www.esacademy.com/automation/docs/c51primer/c04.htm (12 di 13) [09/11/01 11.03.10]



Program Structure And Layout

approach is to attach a priority to each function and allow each function to specify the next one to be executed. The real-world 
driven interrupt functions would override this steady progression so that the most important (highest priority) jobs are executed 
as soon as the current job is completed. This kind of system can yield useful results, provided that no single function takes too 
long.

An alternative is to control overall execution from a real time interrupt so that each job is allocated a certain amount of time in 
which to run. If a timeout does occur, that task is suspended and another begins.

Unfortunately all these tend to be bolt-ons, added late in a project when run times are getting too long. Usually what had been 
a well-structured program degenerates into spaghetti code, full of fixes and special modes, designed to overcome the 
fundamental mismatch between the demands of real time events and the response of the program. Moreover, the individual 
control mechanisms of the called functions generate an overhead which simply contributes to the runtime bottle-neck.

The reality is that real time events are not orderly and predictable. Some jobs are naturally more important than others. 
However inconvenient, the real world produces events that must be responded to immediately.

4.4.4 A Pragmatic Approach

Without resorting to a full real time executive like RTX51, what can be done?

A simple mechanism to control the running of the background loop can be a simple switch statement, with the switch variable 
controlled by some external real time event. Ideally this should be the highest priority interrupt routine. The high priority 
background tasks are placed at the top case, with lower priority tasks located further down the case statement. Thus, on every 
occurrence of the interrupt, the switch is set back to the top. As the background tasks execute, they increment the switch. If the 
interrupt is absent for long enough, the switch will reach the lowest level and then return to the highest level automatically.

Should the interrupt occur at level 2, the switch variable is forced back to zero and so tasks at the lowest levels are simply 
missed. This is by no means an ideal system, since only the top level is ever executed.given a high enough interrupt frequency.

However under normal conditions it is a useful way of ensuring that low priority tasks are not executed frequently. For 
example, there would be little point in measuring ambient temperature more than once per second. In a typical system this 
measurement might be at level 100 in a switch scheduler.

To be able to make a judgement about how best to structure the program, it is vital to know the run times for each section.

Where this simple method falls down is when a low priority task has a long run time. Even though the interrupt has requested 
that the loop returns back to the top level to calculate more data, there is no way of exiting the task until completed. To do so 
requires a proper time-slice mechanism.

A useful dodge can be to utilise an unused interrupt to guarantee that high priority tasks will be run on time. By setting the 
unused interrupt pending flag within the exiting high priority interrupt routine and placing the background task into the 
corresponding service routine, the punctual execution of the second task will occur. Of course, the unused interrupt priority 
must be set to a lower priority in the appropriate interrupt priority register(s). 

The most important factor overall is to keep run times as short as possible, particularly in interrupt routines. This means 
making full use of C51 extensions like memory-specific pointers, special function bits and local regsiter variables.

  

http://www.esacademy.com/automation/docs/c51primer/c04.htm (13 di 13) [09/11/01 11.03.10]



C Language Extensions For 8051

  

5 C Language Extensions For 8051

Programming

8051 programming is mainly concerned with accessing real devices at specific locations, plus coping with interrupt servicing. 
C51 has made many extensions to the C language to allow near-assembler code efficiency. The main points are now covered.

5.1 Accessing 8051 On-Chip Peripherals

In the typical embedded control application, reading and writing port data, setting timer registers and reading input captures 
etc. are commonplace. To cope with this without recourse to assembler, C51 has the special data types sfr and sbit.

Typical declarations are:

    sfr P0 0x80
    sfr P1 0x81
    sfr  ADCON; 0xDE
    sbit EA  0x9F

and so on.

These declarations reside in header files such as reg51.h for the basic 8051 or reg552.h for the 80C552 and so on. It is the 
definition of sfrs in these header files that customises the compiler to the target processor. Accessing the sfr data is then a 
simple matter:

   {
   ADCON = 0x08 ;   /* Write data to register */
   P1 = 0xFF    ;   /* Write data to Port */

   io_status = P0 ; /* Read data from Port */
   EA = 1       ;   /* Set a bit (enable all interrupts) */

   }

It is worth noting that control bits in registers which are not part of Intel's original 8051 design generally cannot be bit-
addressed. 

The rule is usually that addresses that are divisible by 8 are bit addressable. Thus for example, the serial Port 1 control bits in 
an 80C537 must be addressed via byte instructions and masking. 

Always check the processor's user manual to verify which sfr register bits can be bit addressed.

5.2 Interrupts

Interrupts play an important part in most 8051 applications. There are several factors to be taken into account when servicing 
an interrupt:

http://www.esacademy.com/automation/docs/c51primer/c05.htm (1 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

The correct vector must be generated so that the routine may be called. C51 does this automatically.

The local variables in the service routine must not be shared with locals in the background loop code: the L51 linker will try to 
re-use locations so that the same byte of RAM will have different significance depending on which function is currently being 
executed. This is essential to make best use of the limited internal memory. Obviously this relies on functions being executed 
only sequentially. Unexpected interrupts cannot therefore use the same RAM.

5.2.1 The Interrupt Function Type

To allow C coding of interrupts a special function type is used thus;

    timer0_int() interrupt 1 using 2
    {
    unsigned char temp1 ;
    unsigned char temp2 ;
    executable C statements ;
    }

Firstly, the argument of the "interrupt" statement, "1" causes a vector to be generated at (8*n+3), where n is the argument of 
the "interrupt" declaration. Here a "LJMP timer0_int" will be placed at location 0BH in the code memory. Any local variables 
declared in the routine are not overlaid by the linker to prevent the overwriting of background variables. 

Logically, with an interrupt routine, parameters cannot be passed to it or returned. When the interrupt occurs, compiler-inserted 
code is run which pushes the accumulator, B,DPTR and the PSW (program status word) onto the stack. Finally, on exiting the 
interrupt routine, the items previously stored on the stack are restored and the closing "}" causes a RETI to be used rather than 
a normal RET.

5.2.2 Using C51 With Target Monitor Debuggers

Many simple 8032 target debuggers place the monitor's EPROM code at 0, with a RAM mapped into both CODE and XDATA 
spaces at 0x8000. The user's program is then loaded into the RAM at 0x8000 and, as the PSEN is ANDed with the RD pin, the 
program is executed. This poses something of a problem as regards interrupt vectors. C51/L51 assume that the vectors can be 
placed at 0. Most monitors for the 8032 foresee this problem by redirecting all the interrupt vectors up to 0x8000 and above, 
i.e. they add a fixed offset of 0x8000. Thus the timer 0 overflow interrupt is redirected by a vector at C:0x000B to C:0x800B.

Before C51 v3.40 the interrupt vector generation had to be disabled and assembler jumps had to be inserted. However now the 
INTVECTOR control has been introduced to allow the interrupt vector area to be based at any address.

In most cases the vector area will start at 0x8000 so that the familar "8 * n + 3" formula outlined in section 5.2.1 effectively 
becomes:

8 * n + 3 + INTVECTOR

To use this:

#pragma INTVECTOR(0x8000)   /* Set vector area start to 0x8000 */

void timer0_int(void) interrupt 1 {

   /* CODE...*/

   }

This produces an LJMP timer0_int at address C:0x800B. The redirection by the monitor from C:0x000B will now work 

http://www.esacademy.com/automation/docs/c51primer/c05.htm (2 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

correctly.

5.2.3 Coping Interrupt Spacings Other Than 8

Some 8051's do not follow the normal interrupt spacing of 8 bytes - the '8' in the 8 * n + 3 formula. Fortunately the 
"INTERVAL #pragma" copes with this.

The interrupt formula is, in reality:

INTERVAL * n + INTVECTOR and so:

#pragma INTERVAL(6)   /* Change spacing */

will allow a 6 byte spacing. 

Please note that for convenience INTERVAL defaults to 8 and INTVECTOR to 0x80000!

5.2.4 The Using Control

The "using" control tells the compiler to switch register banks. This is an area where the 8051 architecture works for the 
compiler rather than against it; the registers R0 to R7 are used extensively for the temporary storage of library routines and for 
locals. Ordinarily Bank 1 is used. However, to be able to use this standard code in an interrupt the register bank must be 
switched to 2 in the above example. Thus the variables of the interrupted routines are preserved.

As a rule interrupts of the same priority can share a register bank, since there is no risk that they will interrupt each other.

If interrupt runtime is not important the USING can be omitted, in which case C51 examines the registers which are actually 
used within the routine and pushes only these onto the stack. This obviously increases the effective interrupt latency.

5.3 Interrupts, USING, Registerbanks, NOAREGS In C51

Everything You Need To Know

Interrupts play an important part in most 8051 applications and fortunately, C51 allows interrupt service routines to be written 
entirely in C. Whilst you can write perfectly workable (and safe) programs by using just straight ANSI C, you can significantly 
improve the efficiency of your code by gaining an understanding of the following special C51 controls: 

●     INTERRUPT 
●     USING 
●     NOAREGS 
●     RE-ENTRANT 
●     REGISTERBANK 

5.3.1 The Basic Interrupt Service Function Attribute

The correct vector must be generated so that the routine may be called. C51 does this based on the argument to the interrupt 
keyword. The linker thereafter does not allow local data from interrupt routines to be overlaid with that from the background 
by creating special sections in RAM. C51 special "interrupt" function attribute example: 

/*Timer 0 Overflow Interrupt Service Routine */

timer0_int() interrupt1 
{
unsigned char temp1 ;           
unsigned char temp2 ;           

http://www.esacademy.com/automation/docs/c51primer/c05.htm (3 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

/* executable C statements ; */ 
}

●     The "interrupt 1" causes a vector to be generated at (8*n+3), where n is the argument of the "interrupt" declaration. An 
"LJMP timer0_int" will be placed at location 0BH in the code memory. 

●     Local variables declared in the routine are not overlaid by the linker to prevent the overwriting of background variables. 
●     When the interrupt occurs, compiler-inserted code is run which pushes the accumulator, B,DPTR and the PSW 

(program status word) onto the stack if used in function, along with any registers R0-R7 used in the function. 
●     A RETI is inserted at the end of the function rather than RET. Taking an empty interrupt service function for the timer 0 

overflow interrupt, this is how C51 starts off an interrupt routine that uses no registers at all: 

timer0_int Entry Code

void timer0_int(void) interrupt1 
{
RSEG ?PR?timer0_int?TIMER0              
USING 0 
timer0_int:                             
; SOURCE LINE # 2

If a function, here called "sys_interp" is now called from the timer0 service function, this is how the entry code to the interrupt 
changes.

timer0_int Entry Code Now With Called Function

; void timer0_int(void) interrupt 1 
{
RSEG ?PR?timer0_int?TIMER0      
USING 0
timer0_int:     
PUSH ACC        
PUSH B  
PUSH DPH        
PUSH DPL        
PUSH PSW        
PUSH AR0        
PUSH AR1        
PUSH AR2        
PUSH AR3        
PUSH AR4        
PUSH AR5        
PUSH AR6        
PUSH AR7

Note that the entire current registerbank is pushed onto the stack when entering timer0_int() as C51 assumes that all will be 
used by sys_interp. Sys_interp receives parameters in registers; if the entry to sys_interp is examined, an important compiler 
trick is revealed:

sys_interp() Entry Code

; unsigned char sys_interp(unsigned char x_value,       
RSEG ?PR?_sys_interp?INTERP     
 USING 0
_sys_interp:    
MOV y_value?10,R5       

http://www.esacademy.com/automation/docs/c51primer/c05.htm (4 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

MOV map_base?10,R2      
MOV map_base?10+01H,R3
;--Variable 'x_value?10' assigned to Register 'R1' --   
MOV R1,AR7

The efficient MOV of R7 to R1 by using AR7 allows a MOV direct, direct on entry to sys_interp(). This is absolute register 
addressing and is a useful dodge for speeding up code.

5.3.2 The absolute register addressing trick in detail

The situation often arises that the contents of one Ri register needs to be moved directly into another general purpose register. 
This usually occurs during a function's entry code when a pointer is passed. Unfortunately, Intel did not provide a MOV 
Reg,Reg instruction and so Keil use the trick of treating a register as an absolute D: segment address:

Simulating A MOV Reg,Reg Instruction:

In registerbank 0 - MOV R0,AR7, is identical to - MOV R0,07H.

Implementing a "MOV Reg,Reg" instruction the long way:

XCH A,R1
MOV A,R1

The use of this trick means however, that you must make sure that the compiler knows which is the current registerbank in use 
so that it can get the absolute addresses right. If you use the USING control, problems can arise! See the next few sections... 

5.3.3 The USING Control

"using" tells the compiler to switch register banks on entry to an interrupt routine. This "context" switch is the fastest way of 
providing a fresh registerbank for an interrupt routine's local data and is to be preferred to stacking registers for very time-
critical routines. Note that interrupts of the same priority can share a register bank, since there is no risk that they will interrupt 
each other.

8051 Register Bank Base Addresses

R0 AR0 Absolute Addr.0x00 REGISTERBANK 0
R1 AR1
R2 AR2
R3 AR3
R4 AR4
R5 AR5
R6 AR6
R7 AR7

R0 Absolute Addr. 0x08 REGISTERBANK 1, "USING 1"
R1
R2
R3
R4
R5
R6
R7

R0 Absolute Addr. 0x10 REGISTERBANK 2, "USING 2"
R1
R2

http://www.esacademy.com/automation/docs/c51primer/c05.htm (5 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

R3
R4
R5
R6
R7

R0 Absolute Addr. 0x18 REGISTERBANK 3, "USING 3"
R1
R2
R3
R4
R5
R6
R7

If a USING 1 is added to the timer1 interrupt function prototype, the pushing of registers is replaced by a simple MOV to PSW 
to switch registerbanks. Unfortunately, while the interrupt entry is speeded up, the direct register addressing used on entry to 
sys_interp fails. This is because C51 has not yet been told that the registerbank has been changed. If no working registers are 
used and no other function is called, the optimizer eliminiates teh code to switch register banks.

timer0_int Entry Code With USING

With USING 1

; void timer0_int(void) interrupt 1 using 1 {   
RSEG ?PR?timer0_int?TIMER0      
USING 1 <--- New register bank now
timer0_int:     
PUSH ACC        
PUSH B  
PUSH DPH        
PUSH DPL        
PUSH PSW        
MOV PSW,#08H

sys_interp() Entry Code

Still using registerbank 0

; unsigned char sys_interp(unsigned char x_value,       
RSEG ?PR?_sys_interp?INTERP     
USING 0
_sys_interp:    
MOV y_value?10,R5       
MOV map_base?10,R2      
MOV map_base?10+01H,R3;
--Variable 'x_value?10' assigned to Register 'R1' --    
MOV R1,AR7      <----- FAILS!!!!

Absolute register addressing used assuming registerbank 0 is still current and so program fails! (Solutions in 5.3.6-8).

5.3.4 Notes on C51's "Stack Frame"

C51 uses a degree of intelligence when entering interrupt functions. Besides the obvious step of substituting RETI for RET at 
the end of the function, it automatically stacks only those registers that are actually used in the function.

http://www.esacademy.com/automation/docs/c51primer/c05.htm (6 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

There are however, some points to be aware of: 

●     If an interrupt function calls a function, C51 will stack all the Ri registers, regardless of whether they are used or not. 
The total time to PUSH and POP these is 16us at 12MHz, which may be viewed as unacceptable for a time critical 
interrupt. 
Therefore you should either avoid calling functions or use the USING control. This will do a simple registerbank switch 
at the entry and exit from the routine. As the PUSHING of registers onto the stack uses the same overall number of 
DATA locations, there is no difference in overall RAM usage. 

●     Any variable declared within an interrupt function will not be overlaid onto background data or that originating from 
other interrupts. 

●     Never call an interrupt function from the background. There is sometimes a temptation to do this during program 
initialisation, for example. The linker will get very confused and will quite likely make dangerous mistakes like 
overwriting background variables! 

●     Using the USING control will generally consume more RAM than simply PUSHing registers onto the stack: in the case 
where the interrupt function employs less than 8 registers, 8 - <number of registers actually used> will be wasted. Thus 
there is no virtue in avoiding the USING control! 

●     Interrupts of equal priority can share the same register bank as there is no chance of them interrupting each other. 

5.3.5 When To Use USING

●     Interrupts which must run as fast as possible, regardless of overall RAM usage.
●     Interrupts which call other functions. 

5.3.6 The NOAREGS pragma

Dealing With C51's Absolute Register Addressing.

As has been pointed out, the 8051 has no MOV Register, Register instruction so the compiler uses MOV R1,AR7 where AR7 
is the absolute address of the current R7. To do this though, the current registerbank number must be known. If a function is 
called from an interrupt where a using is in force, when compiling a called function the compiler must be told: 

(i) not to use absolute register addressing with #pragma NOAREGS control before the function, and #pragma RESTORE or 
#pragmas AREGS control enter the function.

Or:

(ii) the current registerbank number with #pragma REGISTERBANK(n).

For (i), applying NOAREGS to the sys_interp function removes the MOV R7,AR7, replacing it with an awkward move of R7 
to R1 using XCH A,Ri!

timer0_int Entry Code

; void timer0_int(void) interrupt 1 using 1 {   
RSEG ?PR?timer0_int?TIMER0      
USING 1
timer0_int:     
PUSH ACC        
PUSH B  
PUSH DPH        
PUSH DPL        
PUSH PSW        
MOV PSW,#08H

sys_interp() Entry Code With NOAREGS

http://www.esacademy.com/automation/docs/c51primer/c05.htm (7 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

; unsigned char sys_interp(unsigned char x_value,       
RSEG ?PR?_sys_interp?INTERP     
USING 0
_sys_interp:    
MOV y_value?10,R5       
MOV map_base?10,R2      
MOV map_base?10+01H,R3;
--Variable 'x_value?10' assigned to Register 'R1' --    
XCH A,R1 ;      
MOV A,R7 ; Slow Reg to Reg move

5.3.7 The REGISTERBANK Control Alternative To NOAREGS

#pragma REGISTERBANK(n) tells C51 the absolute address of the current "using" registerbank base so that direct register 
addressing will work.

EXAMPLE:

/* Timer 0 Overflow Interrupt Service Routine */        
timer0_int() interrupt 1 USING 1 {      
unsigned char temp1 ;   
unsigned char temp2 ;   
/* executable C statements */
 }

Called function:

#pragma SAVE // Rember current registerbank
#pragma REGISTERBANK(1) // Tel C51 base address of current registerbank.
void func(char x) {     // Called from interrupt routine                        
// with "using1"        
/* Code */      
 }
#pragma RESTORE // Put back to original registerbank

Applying #pragma REGISTERBANK(1) to sys_interp() restores absolute register addressing as C51 now knows the base 
address of the current register bank.

Note: Always try to use the REGISTERBANK(n) control for any functions called from an interrupt with a USING!

sys_interp() Entry Code With REGISTERBANK(n)

; unsigned char sys_interp(unsigned char x_value,       
RSEG ?PR?_sys_interp?INTERP     
USING 1
_sys_interp:    
MOV y_value?10,R5       
MOV map_base?10,R2      
MOV map_base?10+01H,R3;--
Variable 'x_value?10' assigned to Register 'R1' --      
MOV R1,AR7

5.3.8 Summary Of USING And REGISTERBANK

Expressed in psuedo-code!

http://www.esacademy.com/automation/docs/c51primer/c05.htm (8 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

if(interrupt routine = USING 1){        
subsequently called function uses #pragma REGISTERBANK(1)       
}

Note: subsequently called function must now only be called from functions using register bank 1.

5.3.9 Reentrancy In C51 - The Final Solution

In addition to calling a function from interrupt, it is also sometimes necessary to call the same function from the background as 
well. This leaves the possibility open that the function may be called from two places simultaneously with disasterous results!

The attribute required to permit a function to be safely called both from background and interrupt routines simultaneously is 
"reentrant". This can also help in the previous situation of a function being called from an interrupt. The linker's "MULTIPLE 
CALL TO SEGMENT" warning is the first sign that you may be trying to use a function reentrantly.

Due to the way that C51 allocates storage for local variables and parameters, it is not possible to call a function from both an 
interrupt and the background loop. To allow only those functions to be used reentrantly that really need to be, it is possible to 
specify the reentrant attribute when declaring a function.

The ?C_IBP value set up in startup.a51 tells C51 where to locate the artificial stacks used for reentrant functions. Each time a 
reentrant function is called, its incoming parameters are moved from the registers in which they were passed into an area of 
RAM, starting at the address indicated by ?C_IBP. Likewise, any local variables used by the reentrant function are also 
allocated a place on this special stack.

When startup.a51 is executed before main(), the line: 

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

initialises ?C_IBP to the value of IBPSTACKTOP that you set up earlier. As each local is "pushed" on to the reentrant stack, 
?C_IBP is decremented. Thus if an interrupt occurs which calls the function again, the new call will start its reentrant stack 
from the current ?C_IBP value. Thereafter, any local data or parameter is accessed by the code sequence:

Get a local variable at offset 2 from the current base of the re-entrant stack:

MOV R0,?C_IBP ; Get stack base
MOV A,@R0 ;     Add offset of local
ADD A,#002 ;
MOV A,@R0 ;     Get local via indirect addressing.
MOV R7,A ;      Store value whilst other local is ;             
accessed.

On leaving the function, ?C_IBP is restored to entry value by adding the total number of locals and parameters that were used. 
This represents a very large overhead and shows why reentrancy should only be used where absolutely necessary.

EXAMPLE:

The Reentrant Stack When Located In The IDATA Area

0xff    sys_interp parameter 0
0xfe    sys_interp parameter 1
0xfd    sys_interp parameter 2L
0xfc    sys_interp parameter 2H - call from background:                                 

http://www.esacademy.com/automation/docs/c51primer/c05.htm (9 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

 ?C_IBP= 0xfc
0xfb    sys_interp parameter 0
0xfa    sys_interp parameter 0
0xf9    sys_interp parameter 1
0xf8    sys_interp parameter 2L
0xf7    sys_interp parameter 2H - call from timer0                      
interrupt: ?C_IBP = 0xf7
0xf6    sys_interp parameter 0
0xf5    sys_interp parameter 0
0xf4    sys_interp parameter1
0xf3    sys_interp parameter 2L
0xf2    sys_interp parameter 2H - call from background                                  
?C_IBP = 0xf2
0xf1
0xf0
0xef
0xee

?C_IBP acts as a base pointer to the reentrant stack and is used to access all locals in a reentrant function.

Adding the reentrant attribute to sys_interp() still requires the NOAREGS control as the registerbank has been changed by 
USING 1. As a matter of policy, any reentrant function should also have the NOAREGS control so that it becomes totally 
registerbank-independent.

sys_interp() Entry Code

; unsigned char interp_sub(unsigned char x,     
RSEG ?PR?_?interp_sub?INTERP    
USING 0
_?interp_sub:   
DEC ?C_IBP      
DEC ?C_IBP      
MOV R0,?C_IBP   
XCH A,@R0       
MOV A,R2        
XCH A,@R0       
INC R0  
XCH A,@R0       
MOV A,R3        
XCH A,@R0       
DEC ?C_IBP      
MOV R0,?C_IBP   
XCH A,@R0       
MOV A,R5        
XCH A,@R0       
DEC ?C_IBP      
MOV R0,?C_IBP   
XCH A,@R0       
MOV A,R7        
XCH A,@R0       
DEC ?C_IBP ;            
 SOURCE LINE # 22

sys_interp() Exit Code

?C0009: 
MOV A,?C_IBP    

http://www.esacademy.com/automation/docs/c51primer/c05.htm (10 di 11) [09/11/01 11.03.16]



C Language Extensions For 8051

 ADD A,#010H   <-- Restore ?C_IBP to original
position        
MOV ?C_IBP,A    
RET ;
END OF _?sys_interp     
END

5.3.10 Summary Of Controls For Interrupt Functions

Provided the following combinations of controls are used, you will avoid linker warnings and potentially dangerous code.

Interrupt Function Attribute      |    Called Function Attribute: 
----------------------------------|-----------------------------------
                                  |    "non-reentrant"
No USING                          |    no special attribute required
USING n                           |    USING n
                                  |    or
                                  |    #pragma REGISTERBANK(n)
                                  |    or
                                  |    #pragma NOAREGS
Interrupt Function Attribute      |    Called Function Attribute
----------------------------------------------------------------------
                                  |    "reentrant"
         no USING                 |    no register attribute
         USING n                  |    #pragma NOAREGS

5.3.11 Reentrancy And Library Functions

The majority of C51 library functions are reentrant and can be freely used from interrupts and background. However, some 
larger library functions such as printf(), scanf() etc. are not reentrant. If you have used a non-reentrant library function 
reentrantly, you will get a "MULTIPLE CALL TO SEGMENT" warning, as would be expected.

"Hidden" library functions used to perform integer divides and multiplies etc. are all reentrant so you can perform a 16/16 
divide in an interrupt without fear of upsetting the background.

To Summarise:

You can generally use library functions reentrantly but always check the C51 manual section 9 to check whether a function is 
reentrant or not.

  

http://www.esacademy.com/automation/docs/c51primer/c05.htm (11 di 11) [09/11/01 11.03.16]



Pointers in C51

  

6 Pointers In C51

Whilst pointers can be used just as in PC-based C, there are several important extensions to the way they are used in C51. 
These are mainly aimed at getting more efficient code

6.1 Using Pointers And Arrays In C51

One of C's greatest strengths can also be its greatest weakness - the pointer. The use and, more appropriately, the abuse of this 
language feature is largely why C is condemned by some as dangerous!

6.1.1 Pointers In Assembler

For an assembler programmer the C pointer equates closely to indirect addressing. In the 8051 this is achieved by the 
following instructions

MOV  R0,#40           ; Put on-chip address to be indirectly        
MOV  A,@RO              addressed in R0 

MOV  R0,#40           ; Put off-chip address to be indirectly    
MOVX A,@RO              addressed in R0

MOVX A,@DPTR          ; Put off-chip address to be indirectly 
                        addressed in DPTR 

CLR  A 
MOV  DPTR,#0040       ; Put off-chip address to be indirectly 
MOVC A,@A+DPTR          addressed in DPTR 

In each case the data is held in a memory location indicated by the value in registers to the right of the '@'.

6.1.2 Pointers In C51

The C equivalent of the indirect instruction is the pointer. The register holding the address to be indirectly accessed in the 
assembler examples is a normal C type, except that its purpose is to hold an address rather than a variable or constant data 
value.

It is declared by:

unsigned char *pointer0 ; 

Note the asterisk prefix, indicating that the data held in this variable is an address rather than a piece of data that might be 
used in a calculation etc..

In all cases in the assembler example two distinct operations are required: 

1.  Place address to be indirectly addressed in a register.
2.  Use the appropriate indirect addressing instruction to access data held at chosen address.

Fortunately in C the same procedure is necessary, although the indirect register must be explicitly defined, whereas in 

http://www.esacademy.com/automation/docs/c51primer/c06.htm (1 di 16) [09/11/01 11.03.24]



Pointers in C51

assembler the register exists in hardware.

/* 1 - Define a variable which will hold an address */

unsigned char *pointer ;

/* 2 - Load pointer variable with address to be accessed*/
     /*indirectly */

pointer = &c_variable ;

/* 3 - Put data '0xff' indirectly into c variable via*/
    /*pointer */

*pointer = 0xff ;

Taking each operation in turn... 

1.  Reserve RAM to hold pointer. In practice the compiler attaches a symbolic name to a RAM location, just as with a 
normal variable.

2.  Load reserved RAM with address to be accessed, equivalent to 'MOV R0,#40'. In English this C statement means: "take 
the 'address of' c_variable and put it into the reserved RAM, i.e, the pointer" In this case the pointer's RAM corresponds 
to R0 and the '&' equates loosely to the assembler '#'.

3.  Move the data indirectly into pointed-at C variable, as per the assembler 'MOV A,@R0'.

The ability to access data either directly, x = y, or indirectly, x = *y_ptr, is extremely useful. Here is C example:

/* Demonstration Of Using A Pointer */

unsigned char c_variable ;   // 1 - Declare a c variable unsigned char *ptr ;         
// 2 - Declare a pointer (not 
                         pointing at anything yet!)
main() {

   c_variable = 0xff ;   // 3 - Set variable equal to 0xff                                         
directly

   ptr = &c_variable ;   // 4 - Force pointer to point at 
                       c_variable at run time

   *ptr = 0xff ;         // 5 - Move 0xff into c_variable 
                      indirectly

   }

Note: Line 4 causes pointer to point at variable. An alternative way of doing this is at compile time thus:

/* Demonstration Of Using A Pointer */

unsigned char c_variable;         //1-Declare a c variable 
unsigned char *ptr = &c_variable; //2-Declare a pointer, 
                        intialised to pointing at 
                        c_variable during 
                        compilation

main() {

http://www.esacademy.com/automation/docs/c51primer/c06.htm (2 di 16) [09/11/01 11.03.24]



Pointers in C51

   c_variable = 0xff ;   // 3 - Set variable equal to 0xff 
                    directly

   *ptr = 0xff           // 5 - Move 0xff into c_variable 
                    indirectly
   }

Pointers with their asterisk prefix can be used exactly as per normal data types. The statement:

x = y + 3 ; 

could equally well perform with pointers, as per 

char x, y ; 
char *x_ptr = &x ; 
char *y_ptr = &y ;
*x_ptr = *y_ptr + 3 ;

or:

x = y * 25 ;
*x_ptr = *y_ptr * 25 ;

The most important thing to understand about pointers is that

*ptr = var ;

means "set the value of the pointed-at address to value var", whereas

ptr = &var ;

means "make ptr point at var by putting the address of (&) in ptr, but do not move any data out of var itself".

Thus the rule is to initialise a pointer, 

ptr = &var ;

To access the data indicated by *ptr ;

var = *ptr ;

6.2 Pointers To Absolute Addresses

In embedded C, ROM, RAM and peripherals are at fixed addresses. This immediately raises the question of how to make 
pointers point at absolute addresses rather than just variables whose address is unknown (and largely irrelevant).

The simplest method is to determine the pointed-at address at compile time:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (3 di 16) [09/11/01 11.03.24]



Pointers in C51

char *abs_ptr = 0x8000 ;  // Declare pointer and force to 
                  //0x8000 immediately

However if the address to be pointed at is only known at run time, an alternative approach is necessary. Simply, an 
uncommitted pointer is declared and then forced to point at the required address thus:

char *abs_ptr ;  // Declare uncommitted pointer

abs_ptr = (char *) 0x8000 ;  // Initialise pointer to 0x8000 *abs_ptr = 0xff ;            
// Write 0xff to 0x8000

*abs_ptr++ ;                 // Make pointer point at next 
                      location in RAM

Please see sections 6.8 and 6.9 for further details on C51 spaced and generic pointers.

6.3 Arrays And Pointers - Two Sides Of The Same Coin?

6.3.1 Uninitialised Arrays

The variables declared via 

unsigned char x ; 
unsigned char y ;

are single 8 bit memory locations. The declarations:

unsigned int a ; 
unsigned int b ;

yield four memory locations, two allocated to 'a' and two to 'b'. In other programming languages it is possible to group similar 
types together in arrays. In basic an array is created by DIM a(10). 

Likewise 'C' incorporates arrays, declared by:

unsigned char a[10] ; 

This has the effect of generating ten sequential locations, starting at the address of 'a'. As there is nothing to the right of the 
declaration, no initial values are inserted into the array. It therefore contains zero data and serves only to reserve ten contiguous 
bytes. 

6.3.2 Initialised Arrays

A more usual instance of arrays would be

unsigned char test_array [] = { 0x00,0x40,0x80,0xC0,0xFF } ; 

where the initial values are put in place before the program gets to "main()". Note that the size of this initialised array is not 
given in the square brackets - the compiler works-out the size automatically.

Another common instance of an array is analogous to the BASIC string as per:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (4 di 16) [09/11/01 11.03.24]



Pointers in C51

A$ = "HELLO!"

In C this equates to:

char test_array[] = { "HELLO!" } ;

In C there is no real distinction between strings and arrays as a C array is just a series of sequential bytes occupied either by a 
string or a series of numbers. In fact the realms of pointers and arrays overlap with strings by virtue of :

char test_array = { "HELLO!" } ; 
char *string_ptr = { "HELLO!" } ;

Case 1 creates a sequence of bytes containing the ASCII equivalent of "HELLO!". Likewise the second case allocates the same 
sequence of bytes but in addition creates a separate pointer called *string_ptr to it. Notice that the "unsigned char" used 
previously has become "char", literally an ASCII character.

The second is really equivalent to:

char test_array = { "HELLO!" } ;

Then at run time:

char arr_ptr = test_array ;  // Array treated as pointer

or; 

char arr_ptr = &test_array[0] ; // Put address of first     
                      // element of array into 
                      // pointer

This again shows the partial interchangeability of pointers and arrays. In English, the first means "transfer address of test_array 
into arr_ptr". Stating an array name in this context causes the array to be treated as a pointer to the first location of the array. 
Hence no "address of" (&) or '*' to be seen. 

The second case reads as "get the address of the first element of the array name and put it into arr_ptr". No implied pointer 
conversion is employed, just the return of the address of the array base.

The new pointer "*arr_ptr" now exactly corresponds to *string_ptr, except that the physical "HELLO!" they point at is at a 
different address.

6.3.3 Using Arrays

Arrays are typically used like this
/* Copy The String HELLO! Into An Empty Array */

unsigned char source_array[] = { "HELLO!" } ; 
unsigned char dest_array[7];
unsigned char array_index ;
unsigned char 

array_index = 0 ;

http://www.esacademy.com/automation/docs/c51primer/c06.htm (5 di 16) [09/11/01 11.03.24]



Pointers in C51

while(array_index < 7) {  // Check for end of array

dest_array[array_index] = source_array[array_index] ;      
    //Move character-by-character into destination array
    
    array_index++ ;
   }

The variable array_index shows the offset of the character to be fetched (and then stored) from the starts of the arrays.

As has been indicated, pointers and arrays are closely related. Indeed the above program could be re-written thus:

/* Copy The String HELLO! Into An Empty Array */

char *string_ptr = { "HELLO!" } ;
unsigned char dest_array[7] ;
unsigned char array_index  ;
unsigned char

array_index = 0 ;

while(array_index < 7) {      // Check for end of array

dest_array[array_index] = string_ptr[array_index] ;  // Move character-by-character 
into destination array.
array_index++ ;
   }

The point to note is that by removing the '*' on string_ptr and appending a '[ ]' pair, this pointer has suddenly become an array! 
However in this case there is an alternative way of scanning along the HELLO! string, using the *ptr++ convention:

array_index = 0 ;

while(array_index < 7) { // Check for end of array

 dest_array[array_index] = *string_ptr++ ; // Move character-by-character into 
destination array.
 array_index++ ;
   }

This is an example of C being somewhat inconsistent; this *ptr++ statement does not mean "increment the thing being pointed 
at" but rather, increment the pointer itself, so causing it to point at the next sequential address. Thus in the example the 
character is obtained and then the pointer moved along to point at the next higher address in memory.

6.3.4 Summary Of Arrays And Pointers

To summarise

Create An Uncommitted Pointer

unsigned char *x_ptr ; 

Create A Pointer To A Normal C Variable

http://www.esacademy.com/automation/docs/c51primer/c06.htm (6 di 16) [09/11/01 11.03.24]



Pointers in C51

unsigned char x ; unsigned char *x_ptr = &x ;

Create An Array With No Initial Values

unsigned char x_arr[10] ;

Create An Array With Initialised Values

unsigned char x_arr[] = { 0,1,2,3 } ;

Create An Array In The Form Of A String

char x_arr[] = { "HELLO" } ;

Create A Pointer To A String

char *string_ptr = { "HELLO" } ;

Create A Pointer To An Array

char x_arr[] = { "HELLO" } ; char *x_ptr = x_arr

Force A Pointer To Point At The Next Location

*ptr++ ;

6.4 Structures

Structures are perhaps what makes C such a powerful language for creating very complex programs with huge amounts of 
data. They are basically a way of grouping together related data items under a single symbolic name.

6.4.1 Why Use Structures?

Here is an example: A piece of C51 software had to perform a linearisation process on the raw signal from a variety of 
pressure sensors manufactured by the same company. For each sensor to be catered for there is an input signal with a span and 
offset, a temperature coefficient, the signal conditioning amplifier, a gain and offset. The information for each sensor type 
could be held in "normal" constants thus:

unsigned char sensor_type1_gain = 0x30 ; 
unsigned char sensor_type1_offset = 0x50 ; 
unsigned char sensor_type1_temp_coeff = 0x60 ; 
unsigned char sensor_type1_span = 0xC4 ; 
unsigned char sensor_type1_amp_gain = 0x21 ;

unsigned char sensor_type2_gain = 0x32 ; 
unsigned char sensor_type2_offset = 0x56 ; 
unsigned char sensor_type2_temp_coeff = 0x56 ; 
unsigned char sensor_type2_span = 0xC5 ; 
unsigned char sensor_type2_amp_gain = 0x28 ;
unsigned char sensor_type3_gain = 0x20 ; 
unsigned char sensor_type3_offset = 0x43 ; 
unsigned char sensor_type3_temp_coeff = 0x61 ; 
unsigned char sensor_type3_span = 0x89 ; 
unsigned char sensor_type3_amp_gain = 0x29 ;

http://www.esacademy.com/automation/docs/c51primer/c06.htm (7 di 16) [09/11/01 11.03.24]



Pointers in C51

As can be seen, the names conform to an easily identifiable pattern of:

unsigned char sensor_typeN_gain = 0x20 ; 
unsigned char sensor_typeN_offset = 0x43 ; 
unsigned char sensor_typeN_temp_coeff = 0x61 ; 
unsigned char sensor_typeN_span = 0x89 ; 
unsigned char sensor_typeN_amp_gain = 0x29 ;

Where 'N' is the number of the sensor type. A structure is a neat way of condensing this type is related and repeating data. 

In fact the information needed to describe a sensor can be reduced to a generalised:

unsigned char gain ; 
unsigned char offset ; 
unsigned char temp_coeff ; 
unsigned char span ; 
unsigned char amp_gain ;

The concept of a structure is based on this idea of generalised "template" for related data. In this case, a structure template (or 
"component list") describing any of the manufacturer's sensors would be declared:

struct sensor_desc {unsigned char gain ;
              unsigned char offset ;
              unsigned char temp_coeff ;
              unsigned char span ;
              unsigned char amp_gain ; } ;

This does not physically do anything to memory. At this stage it merely creates a template which can now be used to put real 
data into memory. 

This is achieved by:

struct sensor_desc sensor_database ;

This reads as "use the template sensor_desc to layout an area of memory named sensor_database, reflecting the mix of data 
types stated in the template". Thus a group of 5 unsigned chars will be created in the form of a structure. 

The individual elements of the structure can now be accessed as:

sensor_database.gain = 0x30 ; 
sensor_database.offset = 0x50 ; 
sensor_database.temp_coeff = 0x60 ; 
sensor_database.span = 0xC4 ; 
sensor_database.amp_gain = 0x21 ;

6.4.2 Arrays Of Structures

In the example though, information on many sensors is required and, as with individual chars and ints, it is possible to declare 
an array of structures. This allows many similar groups of data to have different sets of values.

http://www.esacademy.com/automation/docs/c51primer/c06.htm (8 di 16) [09/11/01 11.03.24]



Pointers in C51

struct sensor_desc sensor_database[4] ;

This creates four identical structures in memory, each with an internal layout determined by the structure template. Accessing 
this array is performed simply by appending an array index to the structure name:

/*Operate On Elements In First Structure Describing */
/*Sensor 0 */

sensor_database[0].gain = 0x30 ; 
sensor_database[0].offset = 0x50 ; sensor_database[0].temp_coeff = 0x60 ; 
sensor_database[0].span = 0xC4 ; 
sensor_database[0].amp_gain = 0x21 ;

/* Operate On Elements In First Structure Describing */
/*Sensor 1 */

sensor_database[1].gain = 0x32 ; 
sensor_database[1].offset = 0x56 ;

 
sensor_database[1].temp_coeff = 0x56 ; 
sensor_database[1].span = 0xC5 ; 
sensor_database[1].amp_gain = 0x28 ;

and so on...

6.4.3 Initialised Structures

As with arrays, a structure can be initialised at declaration time

struct sensor_desc sensor_database = { 0x30, 0x50, 0x60,     
                             0xC4, 0x21 } ;

so that here the structure is created in memory and pre-loaded with values.

The array case follows a similar form:

struct sensor_desc sensor_database[4] = {{0x30,0x50,0x60, 
                            0xC4, 0x21 },
                                         
{ 0x32,0x56,0x56,0xC5,0x28 ; }  
} ;

6.4.4 Placing Structures At Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, the registers of a 
memory-mapped real time clock chip are to be grouped together as a structure. The template in this instance might be

Contents Of RTCBYTES.C Module
         
    struct RTC { unsigned char seconds ;
             unsigned char minutes ;
             unsigned char hours   ; 
             unsigned char days    ; 
} ;

http://www.esacademy.com/automation/docs/c51primer/c06.htm (9 di 16) [09/11/01 11.03.24]



Pointers in C51

struct RTC xdata RTC_chip ;  // Create xdata structure

A trick using the linker is required here so the structure creation must be placed in a dedicated module. This module's XDATA 
segement, containing the RTC structure, is then fixed at the required address at link time.

Using the absolute structure could be:

/* Structure located at base of RTC Chip */

MAIN.C Module

extern xdata struct RTC_chip ;

/* Other XDATA Objects */

xdata unsigned char time_secs, time_mins ;

void main(void) {

time_secs = RTC_chip.seconds ; 
time_mins = RTC_chip.minutes;
}

Linker Input File To Locate RTC_chip structure over real RTC Registers is:

l51 main.obj,rtcbytes.obj XDATA(?XD?RTCBYTES(0h))

See section 7.6 for further examples of this placement method.

6.4.5 Pointers To Structures

/* Define pointer to structure */

Pointers can be used to access structures, just as with simple data items. Here is an example:

struct sensor_desc *sensor_database ;  

/* Use Pointer To Access Structure Elements */

sensor_database->gain = 0x30 ;
sensor_database->offset = 0x50 ; 
sensor_database->temp_coeff = 0x60 ; 
sensor_database->span = 0xC4 ; 
sensor_database->amp_gain = 0x21 ;

Note that the '*' which normally indicates a pointer has been replaced by appending '->' to the pointer name. Thus '*name' and 
'name->' are equivalent.

6.4.6 Passing Structure Pointers To Functions

A common use for structure pointers is to allow them to be passed to functions without huge amounts of parameter passing; a 
typical structure might contain 20 data bytes and to pass this to a function would require 20 parameters to either be pushed 
onto the stack or an abnormally large parameter passing area. By using a pointer to the structure, only the two or three bytes 
that constitute the pointer need be passed. This approach is recommended for C51 as the overhead of passing whole structures 

http://www.esacademy.com/automation/docs/c51primer/c06.htm (10 di 16) [09/11/01 11.03.24]



Pointers in C51

can tie the poor old 8051 CPU in knots!

This would be achieved thus:

struct sensor_desc *sensor_database ;

sensor_database-> gain = 0x30 ; 
sensor_database-> offset = 0x50  ; 
sensor_database-> temp_coeff = 0x60 ; 
sensor_database-> span = 0xC4 ; 
sensor_ database- >amp_gain = 0x21 ;

test_function(*struct_pointer) ;

test_function(struct sensor_desc *received_struct_pointer) {
   received_struct_pointer->gain = 0x20 ;
   received_struct_pointer->temp_coef = 0x40 ;
   }

Advanced Note: Using a structure pointer will cause the called function to operate directly on the structure rather than on a 
copy made during the parameter passing process.

6.4.7 Structure Pointers To Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, a memory-mapped real 
time clock chip is to be handled as a structure. An alternative approach to that given in section 6.4.4. is to address the clock 
chip via a structure pointer. 

The important difference is that in this case no memory is reserved for the structure - only an "image" of it appears to be at the 
address.

The template in this instance might be:

/* Define Real Time Clock Structure */

struct RTC {char seconds ;
        char mins ;
        char hours ;
        char days ; } ;
             
/* Create A Pointer To Structure */

struct RTC xdata *rtc_ptr ;  // 'xdata' tells C51 that this 
                     //is a memory-mapped device.

void main(void) {
   rtc_ptr = (void xdata *) 0x8000 ;  // Move structure 
                          // pointer to address 
                          //of real time clock at 
                          // 0x8000 in xdata

    rtc_ptr->seconds = 0 ;  // Operate on elements
    rtc_ptr->mins = 0x01 ;
   }

http://www.esacademy.com/automation/docs/c51primer/c06.htm (11 di 16) [09/11/01 11.03.24]



Pointers in C51

This general technique can be used in any situation where a pointer-addressed structure needs to be placed over a specific IO 
device. However it is the user's responsibility to make sure that the address given is not likely to be allocated by the linker as 
general variable RAM!

To summarize, the procedure is: 

1.  Define template 
2.  Declare structure pointer as normal 
3.  At run time, force pointer to required absolute address in the normal way.

6.5 Unions

A union is similar in concept to a structure except that rather than creating sequential locations to represent each of the items in 
the template, it places each item at the same address. Thus a union of 4 bytes only occupies a single byte. A union may consist 
of a combination of longs, char and ints all based at the same physical address.

The the number of bytes of RAM used by a union is simply determined by the size of the largest element, so:

union test { char x ;
             int y  ;
             char a[3] ;
             long z ; 
} ;

requires 4 bytes, this being the size of a long. The physical location of each element is:

addr _ 0   x byte  y high byte a[0]  z highest byte
       +1           y low byte a[1]  z byte
       +2                      a[2]  z byte
       +3                      a[3]  z lowest byte

Non-8051 programmers should see the section on byte ordering in the 8051 if they find the idea of the MSB being at the low 
address odd!

In embedded C the commonest use of a union is to allow fast access to individual 
bytes of longs or ints.  These might be 16 or 32 bit real time counters, as in this 
example:

/* Declare Union */

union clock {long real_time_count ; // Reserve four byte
    int real_time_words[2] ;      // Reserve four bytes as 
                        // int array
    char real_time_bytes[4] ;     // Reserve four bytes as
                          // char array
      } ;

/* Real Time Interrupt */

void timer0_int(void) interrupt 1 using 1 {

    clock.real_time_count++ ;       // Increment clock
   
    if(clock.real_time_words[1] == 0x8000) { // Check
                    // lower word only for value

http://www.esacademy.com/automation/docs/c51primer/c06.htm (12 di 16) [09/11/01 11.03.24]



Pointers in C51

    /* Do something! */
    }

    if(clock.real_time_bytes[3] == 0x80) {  // Check most 
                   // significant byte only for value
  
    /* Do something! */
    }
      
    }

6.6 Generic Pointers

C51 offers two basic types of pointer, the spaced (memory-specific) and the generic. Up to version 3.00 only generic pointers 
were available.

As has been mentioned, the 8051 has many physically separate memory spaces, each addressed by special assembler 
instructions. Such characteristics are not peculiar to the 8051 - for example, the 8086 has data instructions which operate on a 
16 bit (within segment) and a 20 bit basis.

For the sake of simplicity, and to hide the real structure of the 8051 from the programmer, C51 uses three byte pointers, rather 
than the single or two bytes that might be expected. The end result is that pointers can be used without regard to the actual 
location of the data.

For example:

 
 xdata char buffer[10] ;
 code char message[] = { "HELLO" } ; 
void main(void) {
       char *s ;
       char *d ;
   
       s = message ;
       d = buffer ;
 
       while(*s != '\0') { 
          *d++ = *s++ ;
          }
   }

Yields:

    RSEG  ?XD?T1 
buffer:            DS  10
    RSEG  ?CO?T1 
message:
    DB  'H' ,'E' ,'L' ,'L' ,'O' ,000H
; 
; 
; xdata char buffer[10] ; 
; code char message[] = { "HELLO" } ; 
; 
;    void main(void) {
    RSEG  ?PR?main?T1
    USING    0
main:

http://www.esacademy.com/automation/docs/c51primer/c06.htm (13 di 16) [09/11/01 11.03.24]



Pointers in C51

            ; SOURCE LINE # 6
; 
;       char *s ; 
;       char *d ; 
;   
;       s = message ;
            ; SOURCE LINE # 11
    MOV      s?02,#05H
    MOV      s?02+01H,#HIGH message
    MOV      s?02+02H,#LOW message
;       d = buffer ;
            ; SOURCE LINE # 12
    MOV      d?02,#02H
    MOV      d?02+01H,#HIGH buffer
    MOV      d?02+02H,#LOW buffer
?C0001: 
; 
;       while(*s != '\0') { 
            ; SOURCE LINE # 14
    MOV      R3,s?02
    MOV      R2,s?02+01H
    MOV      R1,s?02+02H
    LCALL    ?C_CLDPTR
    JZ       ?C0003
;          *d++ = *s++ ;
            ; SOURCE LINE # 15
    INC      s?02+02H
    MOV      A,s?02+02H
    JNZ      ?C0004
    INC      s?02+01H

?C0004:
    DEC      A
    MOV      R1,A
    LCALL    ?C_CLDPTR
    MOV      R7,A
    MOV      R3,d?02
    INC      d?02+02H
    MOV      A,d?02+02H
    MOV      R2,d?02+01H
    JNZ      ?C0005
    INC      d?02+01H
?C0005:
    DEC      A
    MOV      R1,A
    MOV      A,R7
    LCALL    ?C_CSTPTR
;          }
            ; SOURCE LINE # 16
    SJMP     ?C0001
;       }
            ; SOURCE LINE # 17
?C0003:
    RET      
; END OF main
    END

http://www.esacademy.com/automation/docs/c51primer/c06.htm (14 di 16) [09/11/01 11.03.24]



Pointers in C51

As can be seen, the pointers '*s' and '*d' are composed of three bytes, not two as might be expected. In making *s point at the 
message in the code space an '05' is loaded into s ahead of the actual address to be pointed at. In the case of *d '02' is loaded. 
These additional bytes are how C51 knows which assembler addressing mode to use. The library function C_CLDPTR checks 
the value of the first byte and loads the data, using the addressing instructions appropriate to the memory space being used. 

This means that every access via a generic pointer requires this library function to be called. The memory space codes used by 
C51 are:

CODE  - 05 
XDATA - 02 
PDATA - 03 
DATA  - 05 
IDATA - 01

6.7 Spaced Pointers In C51

Considerable run time savings are possible by using spaced pointers. By restricting a pointer to only being able to point into 
one of the 8051's memory spaces, the need for the memory space "code" byte is eliminated, along with the library routines 
needed to interpret it.

A spaced pointer is created thus:

char xdata *ext_ptr ;

to produce an uncommitted pointer into the XDATA space or

char code *const_ptr ;

which gives a pointer solely into the CODE space. Note that in both cases the pointers themselves are located in the memory 
space given by the current memory model. Thus a pointer to xdata which is to be itself located in PDATA would be declared 
thus:

pdata char xdata *ext_ptr ;
   |         |
location     |
of pointer   |
        Memory space pointed into
        by pointer

In this example strings are always copied from the CODE area into an XDATA buffer. By customising the library function 
"strcpy()" to use a CODE source pointer and a XDATA destination pointer, the runtime for the string copy was reduced by 
50%. The new strcpy has been named strcpy_x_c().

The function prototype is:

extern char xdata *strcpy(char xdata*,char code *) ; Here is the code produced by the spaced pointer strcpy(): 

; char xdata *strcpy_x_c(char xdata *s1, char code *s2)  {
_strcpy_x_c:
    MOV      s2?10,R4
    MOV      s2?10+01H,R5

http://www.esacademy.com/automation/docs/c51primer/c06.htm (15 di 16) [09/11/01 11.03.24]



Pointers in C51

;__ Variable 's1?10' assigned to Register 'R6/R7' __
;   unsigned char i = 0;
;__ Variable 'i?11' assigned to Register 'R1' __
    CLR      A
    MOV      R1,A
?C0004:
; 
;   while ((s1[i++] = *s2++) != 0);
    INC      s2?10+01H
    MOV      A,s2?10+01H
    MOV      R4,s2?10
    JNZ      ?C0008
    INC      s2?10
?C0008:
    DEC      A
    MOV      DPL,A
    MOV      DPH,R4
    CLR      A
    MOVC     A,@A+DPTR
    MOV      R5,A
    MOV      R4,AR1
    INC      R1
    MOV      A,R7
    ADD      A,R4
    MOV      DPL,A
    CLR      A
    ADDC     A,R6
    MOV      DPH,A
    MOV      A,R5
    MOVX     @DPTR,A
    JNZ      ?C0004
?C0005: 
;   return (s1);
; }
?C0006:
    END

Notice that no library functions are used to determine which memory spaces are intended. The function prototype tells C51 
only to look in code fot the string and xdata for the RAM buffer.

  

http://www.esacademy.com/automation/docs/c51primer/c06.htm (16 di 16) [09/11/01 11.03.24]



Accessing External Memory Mapped

  

7 Accessing External Memory Mapped

Peripherals

Commonly, extra IO ports are added to 8051s to compensate for the loss of Ports 0 and 2. This is normally done by making 
the additional device(s) appear to be just external RAM bytes. Thus they are addressed by the MOVX A,@DPTR 
instruction. Typically UARTS, additional ports and real time clock devices are added to 8031s as xdata-mapped devices.

The simplest approach to adding external devices is to attach the /RD and or /WR lines to the device. Provided that only one 
device is present and that it only has one register, no address decoding is necessary. To access this device from C simply 
prefix an appropriately named variable with "xdata". This will cause the compiler to use MOVX A,@DTPR instructions 
when getting data in or out. In actual fact the linker will try to allocate a real address to this but, as no decoding is present, 
the device will simply be enabled by /WR or /RD.

In practice life is rarely this simple. Usually a mixture of RAM, UARTS, ports, EEPROM and other devices may all be 
attached to the 8031 by being mapped into the xdata space. Some sort of decoding is provided by discrete logic or (more 
usually) a PAL.

Here the various registers of the different devices will appear at fixed locations in the xdata space. With normal on-chip 
resources the simple "data book" name can be used to access them, so ideally these external devices should be the same.

There are three basic approaches to this: 

1.  Use normal variables, char, ints etc, located by the linker
2.  Use pointers and offsets, either via the XBYTE macros or directly with user-defined pointers.
3.  Use the _At_ and _ORDER directives.

In detail, these may be implemented as shown in the following sections.

7.1 The XBYTE And XWORD Macros

To allow memory-mapped devices to be accessed from C, a method is required to effectively force pointers to point to fixed 
addresses. C51 provides many methods of achieving this, the simplest of which are the XBYTE[addr16] and 
XWORD[addr16] macros

For instance:

The byte wide PORT8_DDI register of a memory mapped IO device is at 8000H. To access it from C it must be declared 
thus:

    #include "absacc.h";   /*Contains macro definitions */
    #define port8_ddi   XBYTE[0x8000]
    #define port8_data  XBYTE[0x8001]

To use it then,

    port8_ddi = 0xFF       ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (1 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

    input_val = port8_data ;

To access a word at an even external address:

    #define word_reg XWORD[0x4000] 
    /* gives a word variable at 8000H */

Ignoring the pre-defined XWORD macro, the equivalent C line is:

    #define word_reg_ptr ((unsigned int *) 0x24000L)
    /*creates a pointer to a word (int) at address 8000H*/

To use this address then,

    *word_reg_ptr = 0xFFFF ;

Note that the address 8000H corresponds to 4000H words, hence the " 0x24000L ".

Here are some examples with the code produced:

#define XBYTE ((unsigned char volatile *) 0x20000L) 
#define XWORD ((unsigned int volatile *) 0x20000L)

main() {

char x ;
 int y ;

x = XBYTE[0x8000]       ;

0000 908000        MOV     DPTR,#08000H
0003 E0            MOVX    A,@DPTR
0004 FF            MOV     R7,A
0005 8F00    R     MOV     x,R7

y = XWORD[0x8000/sizeof(int)] ;
} 
0007 908000        MOV     DPTR,#08000H
000A E0            MOVX    A,@DPTR
000B FE            MOV     R6,A
000C A3            INC     DPTR
000D E0            MOVX    A,@DPTR
000E FF            MOV     R7,A
000F 8E00    R     MOV     y,R6
0011 8F00    R     MOV     y+01H,R7
}
0013         ?C0001: 
0013 22            RET     

However the address indicated by "word_reg" is fixed and can only be defined at compile time, as the contents of the square 
brackets may only be a constant. Any alteration to the indicated address is not possible with these macro-based methods. 
This approach is therefore best suited to addressing locations that are fixed in hardware and unlikely to change at run time.

Note the use of the volatile storage class modifier. This is essential to prevent the optimiser removing data reads from 
external ports. 

http://www.esacademy.com/automation/docs/c51primer/c07.htm (2 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

See section 7.4 for more details.

Note: the header file "absacc.h" must be included at the top of the source file as shown above. This contains the prototype 
for the XBYTE macro. (see page 9-15 in the C51 manual)

7.2 Initialised XDATA Pointers

In many cases the external address to be pointed at is known at compile time but may need to be altered at some point 
during execution. Thus some method of making a pointer point at an intial specific external address is required.

Probably the simplest way of setting up such a pointer is to let the C_INIT program set the pointer to a location. However 
the initial address must be known at compile time. If the pointer is to be altered at run time, just equate it (without the "*" at 
run time) to the new address.

Note: this automatic initialisation was not supported on earlier versions of C51.

Simply do:

/* Spaced pointer */

  xdata char xdata *a_ptr = 0x8000 ;

/* Generic Pointer */

  xdata char *a_ptr = 0x028000L ;

Here the pointer is setup to point at xdata address 0x8000. Note that the spaced *a_ptr can only point at xdata locations as a 
result of the second xdata used in its declaration. In the generic *a_ptr case, the "02" tells C51 that an xdata address is 
intended.

An example might be:

   6             xdata char xdata *ptr = 0x8000 ;
   7          
   8          
   9             main() {
  11   1         char x ;
  13   1         ptr += 0xf0 ;

0000 900000  R     MOV     DPTR,#ptr+01H
0003 E0            MOVX    A,@DPTR
0004 24F0          ADD     A,#0F0H
0006 F0            MOVX    @DPTR,A
0007 900000  R     MOV     DPTR,#ptr
000A E0            MOVX    A,@DPTR
000B 3400          ADDC    A,#00H
000D F0            MOVX    @DPTR,A

  15   1         x = *ptr ;
  16   1      
  17   1         }

000E E0            MOVX    A,@DPTR
000F FE            MOV     R6,A

http://www.esacademy.com/automation/docs/c51primer/c07.htm (3 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

0010 A3            INC     DPTR
0011 E0            MOVX    A,@DPTR
0012 F582          MOV     DPL,A
0014 8E83          MOV     DPH,R6
0016 E0            MOVX    A,@DPTR
0017 F500    R     MOV     x,A

  17   1         }

0019 22            RET     

7.3 Run Time xdata Pointers

The situation often occurs that you need to point at addresses in the xdata space which are only known at run time. Here the 
xdata pointer is setup in the executable code. 

The best way to achieve this is to declare an "uncommitted" pointer at compile time and to then equate it to an address when 
running:

char xdata *xdata_ptr ;   /* Uncommitted pointer */
                    /* to xdata memory */
main() {
     
xdata_ptr=(char xdata*) 0x8000 ; /*Point at 0x8000 in */
                                   /*xdata */
}

An alternative is to declare a pointer to the xdata space and simply equate it to a variable. 

Here is an example:

   char xdata *ptr ; /* This is a spaced pointer!!! */

   main(){

   start_address = 0x8000 ;  /*Variable containing address*/
                    /*to be pointed to */

0000 750080  R     MOV     start_address,#080H
0003 750000  R     MOV     start_address+01H,#00H

   ptr = start_address ; 

000C AE00    R     MOV     R6,start_address
000E AF00    R     MOV     R7,start_address+01H
0010 8E00    R     MOV     ptr,R6
0012 8F00    R     MOV     ptr+01H,R7
0014         ?C0001:

   while(1) {

   x = *ptr++ ;

0014 0500    R     INC     ptr+01H
0016 E500    R     MOV     A,ptr+01H
0018 AE00    R     MOV     R6,ptr
001A 7002          JNZ     ?C0004

http://www.esacademy.com/automation/docs/c51primer/c07.htm (4 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

001C 0500    R     INC     ptr
001E         ?C0004:
001E 14            DEC     A
001F FF            MOV     R7,A

0020 8F82          MOV     DPL,R7
0022 8E83          MOV     DPH,R6
0024 E0            MOVX    A,@DPTR
0025 FF            MOV     R7,A
0026 8F00    R     MOV     x,R7
   }
0028 80EA          SJMP    ?C0001
002A         ?C0002:
  }
002A         ?C0003: 
002A 22            RET     
 
A variation of this is to declare a pointer to zero and use a variable as an offset 
thus:

char xdata *ptr ;

main() {

unsigned int i ; 
unsigned char x ;

ptr = (char*) 0x0000 ;

for(i = 0 ; 
i < 0x40 ; 
i++) {
   x = ptr[i] ;
   }
}

This results in rather more code, as an addition to the pointer must be performed within each loop.

7.4 The volatile Storage Class

A common situation with external devices is that values present in their registers change without the cpu taking any action. 
A good example is a real time clock chip - the time changes continuously without the cpu writing anything.

Consider the following:

unsigned int xdata *milliseconds = 0x8000 ;  // Pointer to 
                               // RTC chip

time = *milliseconds ;  -> (1)  // Get RTC register value

x = array[time] ;     

time = *milliseconds ;  -> (2)  // Second register access 
                        // optimised out!

y = array[time] ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (5 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

Here the value retrieved from the array is related to the value of *milliseconds, a register in an external RTC.

If this is compiled it will not work. Why? Well the compiler's optimiser shoots itself in the foot by assuming that, because 
no WRITE occurred between (1) and (2), *millisec cannot have changed. Hence all the code generated to make the second 
access to the register is optimised out and so y == x!

The solution is declare *milliseconds as "volatile" thus:

unsigned int volatile xdata *milliseconds = 0x8000 ;

Now the optimiser will not try to remove subsequent accesses to the register.

7.5 Placing Variables At Specific Locations -

The Linker Method

A final method of establishing external variables at fixed addresses, especially arrays, is by using the linker rather than the 
compiler. For example, to produce a 10 character array in external memory, starting at 8000H, the following steps are 
necessary:

/*** Module 1 ***/

/* This module contains only data declarations! */

xdata unsigned char array[30] ;

/* End Module 1 */

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

/*** Module 2 ***/

/* This module contains the executable statements */

extern xdata unsigned char array[10] ;

   main()

   {
   unsigned char i ;

   i = array[i] ;

   }

Now by linking with the invocation:

L51 module1.obj, module2.obj XDATA (?XD?module1 (8000H))

the linker will make the XDATA segment in Module 1 (indicated by ?XD?module1) start at 8000H, regardless of other 
xdata declarations elsewhere. Thus the array starts at 8000H and is 10 bytes (+ null terminator) long.

This approach lacks the flexibility of the above methods but has the advantage of making the linker reserve space in the 
XDATA space. 

http://www.esacademy.com/automation/docs/c51primer/c07.htm (6 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

Similar control can be exercised over the address of segments in other memory spaces. C51 uses the following convention 
for segment names:

CODE   ?PR?functionname?module_name  (executable code) 
CODE   ?CO?functionname?module_name  (lookup tables etc.) 
BIT    ?BI?functionname?module_name 
DATA   ?DT?functionname?module_name 
XDATA  ?XD?functionname?module_name 
PDATA  ?PD?functionname?module_name

Thus the parameter receiving area of a LARGE model function 'test()' in module MOD1.C would be:

?XD?TEST?MOD1,

The code is:

?PR?TEST?MOD1

And so on.

A knowledge of this is useful for assembler interfacing to C51 programs. See section 14. 

7.6 Excluding External Data Ranges From Specific

Areas

This very much follows on from the previous section. Occasionally a memory-mapped device, such as real time clock chip, 
is used as both a source of time values and RAM. Typically the first 8 bytes in the RTC's address range are the time counts, 
seconds, minutes etc. whilst the remaining 248 bytes are RAM.

Left to its own devices, the L51 linker will automatically place any xdata variables starting at zero. If the RTC has been 
mapped at this address a problem occurs, as the RTC time registers are overwritten. In addition, it would be convenient to 
allow the registers to be individually named.

One approach is to define a special module containing just a structure which describes the RTC registers. In the main 
program the RTC registers are accessed as elements in the structure. The trick is that, when linking, the XDATA segment 
belonging to the special module is forced to a specific address, here zero. This results in the RTC structure being at zero, 
with any other XDATA variables following on. The basic method could also be used to stop L51 locating any variables in a 
specific area. 

Example Of Excluding Specific Areas From L51

/* Structure located at base of RTC Chip */

MAIN.C Module

extern xdata struct {   unsigned char seconds ;
                unsigned char minutes ;
                unsigned char hours   ;
                unsigned char days    ; } RTC_chip ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (7 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

/* Other XDATA Objects */

xdata unsigned char time_secs, time_mins ;

void main(void) {

time_secs = RTC_chip.seconds ; 
time_mins = RTC_chip.minutes ;

}

RTCBYTES.C Module

xdata struct { unsigned char seconds ;
               unsigned char minutes ;
               unsigned char hours   ;
               unsigned char days    ; } RTC_chip ;

Linker Input File To Locate RTC_chip structure over real RTC Registers is:

l51 main.obj,rtcbytes.obj XDATA(?XD?RTCBYTES(0h))

7.7 -missing ORDER and AT now in C51

Perhaps the most curious omission from C51 was the inability to fix the address of a data object at an absolute address from 
the source file. Whilst there have always been methods of achieving the same effect, users have long requested an extension 
to allow the address of an object to be included in the original declaration. In C51 v4.xx, the new _AT_control now exists.

7.8 Using The_at_and_ORDER_Controls

Here, the order of the variables must not change as it must match the physical location of the real time clock’s registers. The 
#pragma ORDER tells c51 to place the data objects at ascending addresses, with the first item at the lowest address. The 
linker must then be used to fix the address of the whole block in memory.

Source File MAIN.C

#pragma ORDER
unsigned char xdata RTC_secs ;
unsigned char xdata RTC_mins ;
unsigned char xdata RTC_hours ;

main() {   RTC_mins = 1 ; }

Linker Input File MAIN.LIN

main.obj & to main & XDATA(?XD?MAIN(0fa00h))

The alternative_at_control forces C51 to put data objects at an address given in the source file:

/** Fix Real Time Clock Registers Over Memory-Mapped Device **/
/** Fix each item individually **/
unsigned char xdata RTC_secs _at_ 0xfa00 ;

http://www.esacademy.com/automation/docs/c51primer/c07.htm (8 di 9) [09/11/01 11.03.29]



Accessing External Memory Mapped

unsigned char xdata RTC_mins _at_ 0xfa01 ;
unsigned char xdata RTC_hours _at_ 0xfa02 ;

main()   {    RTC_mins = 1 ;
      }

...which hopefully is self-explanatory!

  

http://www.esacademy.com/automation/docs/c51primer/c07.htm (9 di 9) [09/11/01 11.03.29]



Linking Issues and Stack Placement

  

8 Linking Issues And Stack Placement

This causes some confusion, especially to those used to other compiler systems. 

8.1 Basic Use Of L51 Linker

The various modules of a C program are combined by a linker. After compilation no actual addresses are assigned to 
each line of code produced, only an offset is generated from the start of the module. Obviously before the code can be 
executed each module must be tied to a unique address in the code memory. This is done by the linker.

L51, in the case of Keil (RL51 for Intel), is a utility which assigns absolute addresses to the compiled code. It also 
searches library files for the actual code for any standard functions used in the C program. 

A typical invocation of the linker might be:

l51 startup.obj, module1.obj, module2.obj, module3.obj, C51L.lib to exec.abs

Here the three unlocated modules and the startup code (in assembler) are combined. Any calls to library functions in any 
of these files results in the library, C51L.lib, being searched for the appropriate code. 

The target addresses (or offsets) for any JMPs or CALLs are calculated and inserted after the relevant opcodes.

When all five .obj files have been combined, they are placed into another file called EXEC.ABS, the ABS implying that 
this is absolute code that could actually be executed by an 8051 cpu. In addition, a "map" file called EXEC.M51 is 
produced which summarises the linking operation. This gives the address of every symbol used in the program plus the 
size of each module.

In anything other than a very small program, the number of modules to be linked can be quite large, hence the command 
line can become huge and unwieldy. To overcome this the input list can be a simple ASCII text file thus:

   l51 @<input_file>

where input_file = ;

   startup.obj,&
   module1.obj,&
   module2.obj,&
   module3.obj,&
   &
   C51L.lib &
   &
   to exec.abs

There are controls provided in the linker which determine where the various memory types should be placed. 

For instance, if an external RAM chip starts at 4000H and the code memory (Eprom) is at 8000H, the linker must be 

http://www.esacademy.com/automation/docs/c51primer/c08.htm (1 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

given:

l51 startup.obj, module1.obj, module2.obj, module3.obj,
C51L.lib to exec.abs CODE(8000H) XDATA(4000H)

This will move all the variables in external RAM to 4000H and above and all the executable code to 8000H. Even more 
control can be exercised over where the linker places code and data segments. By further specifying the module and 
segment names, specific variables can be directed to particular addresses - see 2.1.8 for an example.

8.2 Stack Placement

Unless you specify otherwise, the linker will place the stack pointer to give maximum stack space. Thus after locating all 
the sfr, compiled stack and data items, the real stack pointer is set to the next available IDATA address. If you use the 
8032 or other variant with 128 bytes of indirectly-addressable memory (IDATA) above 80H, this can be used very 
effectively for stack.

?C_C51STARTUP         SEGMENT   CODE ;Declare segment in indirect 
                                      area
?STACK                SEGMENT   IDATA; 

             RSEG     ?STACK         ; Reserve one byte 
             DS       1
             EXTRN    CODE (?C_START)
             PUBLIC         ?C_STARTUP
             CSEG     AT    0
?C_STARTUP:  LJMP     STARTUP1

             RSEG     ?C_C51STARTUP
STARTUP1: ENDIF
             MOV      SP,#?STACK-1 ; Put address of STACK 
                                     location into SP
             LJMP     ?C_START      ; Goto initialised data 
                                     section

8.3 Using The Top 128 Bytes of the 8052 RAM

The original 8051 design has just 128 bytes of directly/indirectly addressable RAM. C51, when in the SMALL model, 
can use this for variables, arrays, structures and stack. Above 128 (80H) direct addressing will result in access of the sfrs. 
Indirect addressing (MOV A,@R0) does not work.

However with the 8052 and above, the area above 80H can, when indirectly addressed, be used as additional storage. 
The main use of this area is really as stack. Data in this area is addressed by the MOV A,@Ri instruction. As only 
indirect addressing can be used, there can be some loss of efficiency as the Ri register must be loaded with the required 8 
bit address before any access can be made.

Left to its own devices C51 will not use this area other than for stack. Unusually, the 8051 stack grows up through RAM, 
so the linker will place the STACK area at the top of the area taken up with variables, parameter passing segments etc.. If 
your application does not need all the stack area allocated, it is possible to use it for variables. This is simply achieved by 
declaring some variables as "idata" and using "RAMSIZE(256)" when linking.

Such is human nature that most people will not think of using idata until the lower 128 bytes actually overflows and a 
panic-driven search begins for more memory!

http://www.esacademy.com/automation/docs/c51primer/c08.htm (2 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

As has been pointed out, idata variables are rather harder to get at because of the loading of an Ri register first. However 
there is one type of variable which is ideally suited to this - the array or pointer-addressed variable.

The MOV A,@Ri is ideal for array access as the Ri simply contains the array index. Similarly a variable accessed by a 
pointer is catered for, as the @Ri is effectively a pointer. This is especially significant now that version 3.xx supports 
memory space specific pointers. The STACK is now simply moved above these new idata objects.

To summarise, with the 8052 if you are hitting the 128 byte ceiling of the directly addressable space, the moving of 
arrays and pointer addressable objects can free-up large amounts of valuable directly addressable RAM very easily.

8.4 L51 Linker Data RAM Overlaying

8.4.1 Overlaying Principles

One of the main tricks used to allow large programs to be generated within an 8051 is the OVERLAY function. This is a 
mechanism whereby different program variables make use of the same RAM location(s). This possibility arises when 
automatic local variables are declared. These by definition only have significance during the execution of the function 
within which they were defined. Once the function is exited the area of RAM used by them is no longer required. Of 
course static locals must remain intact until the function is next called. A similar situation exists for C51's reserved 
memory areas used for parameter passing.

Taken over a complete program, each function will have a certain area of memory reserved for its locals and parameters. 
Within the confines of an 8051 the on-chip RAM would soon be exhausted. 

The possibility then arises for these individual areas to be combined into a single block, capable of supplying enough 
RAM for the needs of the single biggest function.

In C51 this process is performed by the linker's OVERLAY function. In simple terms, this examines all functions and 
generates a special data segment called "DATA_GROUP", able to contain all the local variables and parameters of all 
C51 functions. As an example, if most functions require only 4 byes of local data but one particular one needs 10, the 
DATA_GROUP will be 10 bytes long.

Using the registers as a location for temporary data means that a large number of locals and parameters can be 
accommodated without recourse to the DATA_GROUP - this is why it may appear smaller than you expect.

The overlayer works on the basis that if function 1 calls function 2, then their respective local data areas may not be 
overlaid, as both must be active at the same time. A third function 3, which is also called by 1, may have its locals 
overlaid with 2, as the two cannot be running at the same time.

            main
             |
            funcA - func2 - func3 - func4
             |
            funcB - func5 - func6 - func7
             |
            funcC - func8 - func9 - func10
             |  

As funcA refers to func2 and func2 refers to func3 etc., A,2,3 and 4 cannot have their locals overlaid, as they all form 
part of the same path. Likewise, as funcB refers to func5 and func6 refers to func7 etc., B,6,7 and 4 cannot have their 
locals overlaid. However the groups 2,3,4; 5,6,7 and 8,9,10 may have their locals overlaid as they are never active 
together, being attached to sequential branches of the main program flow. This is the basis of the overlay strategy.

http://www.esacademy.com/automation/docs/c51primer/c08.htm (3 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

However a complication arises with interrupt functions. Since these can occur at any time, they would overwrite the 
local data currently generated by whichever background (or lower priority interrupt) function was running, were they 
also to use the DATA_GROUP. To cope with this, C51 identifies the interrupt functions and called functions and 
allocates them individual local data areas.

8.4.2 Impact Of Overlaying On Program Construction

The general rule used by L51 is that any two functions which cannot be executing simultaneously may have their local 
data overlaid. Re-entrant functions are an extension of this in that a single function may be called simultaneously from 
two different places.

In 99% of cases the overlay function works perfectly but there are some cases where it can give unexpected results.

These are basically: 

1.  Indirectly-called functions using function pointers
2.  Functions called from jump tables of functions
3.  Re-entrant functions (-incorrect or non-declaration thereof)

Under these conditions the linker issues the following warnings:

MULTIPLE CALL TO SEGMENT
UNCALLED SEGMENT
RECURSIVE CALL TO SEGMENT

8.4.2.1 Indirect Function Calls With Function Pointers

(hazardous)

Taking (i) first:

Here func4 and func5 are called from main by an intermediate function called EXECUTE. A pointer to the required 
function is passed. When L51 analyses the program, it cannot establish a direct link between execute and func4/5 
because the function pointer received as a parameter breaks the chain of references - this function pointer is undefined at 
link time. Thus L51 overlays the local segments of func4, func5 and execute as if they were all references from main. 
Refer to the overlay diagram above if in doubt.

The result is that the locals of func4/5 will corrupt the locals used in execute. This is clearly VERY dangerous, especially 
as the overwriting may not be immediately obvious - it may only appear under abnormal operating conditions once the 
code has been delivered. 

#include <reg517.h>
/***********************************************************  
***   OVERLAY HAZARD 1 - Indirectly called functions     ***
***********************************************************/
char func1(void) {    // Function to be called directly
 
char x, y, arr[10] ;

for(x = 0 ; x < 10 ; x++) {
   arr[x] = x ;
   }

http://www.esacademy.com/automation/docs/c51primer/c08.htm (4 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

 
return(x) ; 
}

char func2(void) {   // Function to be called directly
(.... C Code ...) 
}

char func3(void) {   // Function to be called directly
(.... C Code ...) 
return(x) ; 
}

char func4(void) {   // Function to be called indirectly

char x4, y4, arr4[10] ;      // Local variables 

for(x4 = 0 ; x4 < 10 ; x4++) {

   arr4[x4] = x4 ;
   }

return(x4) ; 
}

char func5(void) {   // Function to be called indirectly

char x5, y5, arr5[10] ;      // Local variables 

for(x5 = 0 ; x5 < 10 ; x5++) {

   arr5[x5] = x5 ;
   }

return(x5) ; 
}

/*** Function which does the calling ***/

char execute(fptr)  //Receive pointer to function to be used 
   char (*fptr)() ;
   {

   char tex ;       // Local variables for execute function
   char arrex[10] ;       

   for(tex = 0 ; tex < 10 ; tex++) {
      arrex[tex] = (*fptr)() ;
      }

   return(tex) ;
   }

/*** Declaration of general function pointer ***/

char (code *fp[3])(void) ; 

http://www.esacademy.com/automation/docs/c51primer/c08.htm (5 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

/*** Main Calling Function ***/

void main(void) {

   char am ;

   fp[0] = func1 ;     // Point array elements at functions
   fp[1] = func2 ;
   fp[2] = func3 ;

   am = fp[0] ;        // Execute functions
   am = fp[1] ;
   am = fp[2] ;

   if(P1) {            // Control which function is called

      am = execute(func4) ; // Tell execute function which 
                    to run
      }
   else {

      am = execute(func5) ; // Tell execute function which 
                    to run
      }
   }

Resulting Linker Output .M51 File for the dangerous condition.

MS-DOS MCS-51 LINKER / LOCATER  L51 V2.8, INVOKED BY: L51 MAIN.OBJ TO EXEC.ABS

OVERLAY MAP OF MODULE:   EXEC.ABS (MAIN)
                                //overlaid with    

SEGMENT                          DATA-GROUP 
  +_> CALLED SEGMENT          START    LENGTH

?C_C51STARTUP                  
  +_> ?PR?MAIN?MAIN

?PR?MAIN?MAIN                  000EH    0001H
  +_> ?PR?FUNC1?MAIN
  +_> ?PR?FUNC2?MAIN
  +_> ?PR?FUNC3?MAIN
  +_> ?PR?FUNC4?MAIN
  +_> ?PR?_EXECUTE?MAIN
  +_> ?PR?FUNC5?MAIN

?PR?FUNC1?MAIN                 000FH    000BH

?PR?FUNC2?MAIN                 000FH    000BH

?PR?FUNC3?MAIN                 000FH    000BH    //Danger func4's
                                                 //local
?PR?FUNC4?MAIN                 000FH    000BH    //func4's data 

http://www.esacademy.com/automation/docs/c51primer/c08.htm (6 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

?PR?_EXECUTE?MAIN              000FH    000EH    //execute's, its 
  +_> ?C_LIB_CODE                                //caller!!

?PR?FUNC5?MAIN                 000FH    000BH    //func5's local 
                                                 //data overlaid 
                                                 //with execute's, 
                                                 //its caller!!

RAM Locations Used:

D:0012H         SYMBOL        tex     // execute's locals overlap
D:0013H         SYMBOL        arrex   // func4 and func5's - OK

D:000FH         SYMBOL        y
D:0010H         SYMBOL        arr4

D:000FH         SYMBOL        y5
D:0010H         SYMBOL        arr5

Incidentally, the overlay map shows which functions referred to which other functions. By checking what L51 has found 
against what you expect, overlay hazards may be spotted.

8.4.2.2 Indirectly called functions solution

Use the overlay command when linking thus

main.obj & to exec.abs & OVERLAY(main ; (func4,func5), _execute ! (func4,func5)) 

Note: The tilde sign ';' means: "Ignore the reference to func4/5 from main" The '!' means: "Manually generate a 
reference between intermediate function 'execute' and func4/5 to prevent overlaying of local variables within these 
functions."

Please make sure you understand exactly how this works!!! 

The new linker output is:

MS-DOS MCS-51 LINKER / LOCATER L51 V2.8, INVOKED BY:

L51 MAIN.OBJ TO EXEC.ABS OVERLAY(MAIN ;(FUNC4, FUNC5), _EXECUTE ! (FUNC4, FUNC5))
OVERLAY MAP OF MODULE:   EXEC.ABS (MAIN)

SEGMENT                                 DATA-GROUP 
 +_> CALLED SEGMENT        START       LENGTH
________________________________________________________________

?C_C51STARTUP                  
  +_> ?PR?MAIN?MAIN             -        -        -      -

?PR?MAIN?MAIN                          0024H    0001H    
  +_> ?PR?FUNC1?MAIN            -                        -
  +_> ?PR?FUNC2?MAIN
  +_> ?PR?FUNC3?MAIN
  +_> ?PR?_EXECUTE?MAIN

?PR?FUNC1?MAIN                         0025H    000BH

http://www.esacademy.com/automation/docs/c51primer/c08.htm (7 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

                                -                        -
?PR?FUNC2?MAIN                         0025H    000BH
                                -                        -
?PR?FUNC3?MAIN                         0025H    000BH
                                -                        -
?PR?_EXECUTE?MAIN                      0025H    000EH
  +_> ?C_LIB_CODE

D:0028H         SYMBOL        tex    // Execute's variables 
                                         no longer 
D:0029H         SYMBOL        arrex  // overlaid with func4/
                                         5's

D:0008H         SYMBOL        y
D:0009H         SYMBOL        arr4

D:0013H         SYMBOL        y5
D:0014H         SYMBOL        arr5

*** WARNING 16: UNCALLED SEGMENT,IGNORED FOR OVERLAY     PROCESS
    SEGMENT: ?PR?FUNC4?MAIN

*** WARNING 16: UNCALLED SEGMENT,IGNORED FOR OVERLAY PROCESS
    SEGMENT: ?PR?FUNC5?MAIN

Note: The WARNING 16's show that func4/5 have been removed from the overlay process to remove the hazard. See 
section 8.4.2.6 on the "UNCALLED SEGMENT, IGNORED FOR OVERLAY 

PROCESS" warning.

8.4.2.3 Function Jump Table Warning 

(Non-hazardous)

Here two functions are called an array of function pointers. The array "jump_table" exists in a segment called 
"?CO?MAIN1, i.e. the constant area assigned to module main. The problem arises that the two message string arguments 
to the printf 's are also sited here. This leads to a recursive definition of the function start addresses in the jump table. 

While this is not in itself dangerous, it prevents the real function references from being established and hence the 
overlaying process is inhibited. 

***********************************************************;
*<<<<<<<<<<<<<Recursive Call To Segment Error>>>>>>>>>>>>>>* 
***********************************************************;
#include <stdio.h>
#include <reg517.h>

void func1(void) {
   
   unsigned char i1 ;
   
   for(i1 = 0 ; i1 < 10 ; i1++) {
 
      printf("THIS IS FUNCTION 1\n") ;  // String stored in 

http://www.esacademy.com/automation/docs/c51primer/c08.htm (8 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

                                          ?CO?MAIN1 segment
      }
   }

void func2(void) {
   
   unsigned char i2 ;
   
   for(i2 = 0 ; i2 < 10 ; i2++) {

      printf("THIS IS FUNCTION 2\n") ;  // String stored in 
                                          ?CO?MAIN1 segment
      }
   }

code void(*jump_table[])()={func1,func2}; //Jump table to 
                                            functions,
                                          // table stored in 
                                            ?CO?MAIN1
                                          // segment.
/*** Calling Function ***/

main() {

   (*jump_table[P1 & 0x01])() ;   // Call function via jump 
                                         table in ?CO?MAIN1
    }
    ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

The resulting link output is:

Note: No reference exists between main and func1/2 so the overlay process cannot occur, resulting in wasted RAM.

OVERLAY MAP OF MODULE:   MAIN1 (MAIN1)

MCS-51 LINKER / LOCATER  L51 V2.8 
DATE  04/08/92   PAGE    2
SEGMENT                    BIT-GROUP          DATA-GROUP 
  +_> CALLED SEGMENT   START    LENGTH     START    LENGTH
________________________________________________________________

?C_C51STARTUP            -        -          -         -
  +_> ?PR?MAIN?MAIN1

?PR?MAIN?MAIN1           -        -          -         -    
  +_> ?CO?MAIN1
  +_> ?C_LIB_CODE

?CO?MAIN1                -        -          -         -      
  +_> ?PR?FUNC1?MAIN1
  +_> ?PR?FUNC2?MAIN1

?PR?FUNC1?MAIN1          -        -        0008H    0001H
  +_> ?PR?PRINTF?PRINTF

http://www.esacademy.com/automation/docs/c51primer/c08.htm (9 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

?PR?PRINTF?PRINTF      0020H.0  0001H.1    0009H    0014H
  +_> ?C_LIB_CODE
  +_> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAIN1         -         -       0008H    0001H
  +_> ?PR?PRINTF?PRINTF

*** WARNING 13: RECURSIVE CALL TO SEGMENT
    SEGMENT: ?CO?MAIN1
    CALLER:  ?PR?FUNC1?MAIN1

*** WARNING 13: RECURSIVE CALL TO SEGMENT
    SEGMENT: ?CO?MAIN1
    CALLER:  ?PR?FUNC2?MAIN1

8.4.2.4 Function Jump Table Warning Solution

The solution is to use the OVERLAY command when linking thus

main1.obj & 
to main1.abs & 
OVERLAY(?CO?MAIN1 ~ (func1,func2), main ! (func1,func2))

This deletes the reference to func1 & 2 from the ?CO?MAIN1 segment and inserts the true reference from main to func1 
& func2.

The linker output is now thus:

OVERLAY MAP OF MODULE:   MAIN1.ABS (MAIN1)

SEGMENT                   BIT-GROUP          DATA-GROUP 
  +_> CALLED SEGMENT    START    LENGTH     START    LENGTH
________________________________________________________________

?C_C51STARTUP             -         -          -        -      
  +_> ?PR?MAIN?MAIN1

?PR?MAIN?MAIN1            -         -          -        -  
  +_> ?CO?MAIN1
  +_> ?C_LIB_CODE
  +_> ?PR?FUNC1?MAIN1
  +_> ?PR?FUNC2?MAIN1

?PR?FUNC1?MAIN1           -         -        0008H    0001H
  +_> ?CO?MAIN1
  +_> ?PR?PRINTF?PRINTF

?PR?PRINTF?PRINTF        0020H.0  0001H.1    0009H    0014H
  +_> ?C_LIB_CODE
  +_> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAIN1           -         -        0008H    0001H

http://www.esacademy.com/automation/docs/c51primer/c08.htm (10 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

  +_> ?CO?MAIN1
  +_> ?PR?PRINTF?PRINTF

8.4.2.5 Multiple Call To Segment Warning 

(Hazardous)

This warning generally occurs when a function is called from both the background and an interrupt. This means that 
potentially the interrupt may call the function whilst it is still running, as a result of a background level call. The result 
could be the over-writing of the local data in the background. The fact that the offending function is also overlaid with 
other background functions makes the chances of failure very high. The simplest solution is to declare the function as 
REENTRANT so that the compiler will generate a local stack for parameters and variables. Thus on each call to the 
function, a new set of parameters and local variables are created without destroying any existing ones from the current 
call.

Unfortunately this significantly increases the run time and code produced. Another possibility is to make a second and 
renamed version of the function, one for background use and one for interrupt. This is somewhat wasteful and presents a 
maintenance problem, as you now have effectively two versions of the same piece of code.

In many cases the situation is not a problem, as the user may have ensured that the reentrant use could never occur, but is 
left with the linker warning. However this must be viewed as dangerous, particularly if more than one programmer is 
involved.

#include <stdio.h>
#include <reg517.h>

void func1(void) {
   
   unsigned char i1,a1[15] ;
   
   for(i1 = 0 ; i1 < 10 ; i1++) {
 
      a1[i1] = i1 ; 
      }
   }

void func2(void) {
   
   unsigned char i2,a2[15] ;
   
   for(i2 = 0 ; i2 < 10 ; i2++) {
 

      a2[15] = i2 ;
      }
   }

main() {
   func1() ;
   func2() ;
   }

void timer0_int(void) interrupt 1 {
   func1() ;

http://www.esacademy.com/automation/docs/c51primer/c08.htm (11 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

   } ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

This produces the linker map:

OVERLAY MAP OF MODULE:   MAIN2 (MAIN2)
SEGMENT                          DATA-GROUP 
  +_> CALLED SEGMENT          START    LENGTH

?PR?TIMER0_INT?MAIN2          
  +_> ?PR?FUNC1?MAIN2

?PR?FUNC1?MAIN2               0017H    000FH

?C_C51STARTUP                  
  +_> ?PR?MAIN?MAIN2

?PR?MAIN?MAIN2                
  +_> ?PR?FUNC1?MAIN2
  +_> ?PR?FUNC2?MAIN2

?PR?FUNC2?MAIN2               0017H    000FH

D:0007H         SYMBOL        i1  // Danger!
D:0017H         SYMBOL        a1

D:0007H         SYMBOL        i2
D:0017H         SYMBOL        a2

*** WARNING 15: MULTIPLE CALL TO SEGMENT
    SEGMENT: ?PR?FUNC1?MAIN2
    CALLER1: ?PR?TIMER0_INT?MAIN2
    CALLER2: ?C_C51STARTUP

8.4.2.6 Multiple Call To Segment Solution

The solution is to

(i) Declare func1 as REENTRANT thus:

void func1(void) reentrant {  }

(ii) Use OVERLAY linker option thus:

main2.obj & 
to main2.abs & 
OVERLAY(main ~ func1,timer0_int ~ func1)

to break connection between main and func1 and timer0_int and func1.

OVERLAY MAP OF MODULE:   MAIN2.ABS (MAIN2)

SEGMENT                          DATA-GROUP 
  +_> CALLED SEGMENT          START    LENGTH
___________________________________________________

http://www.esacademy.com/automation/docs/c51primer/c08.htm (12 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

?C_C51STARTUP                   -         -
  +_> ?PR?MAIN?MAIN2        

?PR?MAIN?MAIN2                  -         - 
  +_> ?PR?FUNC2?MAIN2

?PR?FUNC2?MAIN2               0017H    000FH

*** WARNING 16: UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
    SEGMENT: ?PR?FUNC1?MAIN2

This means that the safe overlaying of func1 with other background functions will not occur. Removing the link only 
with the interrupt would solve this:

main2.obj & 
to main2.abs & 
OVERLAY(timer0_int ~ func1)

Another route would be to disable all overlaying but this is likely to eat up large amounts of RAM very quickly and is 
thus a poor solution.

main2.obj & to main2.abs & NOOVERLAY

With the MULTIPLE CALL TO SEGMENT WARNING the only really "safe" solution is to declare func1 as 
REENTRANT, with the duplicate function a good second. The danger of using the OVERLAY command is that a less 
experienced programmer new to the system might not realise that the interrupt is restricted as to when it can call the 
function and hence system quality is degraded.

8.4.3 Overlaying Public Variables

All the preceding examples deal with the overlaying of locals and parameters at a function level. A case occurred 
recently in which the program was split into two distinct halves; the divide taking place very early on. To all intents a_nd 
purposes the 8051 was able to run one of two completely different application programs, based on some user input 
during initialisation. 

Each program half had a large number of public variables, some of which were known to both sides but the majority of 
which were local to one side only. This is almost multitasking.

This type of program structure really needs a new storage class like "GLOBAL", with public meaning available to a 
certain number of modules only. GLOBAL would then be available to all modules. The new C166 supports this type of 
task-based variable scope. Unfortunately C51 does not, so a fix is required.

The linker's OVERLAY command does not help, as it only controls the overlaying of local and parameter data. One 
possible solution uses special modules to declare the publics. Module1 declares the publics for program (task1); 
Module2 declares the publics for program2 (task2). Finally, Module3 declares the publics which are available to both 
sides.

The trick then is to use the linker to fix the data segments on Module1 and Module2 at the same physical address, whilst 
allowing Module3's variables to be placed automatically by the linker.

This solution uses three special modules for declaring the publics:

http://www.esacademy.com/automation/docs/c51primer/c08.htm (13 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

/* Example of creating two sets of public data */
/*in same memory space */

extern void main1(void) ; 
extern void main0(void) ;

/* Main module where system splits into two parts */

void main(void) {
   bit flag ;

   if(flag) {
      main0() ;   // Branch 0
      }
   else {
      main1() ;   // Branch 1
      }
   } ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Module that declares publics for branch 2 */

/* Publics for branch 2 */

unsigned char x2,y2 ; 
unsigned int z2 ; 
char a2[0x30] ;

/* A variable which is accessible from both branches */

extern int common ;  

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

void main0(void) {

   unsigned char c0 ; /* Local - gets overlaid with c1 in*/
                /*other branch */
   x2 = 0x80 ;
   y2 = x2 ;

   c0 = y2 ;

   z2 = x2*y2 ;

   a2[2] = x2 ;

   common = z2 ;

   }

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Module that declares publics for branch 1 */

/* Publics for branch 1 */

http://www.esacademy.com/automation/docs/c51primer/c08.htm (14 di 15) [09/11/01 11.03.37]



Linking Issues and Stack Placement

unsigned char x1,y1 ; 
unsigned int z1 ; 
char a1[0x30] ;

/* A variable which is accessible from both branches */

extern int common ;

void main1(void) {

   char c1 ;

   x1 = 0x80 ;
   y1 = x1 ;

   c1 = y1 ;

   z1 = x1*y1 ;
   a1[2] = x1 ;

   common = z1 ;
 
   }
^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Module that declares variables that both */
/*branches can access */

int common ; /* A variable common to both branches */

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Linker Input */

l51 t.obj,t1.obj,t2.obj,com.obj to t.abs
DATA(?DT?T1(20H),?DT?T2(20H))

The choice of "20H" for the location places the combined segments just above the register banks.

The main problem with this approach is that a DATA overlay warning is produced. This is not dangerous but is 
obviously undesirable. 

  

http://www.esacademy.com/automation/docs/c51primer/c08.htm (15 di 15) [09/11/01 11.03.37]



http://www.esacademy.com/automation/docs/c51primer/c09.htm

  

9 Other C51 Extensions

9.1 Special Function Bits

.v.A frustration for assembler programmers with the old C51 version was the need to use bit masks when testing 
for specific bits with chars and ints, despite there being a good set of bit-orientated assembler instructions within 
the 8051. In version 3, however, it is possible to force data into the bit-addressable area (starting at 0x20) where the 
8051's bit instructions can be used. 

An example is testing the sign of a char by checking for bit = 1.

Here the char is declared as "bdata" thus:

   bdata char test_char ;

sign_bit is defined as:

   sbit sign_bit = test_char ^ 7 ;

to use this:

  
     test_char = counter ;
     if(sign_bit) { /* test_char is negative */ }

the opcodes executed are:

     MOV   A,counter    ;
     MOV   test_char,A  ;
     JNB   0,DONE       ;
     /* Negative */

All of which is a lot faster than using bit masks and &'s!

The important points are that the "bdata" tells C51 and L51 that this variable is to be placed in the bit-addressable 
RAM area and the "sbit sign_bit = test_char ^ 7" tells C51 to assume that a bit called sign_bit will be located at 
position 7 in the test_char byte.

http://www.esacademy.com/automation/docs/c51primer/c09.htm (1 di 4) [09/11/01 11.03.45]

http://leader.linkexchange.com/30/X1291923/clickle
http://leader.linkexchange.com/30/X1291923/clicklogo


http://www.esacademy.com/automation/docs/c51primer/c09.htm

Byte Number: test_char           20H    Start Of BDATA area
Bit Number:  0,1,2,3,4,5,6,7<_ sign_bit
Byte Number:                     21H 
Bit Number:  8,9,10,11,12,13,14,15 
Byte Number:                     22H 
Bit Number:  16,17,18,19,20,21,22,23,24.....

The situation with ints is somewhat more complicated. The problem is that the 8051 does not store things as you 
first expect. The same sign test for an int would require bit 7 to be tested. This is because the 8051 stores int's high 
byte at the lower address. Thus bit 7 is the highest bit of the higher byte and 15 is the highest bit of the lower. 

Byte Number: test_int(high)          20H    
Bit Number:  0,1,2,3,4,5,6,7 
 
Byte Number: test_int+1(low)         21H 
Bit Number:  8,9,10,11,12,13,14,15

Bit locations in an integer

9.2 Support For 80C517/537 32-bit Maths Unit

The Siemens 80C537 and 80C517A group have a special hardware maths unit, the MDU, aimed at speeding-up 
number-crunching applications. 

9.2.1 The MDU - How To Use It

To allow the 8051 to cope with 16 and 32-bit ("int" and "long") multiplication and division, the Siemens 80C517 
variant has a special maths co-processor (MDU) integrated on the cpu silicon. A 32-bit normalise and shift is also 
included for floating point number support. It also has 8 data pointers to make accessing external RAM more 
efficient. 

The compiler can take advantage of these enhancements if the "MOD517" switch is used, either as a #pragma or as 
a command line extension. This will result in the use of the MDU to perform > 8 bit multiplies and divides. 
However a special set of runtime libraries is required from Keil for linking. 

Using the MDU will typically yield a runtime improvement of 6 to 9 times the basic 8051 cpu for 32 bit unsigned 
integer arithmetic. 

Optionally the blanket use of the 80C517 enhancements after MOD517 can be selectively disabled by the NOMDU 
and NODP pragmas. Predictably NOMDU will inhibit the use of the maths unit, while NODP will stop the eight 
data pointers being used.

9.2.2 The 8 Datapointers

To speed up block data moves between external addresses, the 517A has 8 datapointers. These are only used by 
C51 in the memcpy() and strcpy() library functions. 

The general "MOD517" switch will enable their use. Note that the strcat() routine does not use the additional data 
pointers.

If the extra pointers are to be used both in background and interrupt functions, the DPSEL register is 
automatically stacked on entry to the interrupt and a new DPSEL value allocated for the duration of the function.

http://www.esacademy.com/automation/docs/c51primer/c09.htm (2 di 4) [09/11/01 11.03.45]



http://www.esacademy.com/automation/docs/c51primer/c09.htm

9.2.3 80C517 - Things To Be Aware Of

The 80C517 MDU is used effectively like a hardware subroutine, as it is not actually part of the 8051 cpu. As such 
it is subject to normal sub-routine rules regarding re-entrancy. If, as an example, both a background program and 
an interrupt routine try to use the MDU simultaneously, the background calculation will be corrupted. This is 
because the MDU input and output registers are fixed locations and the interrupt will simply overwrite the 
background values.

To allow the background user to detect corruption of the MDU registers, the MDEF bit is provided within the 
ARCON register. After any background use of the MDU, a check should be made for this flag being set. If so, the 
calculation must be repeated. Appropriate use of the NOMDU pragma could be used instead.

Note: the compiler does not do this - the user must add the following code to overcome the problem:

#pragma MOD517 
#include "reg517.h"

    long x,y,z ;
    func()
      {
      while(1)
         { 
           x = y / z ;      /* 32-bit calculation */
           if(MDEF == 0)    /* If corruption has */
              { break ; }   /* occurred then repeat */
         }                  /* else exit loop */
      }

9.3 87C751 Support

The Philips 87C751 differs from the normal 8051 CPU by having a 2k code space with no option for external ROM. 
This renders the long LJMP and LCALL instructions redundant. To cope with this the compiler must be forced to 
not generate long branch instructions but to use AJMPs and ACALLs instead

9.3.1 87C751 - Steps To Take

1.  Invoke C51 with C51 myfile.c ROM(SMALL) NOINTVECTOR or use "#pragma ROM(SMALL)"
2.  Use the INIT751.A51 startup file in the LIB directory.
3.  Do not use floating point arithmetic, integer or long divides, printf, scanf etc., as they all use LCALLs.
4.  A special 87C751 library package is available which will contain short call versions of the standard library 

routines.

9.3.2 Integer Promotion

Automatic integer promotion within IF statements is incorporated in version >= 3.40 to meet recent ANSI 
stipulations in this area. This makes porting code from Microsoft or Borland PC C compilers much easier. Thus 
any char(s) within a conditional statement are pre-cast to int before the compare is performed. This makes some 
sense on 16 bit machines where int is as efficient as char but, in the 8051, char is the natural size for data and so 
some loss of efficiency results. Fortunately Keil have provided "#pragma NOINTPROMOTE" to disable this 
feature! In this case explicit casts should be used if another data type might result from an operation.

To show why this #pragma is important, this C fragment's code sizes are influenced 
thus:

http://www.esacademy.com/automation/docs/c51primer/c09.htm (3 di 4) [09/11/01 11.03.45]



http://www.esacademy.com/automation/docs/c51primer/c09.htm

char c ; unsigned char c1, c2 ; int i ;
main() {
   if((char)c == 0xff) c = 0 ;
   if((char)c == -1) c = 1 ;
   i = (char)c + 5 ;
   
   if((char)c1 < (char)c2 + 4) c1 = 0 ;

   }

Code Sizes

47 bytes - C51 v3.20 
49 bytes - C51 v3.40 (INTPROMOTE) 
63 bytes - C51 v3.40 (NOINTPROMOTE)

Again this goes to show that C portability compromises efficiency in 8051 programs...

  

http://www.esacademy.com/automation/docs/c51primer/c09.htm (4 di 4) [09/11/01 11.03.45]



Miscellaneous Points

  

10 Miscellaneous Points

10.1 Tying The C Program To The Restart Vector

This is achieved by the assembler file STARTUP.A51. This program simply places a LJMP STARTUP at location C0000 
(Lowest EPROM location

The startup routine just clears the internal RAM and sets up the stack pointer. Finally it executes a LJMP to "main", 
(hopefully) the first function in the C program.

    LJMP main
        .
        .
        .
        .
        main()
        {
        }

In fact this need be the only assembler present in a C51 program.

10.2 Intrinsic Functions

There are a number of special 8051 assembler instructions which are not normally used by C51. For the sake of speed it is 
sometimes useful to get direct access to these.

Unlike the normal C51 '>>' functions, _cror_ allows direct usage of an 8051 instruction set feature, in this case the "RR A" 
(rotate accumulator). This yields a much faster result than would be obtained by writing one using bits and the normal >> 
operator. There are also _iror_ and _lror_ intrinsic functions for integer and long data as well. 

The _nop_ function simply adds an in-line NOP instruction to generate a short and predictable time delay. Another 
function, _testbit_, makes use of the JBC instruction to allow a bit to be tested, a branch taken and the bit cleared if set. 
The only extra step necessary is to include "intrins.h" in the C51 source file.

Here is an example of how the _testbit_() intrinsic function is used to save a CLR instruction:

; #include <intrins.h>
; 
; 
; unsigned int shift_reg = 0 ; 
; 
; bit test_flag ; 
; 
; void main(void) {
    RSEG  ?PR?main?T

http://www.esacademy.com/automation/docs/c51primer/c10.htm (1 di 4) [09/11/01 11.03.49]



Miscellaneous Points

    USING    0
main:
            ; SOURCE LINE # 12
; 
; /* Use Normal Approach */ 
; 
;    test_flag = 1 ;
            ; SOURCE LINE # 14
    SETB     test_flag
; 
;    if(test_flag == 1) {
            ; SOURCE LINE # 16
    JNB      test_flag,?C0001
;       test_flag = 0 ;
            ; SOURCE LINE # 17
    CLR      test_flag
;       P1 = 0xff     ;
            ; SOURCE LINE # 18
    MOV      P1,#0FFH
;       }
            ; SOURCE LINE # 19
?C0001: 
; 
; /* Use Intrinsic Function */ 
; 
;    test_flag = 1 ;
            ; SOURCE LINE # 21
    SETB     test_flag
; 
;   if(!_testbit_(test_flag)) {
            ; SOURCE LINE # 23
    JBC      test_flag,?C0003
;       P1 = 0xff     ;
            ; SOURCE LINE # 24
    MOV      P1,#0FFH
;       }
            ; SOURCE LINE # 25
; 
;    }
            ; SOURCE LINE # 27
?C0003:
    RET      
; END OF main
    END

See pages 9-17 in the C51 Manual

10.3 EA Bit Control #pragma

Whilst the interrupt modifier for function declarations remains unchanged a new directive, DISABLE, allows interrupts to 
be disabled for the duration of a function. Note that this can be individually applied to separate functions within a module 
but is given as a #pragma rather than as part of the function declaration. Although not verified yet, DISABLE gives the 
user some control over the EA or EAL bit.

http://www.esacademy.com/automation/docs/c51primer/c10.htm (2 di 4) [09/11/01 11.03.49]



Miscellaneous Points

10.4 16 Bit sfr Support

Another new feature is the 16bit sfr type. Within expanded 8051 variants in particular, many 16 bit timer and capture 
registers exist. Rather than having to load the upper and lower bytes individually with separate C statements, the sfr16 
type is provided. The actual address declared for a 16 bit sfr in the header file is always the low byte of the sfr. Now to 
load a 16 bit sfr from C, only a single int load is required. Be warned - 8-bit instructions are still used, so the 16 bit 
load/read is not indivisible - odd things can happen if you load a timer and it overflows during the process! Note that 
usually only timer 2 or above has the high/low bytes arranged sequentially.

10.5 Function Level Optimisation

Optimisation levels of 4 and above are essentially function optimisations and, as such, the whole function must be held in 
PC memory for processing. If there is insufficient memory for this, a warning is issued and the additional optimisation 
abandoned. Code execution will still be correct however. See p1-8 in the C51 manual.

10.6 In-Line Functions In C51

One of the fundamentals of C is that code with a well-defined input, output and job is placed into a function i.e. a 
subroutine. This involves placing parameters into a passing area, whether a stack or a register, and then executing a 
CALL. It is unavoidable that the call instruction will use two bytes of stack.

In most 8051 applications this not a problem, as there is generally 256 on-chip RAM potentially available as stack. Even 
after allowing for a few registerbanks, there is normally sufficient stack space for deeply nested functions.

However in the case of the 8031 and reduced devices such as the 87C751, every byte of RAM is critical. In the latter case 
there are only 64 bytes!

A trick which can both save stack and reduce run time is to use macros with parameters to act like "in-line" functions. The 
ability to create macros with replaceable parameters is not commonly used but on limited RAM variants it can be very 
useful.

Here a strcpy() function created as a macro named "Inline_Strcpy", whilst it looks like a normal function, it does not 
actually have any fixed addresses or local data of its own. The '\' characters serve to allow the macro definition to continue 
to a new line, in this case to preserve the function-like appearance.

It is "called" like a normal function with the parameters to be passed enclosed in ( ). However no CALL is used and the 
necessary code is created in-line. The end result is that a strcpy is performed but no new RAM or stack is required.

Please note however, the drawback with this very simple example is that the source and destination pointers are modified 
by the copying process and so is rather suspect!

A further benefit in this example is that the notional pointers s1 and s2 are automatically memory-specific and thus very 
efficient. Thus in situations where the same function must operate on pointer data in a variety of memory spaces, slow 
generic pointers are not required.

#define Inline_Strcpy(s1,s2)  {\ while((*s1 = *s2) != 0)}\ 
                     {\*s1++ ; *s2++; }\
                               }
char xdata *out_buffx = { "                           " } ;
char xdata *in_buffx = { "Hello" } ; 
char idata *in_buffi = { "Hello" } ;
char idata *out_buffi = { "                           " }  ;  

http://www.esacademy.com/automation/docs/c51primer/c10.htm (3 di 4) [09/11/01 11.03.49]



Miscellaneous Points

char code *in_buffc = { "Hello" } ;

void main(void) {

   Inline_Strcpy(out_buffx,in_buffx)  // In line functions
   Inline_Strcpy(out_buffi,in_buffi)
   Inline_Strcpy(out_buffx,in_buffc)
   }

Another good example of how a macro with parameters can be used to aid source readability is in the optimisation feature 
in Appendix D. The interpolation calculation that originally formed a subroutine could easily be redefined as a macro with 
5 parameters, realising a ram and run time saving at the expense of code size. 

Note that 'r', the fifth parameter, represents the return value which has to be "passed" to the macro so that it has 
somewhere to put the result!

#define interp_sub(x,y,n,d,r)  y -= x ; \ 
if(!CY) { r = (unsigned char) (x +(unsigned char)(((unsigned 
            int)(n * y))/d)) ;\ 

} else { r = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ; }  
This is then called by:

/*Interpolate 2D Map Values */
/*Macro With Parameters Used*/

interp_sub(map_x1y1,map_x2y1,x_temp1,x_temp2,result_y1) 

and later it is reused with different parameters thus:

interp_sub(map_x1y2,map_x2y2,x_temp1,x_temp2,result_y2) 

To summarise, parameter macros are a good way of telling C51 about a generalised series of operations whose memory 
spaces or input values change in programs where speed or RAM usage is critical.

  

http://www.esacademy.com/automation/docs/c51primer/c10.htm (4 di 4) [09/11/01 11.03.49]



Some C51 Programming Tricks

  

11 Some C51 Programming Tricks

11.1 Accessing R0 etc. directly from C51

A C51 user was using existing assembler routines to perform a specific task. For historical reasons the 
8 bit return value from the assembler was left in R0 of register bank 3. Ordinarily C51 would return 
chars in R7 and therefore simply equating a variable to the assembler function call would not work.

The solution was to declare an uncommitted memory specific pointer to the DATA area. At run time 
the absolute address of the register (here 0x18) was assigned to the pointer. The return value was then 
picked up via the pointer after exiting the assembler section.

/*** Example Of Accessing Specific Registers In C ***/
char data *dptr ;  // Create pointer to DATA location

/* Define Address Of Register */

#define R0_bank3 0x40018L   /* Address of R0 in */
                            /* bank 3, 4 => DATA space */
char x,y ;

/* Execute */

main() {
dptr = (char*) R0_bank3 ;  // Point at R0, bank3

x = 10 ; 
dptr[0] = x ;   // Write x into R0, bank3 
y = *dptr ;     // Get value of R0, bank3

}

An alternative might have been to declare a variable to hold the return value in a separate module and 
to use the linker to fix that module's DATA segment address at 0x18. This method is more robust and 
code efficient but is considerably less flexible.

11.2 Making Use Of Unused Interrupt Sources

One problem with the 8051 is the lack of a TRAP or software interrupt instruction. While C166 users 

http://www.esacademy.com/automation/docs/c51primer/c11.htm (1 di 5) [09/11/01 11.03.52]



Some C51 Programming Tricks

have the luxury of real hardware support for such things, 8051 programmers have to be more cunning.

A situation arose recently where the highest priority interrupt function in a system had to run until a 
certain point, from which lesser interrupts could then come in. Unfortunately, changing the interrupt 
priority registers part way through the interrupt function did not work, the lesser interrupts simply 
waiting until the RETI. The solution was to hijack the unused A/D converter interrupt, IADC, and 
attach the second section of the interrupt function to it. Then by deliberately setting the IADC pending 
flag just before the closing "}", the second section could be made to run immediately afterwards. As 
the priority of the ADC interrupt had been set to a low level, it was interruptable.

/* Primary Interrupt Attached In CC0 Input Capture */

tdc_int() interrupt 8 {

/* High priority section - may not be interrupted */

/* Enable lower priority section attached to */
                            /* ADC interrupt */

IADC = 1 ; // Force ADCinterrupt 
EADC = 1 ; // Enable ADC interrupt 
}

/* Lower priority section attached to ADC interrupt */

tdc_int_low_priority() interrupt 10

IADC = 0 ; // Prevent further calls 
EADC = 0 ;

/* Low priority section which must be interruptable and */
    /* guaranteed to follow high priority section above */

}

11.3 Code Memory Device Switching

This dodge was used during the development of a HEX file loader for a simple 8051 monitor. After 
receiving a hexfile into a RAM via the serial port, the new file was to be executed in RAM starting 
from 0000H. A complication was that the memory map had to be switched immediately prior to 
hitting 0000H.

The solution was to place the map switching section at 0xfffd so that the next instruction would be 
fetched from 0x0000, thus simulating a reset. Ideally all registers and flags should be cleared before 
this.

http://www.esacademy.com/automation/docs/c51primer/c11.htm (2 di 5) [09/11/01 11.03.52]



Some C51 Programming Tricks

"reg.h" 
#include "cemb537.h" 
#include  <stdio.h>

   main()
      {

      unsigned char tx_char,rx_char,i ;

      P4 = map2 ;
#include
      v24ini_537() ;

      timer0_init_537() ;

      hexload_ini() ;

      EAL = 1 ;

      while(download_completed == 0)
         {

         while(char_received_fl == 0)
            { receive_byte() ; }

         tx_byte = rx_byte ; /* Echo */
         hexload() ;
         send_byte(tx_byte) ;

         char_received_fl = 0 ;
         } 

      real_time_count = 0 ;
      while(real_time_count < 200) 
         { ; }

      i = ((unsigned char (code*)(void)) 0xFFFD) () ;  
                       // Jump to absolute address.

      }

//^^^^^^^^^^^^^^^^^^^^^^^ End of Module

;
   NAME SWITCH
; 

http://www.esacademy.com/automation/docs/c51primer/c11.htm (3 di 5) [09/11/01 11.03.52]



Some C51 Programming Tricks

; Cause PC to roll-over at FFFFH to simulate reset 
;
   P4      DATA 0E8H
;
   CSEG AT 0FFFDH
;
   MOV  P4,#02Fh  ; 
;
   END

//^^^^^^^^^^^^^^^^^^^^^^^ End of Module "MAPCON"

There are other ways of doing this. For instance the code for the MAPCON module could be located 
at link time thus: CODE(SWITCH(0FFFDH)), so dispensing with the "CSEG AT".

11.4 Simulating A Software Reset

In a similar vein to the above, the 8051 does not possess a software reset instruction, unlike the 
80C166 etc.. This method uses abstract pointers to create a call to address zero, thus simulating a 
software reset.

However it should be remembered that all internal locations must be cleared before the CPU can be 
considered properly reset! The return address must be reset as the stack still contains the return 
address from the call.

; 
; 
; void main(void) {

    RSEG  ?PR?main?T1
    USING    0
main:
            ; SOURCE LINE # 9
; 
; ((void (code*) (void)) 0x0000) () ;
            ; SOURCE LINE # 11
    LCALL    00H       ; Jump to address ZERO!
; 
; }
            ; SOURCE LINE # 13
    RET      
; END OF main

11.5 The Compiler Preprocessor - #define

http://www.esacademy.com/automation/docs/c51primer/c11.htm (4 di 5) [09/11/01 11.03.52]



Some C51 Programming Tricks

This is really just a text replacement device.

It can be used to improve program readability by giving constants meaningful names, for example:

    #define fuel_constant 100 * 2

so that the statement temp = fuel_constant will assign the value 200 to temp.

Note that the preprocessor only allows integer calculations.

Other more sophisticated examples are given in the C51 manual, pages 4-2.

  

http://www.esacademy.com/automation/docs/c51primer/c11.htm (5 di 5) [09/11/01 11.03.52]



C51 Library Functions

  

12 C51 Library Functions

One of the main characteristics of C is its ability to allow complex functions to be constructed from 
the basic commands. To save programmer effort many common mathematical and string functions are 
supplied ready compiled in the form of library files.

12.1 Library Function Calling

Library functions are called as per user-defined functions, i.e

    #include ctype.h
    {
    char test_byte ;
    result = isdigit(test_byte) ;
    }

where "isdigit()" is a function that returns value 1 (true) if the test_byte is an ASCII character in the 
range 0 to 9.

The declarations of the library functions are held in files with a ".h" extension - see the above code 
fragment. 

Examples are: 

ctype.h, 
stdio.h, 
string.h etc.. 

These are included at the top of the module which uses a library function.

Many common mathematical functions are available such as ln, log, exp, 10x, sin, cos, tan (and the 
hyperbolic equivalents). These all operate on floating point numbers and should therefore be used 
sparingly! The include file containing the mathematical function prototypes is "math.h".

Library files contain many discrete functions, each of which can be used by a C program. They are 
actually retrieved by the linker utility covered in section 8. These files are treated as libraries by virtue 
of their structure rather than their extension. The insertion or removal of functions from such a file is 

http://www.esacademy.com/automation/docs/c51primer/c12.htm (1 di 2) [09/11/01 11.03.53]



C51 Library Functions

performed by a library manager called LIB51.

12.2 Memory-Model Specific Libraries

Each of the possible memory models requires a different run-time library file. Obviously if the 
LARGE model is used the code required will be different for a SMALL model program.

Thus with C51, 6 different library files are provided:

C51S.LIB - SMALL model 
C51C.LIB - COMPACT model 
C51L.LIB - LARGE model

plus three additional files containing floating point routines as well as the integer variety.

C51 library functions are registerbank independent. This means that library functions can be used 
freely without regard to the current REGISTERBANK() or USING status. This is a major advantage 
as it means that library functions can be used freely within interrupt routines and background 
functions without regard to the current register bank.

  

http://www.esacademy.com/automation/docs/c51primer/c12.htm (2 di 2) [09/11/01 11.03.53]



Outputs from C51

  

13 Outputs From C51

13.1 Object Files

Being closely related to the original Intel tools, C51 defaults to the Intel object file format. This is a 
binary file containing the symbolic information necessary for debugging with in-circuit emulators etc.. 
It may be linked with object files from either Intel PLM51 or ASM51 using the Keil L51 linker. The 
final output is Intel OMF51.

Versions >2.3 of the compiler will produce an extended Intel OMF51 object file if the DEBUG 
OBJECTEXTEND command line switches are used. This passes type and scope information into the 
OMF51 file which any debugger/in-circuit emulator should be able to use. The extensions to the 
original Intel format are a proprietary Keil development but have been widely copied by IAR et al.

13.2 HEX Files For EPROM Blowing

To blow EPROMS an additional stage is usually necessary to get a HEX file. This is an ASCII 
representation of the final program without any symbol information. Almost every EPROM 
programmer will understand Intel HEX. The OH51/OHS51 utility performs the conversion from the 
linker's OMF51 file to the standard 8bit Intel HEX format.

13.3 Assembler Output

Optionally, a valid A51 assembler/C source listing file can be produced by C51 if the SRC command 
line switch is used. This has the original C source lines interleaved with the assembler and is very 
useful for getting to know how the compiler drives the 8051.

Do not be tempted to try hand-tweaking the compiler's efforts. Whilst you may be able to save the odd 
instruction here and there, you will create a totally unmaintainable program! It is much better to 
structure source code so that you write efficient code from the start. Simple, efficient C will produce 
the best 8051 code.

  

http://www.esacademy.com/automation/docs/c51primer/c13.htm [09/11/01 11.03.54]



Assembler Interfacing to C Programs

  

14 Assembler Interfacing To C Programs

The calling of assembler routines from C51 is not difficult, provided that you read both this and the user manual.

14.1 Assembler Function Example

The example below is taken from a real application where an EEPROM was being written in a page mode. Because of 
a 30us timeout of this mode, the 25us run time of the C51 code was viewed as being a bit marginal. It was therefore 
decided to code it in assembler.

If an assembler-coded function is to receive no parameters then an ordinary assembler label at the beginning of the 
function is simply called like any C function. Note that an extern function prototype must be given after the style of:

C51 File:

extern void asm_func(void).

A51 File:

ASM_FUNC:  MOV  A,#10   ; 8051 assembler instructions

Should there be parameters to be passed, C51 will place the first few parameters into registers. Exactly how it does this 
is outlined in section 

The complication arises when there are more parameters to be passed than can be fitted into registers.

In this case the user must declare a memory area into which the extra parameters can be placed. Thus the assembler 
function must have a DATA segment defined that conforms to the naming conventions expected by C51. 

In the example below, the segment

?DT?_WRITE_EE_PAGE?WRITE_EE SEGMENT DATA OVERLAYABLE

does just that.

The best advice is to write the C that calls the assembler and then compile with the SRC switch to produce an 
assemblable equivalent. Then look at what C51 does when it calls your as yet unwritten assembler function. If you stick 
to the parameter passing segment name generated by C51 you will have no problems.

Example Of Assembler Function With Many Parameters

C Calling Function

Within the C program that calls this function the following lines must be added to the calling module/source file:

http://www.esacademy.com/automation/docs/c51primer/c14.htm (1 di 4) [09/11/01 11.03.57]



Assembler Interfacing to C Programs

   /* external reference to assembler routine */
  
extern unsigned char write_ee_page(char*,unsigned 
                          char,unsigned char) ;
  .
   dummy()
  .  {
     unsigned char number, eeprom_page_buffer, 
          ee_page_length ; 
     char * current_ee_page ;
  .
     number = write_ee_page (current_ee_page, 
          eeprom_page_buffer, ee_page_length) ;
  .  } /* End dummy */

The assembler routine is:

    NAME EEPROM_WRITE ;      
    
    PUBLIC  _WRITE_EE_PAGE              ; Essential!
    PUBLIC  ?_WRITE_EE_PAGE?END_ADDRESS ;
    PUBLIC  ?_WRITE_EE_PAGE?END_BUFFER  ;
; 
P6     EQU  0FAH  ; 
Port 6 has watchdog pin ; 
;**************************************************************************** 
;*<<<<<<<<< Declare CODE And DATA Segments For
           Assembler Routine >>>>>>>>>>>* 
;****************************************************************************; 
?PR?_WRITE_EE_PAGE?WRITE_EE SEGMENT CODE
?DT?_WRITE_EE_PAGE?WRITE_EE SEGMENT DATA OVERLAYABLE ; 
; 
;**************************************************************************** 
;*<<<<<< Declare Memory Area In Internal RAM For Local 
       Variables Etc. >>>>>>* 
;**************************************************************************** 
;
        RSEG ?DT?_WRITE_EE_PAGE?WRITE;
?_WRITE_EE_PAGE?END_ADDRESS:  DS   2   ;
?_WRITE_EE_PAGE?END_BUFFER:   DS   1   ;
;
;
;*******************************************************************************
;*<<<<<<<<<<<<<<<     EEPROM Page Write Function                 >>>>>>>>>>>>>>* 
;*******************************************************************************
;
        RSEG   ?PR?_WRITE_EE_PAGE?WRITE ;
; _
WRITE_EE_PAGE:
        CLR    EA
        MOV    DPH,R6  ; Address of EEPROM in R7/R6

http://www.esacademy.com/automation/docs/c51primer/c14.htm (2 di 4) [09/11/01 11.03.57]



Assembler Interfacing to C Programs

        MOV    DPL,R7  ; 
;
        MOV    A,R3  ; Length of buffer in R3
        DEC    A     ; 
        ADD    A,R7             ; Calculate address of last
        MOV    ?_WRITE_EE_PAGE?END_ADDRESS+01H,A ; byte 
                            in page in XDATA.
        CLR    A                                 ;
        ADDC   A,R6                              ;
        MOV    ?_WRITE_EE_PAGE?END_ADDRESS,A     ;
;
        MOV    A,R5   ;  Address of buffer in IDATA in R5
        MOV    R0,A   ;
        ADD    A,R3     ;
        MOV    ?_WRITE_EE_PAGE?END_BUFFER,A ;
;   
LOOP:   MOV    A,@R0      ;
        MOVX   @DPTR,A    ;
        INC    R0         ;
        INC    DPTR       ;   
        MOV    A,R0       ;
        CJNE   A,?_WRITE_EE_PAGE?END_BUFFER,LOOP ;
;
        MOV    DPH,?_WRITE_EE_PAGE?END_ADDRESS      ;
        MOV    DPL,?_WRITE_EE_PAGE?END_ADDRESS+01H  ;
        DEC    R0         ;
;
CHECK:  XRL    P6,#08     ; Refresh watchdog on MAX691 
        MOVX   A,@DPTR    ; 
        CLR    C          ;
        SUBB   A,@R0      ;
        JNZ    CHECK      ;
;
        SETB   EA         ;
        RET               ; Return to C calling program
;
        END
;

14.2 Parameter Passing To Assembler Functions

In the assembler example the parameter current_ee_page was received in R6 and R7. Notice that the high byte is in the 
lower register, R6. The fact that the 8051 stores high bytes at the low address of any multiple byte object always causes 
head scratching!

The "_" prefix on the WRITE_EE_PAGE assembler function name is a convention to indicate that registers are used 
for parameter passing. If you are converting from C51 version <3.00, please bear this in mind.

Note that if you pass more parameters than the registers can cope with, additional space is taken in the default memory 
space (SMALL-data, COMPACT-pdata, LARGE-xdata). 

14.3 Parameter Passing In Registers

http://www.esacademy.com/automation/docs/c51primer/c14.htm (3 di 4) [09/11/01 11.03.57]



Assembler Interfacing to C Programs

Parameter passing is now possible via CPU registers (R0-R7). Coupled with register auto/local variables means that 
function calls can be made very quickly. Up to three parameters may be passed this way although when using long 
and/or float parameters only two may be passed, due to there being 4 bytes per variable and only 8 registers available! 
To maintain compatibility with 2.5x the NOREGPARMS #pragma is provided to force fixed memory locations to be 
used. Those calling assembler coded functions must take note of this.

Parameter Type    Char    Int+Spaced ptr   Long/Float       Generic Ptr
___________________________________________________________________________

Parameter   R7       R6/R7             R4-R7                R1,R2,R3
Parameter   R5       R4/R5             R4-R7                R1,R2,R3
Parameter   R3       R2/R3                                  R1,R2,R3

  

http://www.esacademy.com/automation/docs/c51primer/c14.htm (4 di 4) [09/11/01 11.03.57]



General Things to be Aware of

  

15 General Things To Be Aware Of

The following rules will allow the compiler to make the best use of the processor's resources. 
Generally, approaching C from an assembler programmer's viewpoint does no harm whatsoever!

15.1

Always use 8 bit variables the 8051 is strictly an 8 bit machine with no 16 bit instructions. char will 
always be more efficient than int's.

15.2

Always use unsigned variables where possible. The 8051 has no signed compares, multiplies etc., 
hence all sign management must be done by discrete 8051 instructions.

15.3

Try to avoid dividing anything but 8 bit numbers. There is only an 8 by 8 divide in the instruction set. 
32 by 16 divides could be lengthy unless you are using an 80C537!

15.4

Try to avoid using bit structures. Until v2.30, C51 did not support these structures as defined by 
ANSI. Having queried this omission with Keil, the explanation was that the code produced would be 
very large and inefficient. Now that they have been added, this has proved to be right. An alternative 
solution is to declare bits individually, using the "bit" storage class, and pass them to a user-written 
function.

15.5

The ANSI standard says that the product of two 8 bit numbers is also an 8 bit number. This means that 
any unsigned chars which might have to be multiplied must actually be declared as unsigned int's if 
there is any possibility that they may produce even an intermediate result over 255. 

However it is very wasteful to use integer quantities in an 8051 if a char can do the job! The solution 
is to temporarily convert (cast) a char to an int. Here the numerator potentially could be 16 bits but the 
result always 8 bits. The "(unsigned int)" casts ensure that a 16 bit multiply is used by C51.

http://www.esacademy.com/automation/docs/c51primer/c15.htm (1 di 2) [09/11/01 11.03.59]



General Things to be Aware of

        {

        unsigned char z ;
        unsigned char x ;
        unsigned char y ;

        z = ((unsigned int) y * (unsigned int) x) >> 8 ;

        }

Here the two eight bit numbers x and y are multiplied and then divided by 256. The intermediate 16 
bit (unsigned int) result is permissible because y and x have been loaded by the multiplier library 
routine as int's.

15.6

Calculations which consist of integer operands but which always produce an 8 bit (char ) due to 
careful scaling result thus:

            
            unsigned int x, y ;
            unsigned char z ;
            z = x*y/256 ;

will always work, as C51 will equate z to the upper byte (least significant) of the integer result. This is 
not machine-dependant as ANSI dictates what should be done. Also note that C51 will access the 
upper byte directly, thus saving code.

15.7 Floating Point Numbers

One operand is always pushed onto an arithmetic stack in the internal RAM. In the SMALL model the 
8051 stack is used, but in other models a fixed segment is created at the lowest available address 
above the register bank area. In applications where on-chip RAM is at a premium, full floating point 
maths really should not be used. Fixed point is a far more realistic alternative.

  

http://www.esacademy.com/automation/docs/c51primer/c15.htm (2 di 2) [09/11/01 11.03.59]



Conclusion

  

16 Conclusion

The foregoing should give a fair idea how the C51 compiler can be used in real embedded program 
development. Its great advantage is that it removes the necessity of being an expert in 8051 assembler 
to produce effective programs. Really, for the 8051, C51 should be viewed as a universal low to 
medium level language which both assembler and C programmers can move to very simply. Access to 
on and off-chip peripherals is painless and the need for assembler device-drivers is removed. It will 
allow well structured programs devoid of the dreaded goto or LJMP. In fact most of the extra code 
generated by C over an assembler is employed in ensuring good program structure rather than just 
inefficient use of the 8051 instruction set. It offers true portability from the 8051 to other processors 
and, unusually, the reverse is also true. Thus existing functions can be re-used, so reducing 
development time.

  

http://www.esacademy.com/automation/docs/c51primer/c16.htm [09/11/01 11.04.00]


	esacademy.com
	C51 Primer 
	Introduction
	Keil C51 Compiler Basics
	Declaring Variables and Constants
	Program Structure And Layout
	C Language Extensions For 8051
	Pointers in C51
	Accessing External Memory Mapped
	Linking Issues and Stack Placement
	http://www.esacademy.com/automation/docs/c51primer/c09.htm
	Miscellaneous Points
	Some C51 Programming Tricks
	C51 Library Functions
	Outputs from C51
	Assembler Interfacing to C Programs
	General Things to be Aware of
	Conclusion


