
1

AVR220: Bubble Sort

Features
• 14-Word Subroutine Sorts up to 255

Bytes of Data
• Runable Demo Program

Introduction
This application note implements the
Bubble Sort algorithm on the AVR con-
trollers. The subroutine “bubble” sorts up
to 224 bytes of SRAM data which is the
SRAM area that can be reached by the
lower 8 bits of a pointer.

The Bubble Sort
Algorithm - Theory
The Bubble Sort algorithm is known as a
quite slow and trivial algorithm for data
sorting. However, for small amounts of
data, the algorithm provides compact
code and relatively fast sorting.

Given an array of data 1, 2, …, n-1, n,
the algorithm is described as follows:

1. Compare elements n-1and n.

2. If n-1 is lower than n, swap the
contents of the two array loca-
tions.

3. Repeat Steps 1 and 2 for ele-
ments n-2 and n-1. Move up one
location at a time, repeat until
elements 1 and 2 have been
compared and possibly swapped.

4. Repeat the whole run from ele-
ment n to 2.

5. Repeat the run from element n to
3.

6. …

7. Compare and, if needed, swap
elements (n-1) and n.

8. When completed, the array is
sorted with the highest value in
location 0 and the lowest one in
location n.

While the algorithm is executed, the
h igher e lements move (“bubb le”)
through the array until they reach their
final position. After the first run, the high-
est value finds its final position. After the
second run, the second highest value
finds its final position, and so on…

The total number of compare operations
needed to sort an array of n elements is:

As the total compare time grows expo-
nentially, with the number of elements to
sort, calculate the execution time first if
before sorting a large number of bytes.

In Pseudo-code, the Bubble Sort algo-
rithm would be as follows:

for i=n downto 1 do

begin
for j=n downto i

begin
if A(n-1)<A(n)

swap (A(n-1),A(n))

end

end
To reverse the sort order, replace the “<”
sign with “>”.

i

i 0=

n 1–

∑ n n 1–()
2

--------------------=

8-Bit
Microcontroller

Application
Note

AVR220

0939A-A–8/97

AVR2202

Implementation
Usage
The subroutine “bubble” is used according to the following
procedure:

1. Load “endH:endL” with the address of last element
in the array.

2. Load the loop counter “cnt1” with the size of the
data array - 1.

3. Call “bubble”.

If preferred, the routine will work fine using the Y-pointer
instead.

Algorithm Description
The following procedure describes how the sorter is imple-
mented on the AVR:

1. Copy “cnt1” to “cnt2”.

2. Copy “endH:endL” to “Z”

3. Load register variable “A” with the byte at Z.

4. Decrement Z and load register variable “B” with the
byte at Z.

5. If A<B, store “A” at Z and “b” at Z+1 (swap bytes).

6. Decrement “cnt2”

7. If not zero, goto Step 2.

8. Decrement “cnt1”

9. If not zero, goto Step 1.

Figure 1. “bubble” Flow Chart

CNT2 ← CNT1

A ← @Z

Z ← Z 1, B ← @Z

BUBBLE

N

N

N

Y

Y

Y

RETURN

ZL ← ENDH:ENDL

CNT1 ← CNT1 1

CNT2 ← CNT2 1

@Z ← A

@(Z + 1) ← B

A < B?

CNT2 = 0?

CNT1 = 0?

AVR220

3

Performance

Note: SIZE = Number of bytes to sort

Test/Example Program
“avr220.asm” contains a test program which copies 60
bytes of random data from the program memory to SRAM
and calls “bubble” to sort the data. The test program is well
suited for running under the AVR Studio. To get a feeling
for how the data “bubbles” through the array, place data a
breakpoint somewhere in the inner loop and run single loop
cycles while watching the SRAM memory window.

Table 1. “bubble” Register Usage

Register Input Internal Output

R13 “A” - first value to compare

R14 “B” - second value to compare

R15 “cnt2” - inner loop counter

R16 “cnt1” - # of bytes to sort - 1 “cnt1”- outer loop counter

R17 “endL” - low address of last element

R18 “endH” - high address of last
element

R30 ZL

R31 ZH

Table 2. “bubble” Performance Figures

Parameter Value

Code Size (Words) 12 + return

Average Execution Time
(Cycles)

5 x (SIZE-1) +11.5 x (SIZE(SIZE-1)) + return

Register Usage • Low registers
• High registers
• Pointers

:None
:2
:Z

Interrupts Usage None

Peripherals Usage None

