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Important Note    This may not be the first time you have received the ECP Specifications. 
From time to time, Microsoft may make some modifications to the documentation and/or 
software and we want to ensure that you have the latest update to the materials. If this is not the 
first time you have received this kit, please read the section titled "Corrections to Previous 
Versions (Revisions)" very carefully for any changes that may apply to you.

  

Environments such as the Microsoft® Windows™ operating system are making it easier for 
anybody to use computers, and the decision to buy computers, peripherals, and software is 
easier to make now that Windows provides ease of use to the personal computer (PC) 
environment.

Communications with peripherals is the "Achilles heel" of the industry. Low bandwidth and lack 
of bidirectionality have prevented suppliers of peripherals such as printers, scanners, 
fax/modem cards, and network adapters from introducing innovative solutions. The serial port 
provides bidirectionality but does not offer enough bandwidth. The standard parallel port 
(Centronics®) offers a higher but limited bandwidth and no bidirectionality. Centronics also 
requires a lot of assistance from the CPU, making it inadequate for environments such as 
Windows in which multiple applications are running concurrently.

The extended capabilities port (ECP) is the answer to peripheral communications problems in 
the PC environment. It is a fast, bidirectional parallel interface that is backwards-compatible 
with the existing PC standard parallel port configuration—and it uses the existing parallel 
connectors and cables. ECP has been jointly developed by Microsoft and Hewlett-Packard with 
the hopes of making it a widely adopted standard. Several chip vendors are working on 
designing support for ECP into their next generation I/O chips. On the system software side, 
Microsoft is building support for the full capabilities of ECP (bidirectionality, enhanced 
bandwidth, enhanced protocols) into the next generation of its Windows operating 
environments. A new set of application programming interfaces (APIs) will soon be available to 
independent software and hardware vendors (ISVs and IHVs) to enable the writing of device 
drivers and applications programs that take advantage of ECP.

Enclosed you will find the ECP Specification, which includes the following documents:

• ECP cover letter  (this document).

• Extended Capabilities Port Protocol and ISA Interface Standard.  Covers the ECP 
signal protocols, IEEE P1284 issues, and the ISA implementation specifications. Includes 
an errata sheet.

• ECP Driver Hardware Notes.  Covers issues software/hardware designers must be aware 
of.

• ECP Compliance Test Functional Specification.  Describes the setup and use of the ECP 
compliance test.

  

The ECP Specifications document describes in detail the ECP ISA implementation 
requirements, so you do not actually need the ECP Adaptation Kit to develop an ECP ASIC or 
to make ECP part of a larger chip solution. We feel, however, that having it may shorten the 
time required for your ECP implementation cycle.

For additional information, please contact Doug Hogarth at 206/936-3002. Doug is a Technical 
Evangelist in the Windows Developer Relations Group. If you are signing a contract, please 
send it back to:

Doug Hogarth
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Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Implementing ECP accrues many obvious and substantial benefits to users. Microsoft is very 
excited about what we feel is the most significant event in PC/peripheral communications since 
the introduction of the PC, and we hope to have your support and cooperation in making this a 
public standard for the benefit of PC users everywhere.

Regards,

Microsoft Corporation
Windows Developer Relations
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Section 1: Introduction
  

Document Purpose

Design specifications from both Microsoft and Hewlett-Packard have been combined in this 
document to describe both the extended capabilities port (ECP) protocol, and an industry 
standard architecture (ISA) implementation.

Other Documents

The reader should be familiar with the Standard P1284 by IEEE, a parent document of this 
document.

Scope

This document defines an ISA standard for the implementation of all ECP parallel port ISA 
devices. ECP is a joint Hewlett-Packard/Microsoft design and development effort. ECP is an 
enhancement to the high-speed IEEE P1284 and "BOISE" parallel port specifications.

Vocabulary

The following terms are used in this document:

assert
When a signal asserts, it transitions to a "true" state. When a signal deasserts, it transitions 
to a "false" state.

forward
Host-to-Peripheral communication.

reverse
Peripheral-to-Host communication.

PWord
A port word, equal in size to the width of the ISA interface. Typically, this can be 8 or 16 bits.

1
A high level.

Section 1: Introduction
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0
A low level.

Each row in the following table consists of terms that are equivalent.

PeriphClk nAck
HostAck nAutoFd
PeriphAck Busy
nPeriphRequest nFault
nReverseRequest nInit
nAckReverse PError
Xflag Select
ECPmode BOISEmode nSelectln
HostClk nStrobe

 

Section 2: Signal Protocol
  

Overview

This section describes a high-performance, bidirectional signal protocol that was jointly 
developed by Hewlett-Packard and Microsoft. Only the protocol is described in this section; for 
information related to the standard PC ISA hardware implementation of the protocol, refer to 
Section 3.

This specification is an enhancement to the IEEE P1284 standard, which describes three basic 
data transfer modes: 

• Compatible mode (forward channel, industry-standard parallel port interface)

• Nibble mode (reverse channel, compatible with all existing PC hosts)

• Byte mode (reverse channel, compatible with IBM® PS/2® hosts)
  

This document describes two very similar additional modes that may be nested within the 
P1284 standard:

• ECP mode (fast bidirectional; requires custom hardware on interfaces)

• ECP mode including RLE decompression
  

The ECP modes conform to the conventions and philosophies established in the IEEE P1284 
standard and will be implemented on future generations of hosts and peripherals. To attain the 
highest performance, hardware is required on both the peripheral and host. ECP boosts the I/O 
bandwidth to meet the demands of high-performance peripherals.

Hewlett-Packard and Microsoft recommend that the ECP modes be incorporated into the IEEE 
P1284 standard. Hewlett-Packard and Microsoft are taking steps to ensure that the ECP 
becomes a de facto standard throughout the personal computer industry.

ECP provides a number of advantages, some of which are listed below. The individual features 
are explained in greater detail in the remainder of the document.

• High-performance half-duplex forward and reverse channel

• Interlocked handshake, for fast, reliable transfer

• Optional single-byte RLE compression for improved throughput (64:1)

• Channel addressing for low-cost peripherals

• Link and data layer separation

• Use of active output drivers

• Use of adaptive signal timing

• Peer-to-peer capability

Section 2: Signal Protocol
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Description

Supplementary signal definitions

The ECP modes conform to the signal line definitions established by the proposed IEEE 1284 
specification (also termed "BOISE"). However, a few signal lines have alternate uses during 
ECP mode.

The following signals are redefined to provide additional functionality in ECP mode.

Table 1. Redefined Signals
  

Compatible mode Nibble/Byte mode ECP mode

nFault nDataAvailable nPeriphRequest
nSelectIn RnW BOISEmode
nInit always high nReverseRequest
PError AckDataReq nAckReverse
nAutoFd HostBusy HostAck
Busy PeriphBusy PeriphAck

nPeriphRequest (nFault)

During ECP mode the peripheral is permitted (but not required) to drive this pin low to request a 
reverse transfer. The request is merely a "hint" to the host; the host has ultimate control over 
the transfer direction. This signal provides a mechanism for peer-to-peer communication. This 
signal typically would be used to generate an interrupt to the host CPU. The signal is asserted 
low and kept there until the interrupt is serviced or the port exits ECP mode.

BOISEmode (nSelectIn)

This pin is driven high during all P1284 modes. It is driven low to terminate. This signal 
operates the same in ECP mode as in Nibble/Byte mode, but the name has been changed 
because "RnW" was inappropriate for a bidirectional mode.

nReverseRequest (nInit)

This pin is driven low to place the channel in the reverse direction. The peripheral is only 
allowed to drive the bidirectional data bus while in ECP mode, when BOISEmode is high and 
nReverseRequest is low.

nAckReverse (PError)

The peripheral drives this signal low to acknowledge nReverseRequest. It is an "interlocked" 
handshake with nReverseRequest. The host relies upon nAckReverse to determine when it is 
permitted to drive the data bus.

HostAck (nAutoFd)

The host drives this signal to flow control in the reverse direction. It is an "interlocked" 
handshake with nAck. HostAck also provides command information in the forward phase.

PeriphAck (Busy)

The peripheral uses this signal to flow control in the forward direction. It is an "interlocked" 
handshake with nStrobe. PeriphAck also provides command information in the reverse direction.

Negotiation into ECP modes

Negotiation into the ECP modes from Compatibility mode is accomplished according to the 
established P1284 methodology, with a few minor differences. The following P1284 extensibility 
request values are provided for ECP:

Table 2. Extensibility Request Values
  

Section 2: Signal Protocol
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Extensibility Request Value Definition

0001 0000 ECP mode
0001 0100 ECP Device ID
0011 0000 ECP mode with RLE compression 
0011 0100 ECP Device ID with RLE compression
0010 0000 Reserved
0010 0100 Reserved

During negotiation, Xflag (Select) is driven high to indicate that the peripheral supports the 
request transfer mode. Unlike Nibble/Byte modes, the nDataAvail (nFault) does not indicate the 
availability of data during negotiation (or thereafter). Also, nDataAvail (nFault) is redefined as 
nPeriphRequest during ECP mode.

Immediately following negotiation (and a short setup phase), the interface defaults to the 
forward direction. If no forward channel data is to be transmitted, the interface may then be 
reversed.

Termination from ECP mode

Termination from ECP mode is similar to the termination from Nibble/Byte modes. The host is 
permitted to terminate from ECP mode only in specific, well-defined states. The termination can 
only be executed while the bus is in the forward direction. To terminate while the channel is in 
the reverse direction, it must first be transitioned into the forward direction.

Device ID

Device ID for High Speed devices is handled in the conventional manner as defined in the 
proposed IEEE 1284 specification. That is, when the Device ID Request and ECP Mode 
Request bits are both asserted in the Extensibility Request Value during negotiation, the High 
Speed device will return the standard P1284 Device ID string. Channel Addressing is not used 
during Device ID. Compression may optionally be used during Device ID. Forward channel data 
is not sent during Device ID mode. To transfer normal data, the host must first terminate from 
the Device ID mode and renegotiate with the Device ID Request bit deasserted in the 
Extensibility Request Value.

Command/Data

ECP mode supports two advanced features to improve the effectiveness of the protocol for 
some applications. The features are implemented by allowing the transfer of normal 8-bit data 
or 8-bit commands.

When in the forward direction, normal data is transferred when (HostAck) nAutoFd is high and 
an 8-bit command is transferred when (HostAck) nAutoFd is low. The most significant bit of the 
command indicates whether it is a run-length count (for compression) or a channel address.

Table 3. Forward Channel Commands (When HostAck Is Low)
  

D7 D[6:0]

0 Run-Length Count (0-127)    (mode 0011 0X00 only)
1 Channel Address (0-127)

When in the reverse direction, normal data is transferred when busy (PeriphAck) is high and an 
8-bit command is transferred when busy (PeriphAck) is low. The most significant bit of the 
command is always zero. Reverse channel addresses are seldom used and may not be 
supported in hardware.

Table 4. Reverse Channel Commands (When PeriphAck Is Low)
  

D7 D[6:0]

0 Run-Length Count (0-127)    (mode 0011 0X00 only)
1 Channel Address (0-127)

Optional support of compression/decompression
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Devices may or may not choose to support decompression via the negotiation sequence. 
Devices that negotiate into ECP RLE mode (mode 0011 0X00) must support decompression of 
RLE data and may optionally compress it. Devices using the non-RLE ECP mode must not 
transfer compressed data.

Data Compression

To provide the potential for increased performance, a simple data compression (64:1max, 4:1 
typical) technique is built into the protocol specification. Single-byte, run-length encoding is 
supported, which compresses strings of identical bytes while guaranteeing that incompressible 
data will not be expanded. The compression is particularly useful on raster imaging devices. 
The decompression/compression is handled very simply and economically in hardware. This 
simple compression does not preclude the use of other data compression schemes at a higher 
(data stream or packet) level.

When a run-length count is received, the subsequent data byte is replicated the specified 
number of times. A run-length count of zero specifies that only one byte of data is represented 
by the next data byte, whereas a run-length count of 127 indicates that the next byte should be 
expanded to 128 bytes. To prevent data expansion, however, run-length counts of zero should 
be avoided.

Channel Addressing

To support simple, low-cost peripherals that do not desire to parse a data stream or packet, a 
channel-addressing scheme is provided in ECP mode. ECP mode provides 128 channel 
addresses. The channel addresses may be dynamically changed while in ECP mode. The 
support of channel addresses does not incur any overhead for typical devices that wish to 
transmit or receive only data stream or packet data (stream or packet peripherals may ignore 
channel addresses). Specific channel address definitions are device-specific. Although the use 
of channel addresses seemingly violates the P1284 specification's data and link layer 
separation philosophy, it is permissible because the use of addresses is optional for the 
peripheral. The channel address defaults to zero after each negotiation. After a channel address 
command is issued, the address remains in effect indefinitely until another channel address 
command is issued, or until termination.

Output Drivers

To facilitate higher performance data transfer, the use of balanced CMOS active drivers for 
critical signals (Data, HostAck, HostClk, PeriphAck, PeriphClk) is permitted and encouraged 
during ECP mode. Because the use of active drivers can present compatibility problems in 
Compatible mode (the control signals, by tradition, are specified as open-collector), the drivers 
may be dynamically changed from open-collector to totem-pole. The timing for the dynamic 
driver change is specified in this document. The dynamic driver change must be implemented 
properly to prevent glitching the outputs.

Signal Timing

The signal timing for ECP mode is designed for performance and reliability over cabled systems.

Table 5. Signal Timing
  

Time Minimum Maximum

TH 0 1.0 sec.

TT 0 infinite

TL 0 35 ms

TS 35ms

TP 500 ns

TD 0 ns

TR Host may enter Data Transfer Recovery after TS (Software application 
dependent)

The use of interlocked handshaking provides reliable data transfers. Interlocked handshaking 
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also provides the ability to make trade-offs concerning performance and reliability at the host or 
peripheral (analog or digital filtering may be implemented to improve noise immunity or support 
long cables, at the cost of reduced performance).

The timing is completely self-adapting, allowing more time for systems using longer cables.

Peer-to-Peer Capability

Unlike other P1284 modes, the ECP mode may reverse the channel direction at will without 
having to renegotiate. In addition, a rudimentary "peer-to-peer" capability is provided that allows 
the peripheral to indicate to the host when it would like to reverse the channel (the host is 
always in ultimate control of the channel direction, however).

Operation

Operating Phases

Figure 1. Phase transition diagram

The P1284 interface operates in phases. Additional phases are defined for use in the ECP 
mode as described below. These phases represent the state of the interface as data is moved 
between the host and the printer. The transitions are based on the present state of the interface, 
signal transitions from the host and the printer, and time-outs.

Compatible Data Transfer phase

Interface is in compatible mode, performing host-to-printer data transfer.

Section 2: Signal Protocol
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Compatible Idle phase

Interface is in compatible mode, no data transfer. Printer status lines indicate current parallel 
port status.

Reverse Data Transfer phase

Interface is in ECP mode, performing printer-to-host data transfer.

Negotiation phase

Signal handshaking to change interface from compatible mode to P1284 mode.

Setup phase

This phase immediately follows the Negotiation phase (it is actually part of the negotiation, but it 
differs from Nibble/Byte modes, so it is denoted separately) and is necessary to set up the 
interface signals to the correct state for the Forward Data Transfer phase. The interface may 
optionally switch from open-collector to active-drive outputs during this phase.

Forward-Idle

When the host has no data to send, it keeps HostClk (nStrobe) high and the peripheral will 
leave PeriphAck (Busy) low.

Forward Data Transfer phase

The interface transfers data and commands from the host to the peripheral using an interlocked 
PeriphAck and HostClk. The peripheral may indicate its desire to send data to the host by 
asserting nPeriphRequest.

Forward to Reverse phase

The interface is changing from the forward direction to the reverse direction.

Reverse-Idle phase

The peripheral has no data to send and keeps PeriphClk high. The host is idle and keeps 
HostAck low.

Reverse Data Transfer phase 

The interface transfers data and commands from the peripheral to the host using an interlocked 
HostAck and PeriphClk.

Reverse to Forward phase

The interface is changing from the reverse direction to the forward direction. 

Termination phase

Signal handshaking to change from P1284 mode to Compatible mode. Also, the output drivers 
return to open-collector in this phase. Termination may only be accomplished from the Forward 
Data Transfer phase.

ECP Mode Interface Errors

Errors can occur during interface transfers due to time-outs, noise, incorrect protocol 
implementation, device being powered off, and so on. Many errors can be detected by both the 
host computer and the printer. When the host or peripheral detects an error, it should 
immediately abort (with no termination phase) and resume Compatibility mode operation.

In particular, to protect against bus fight conditions on the bidirectional data pins, the peripheral 
must immediately (within 1µS) stop driving the data bus in the event of a protocol exception. 
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The peripheral should carefully monitor both BOISEmode (nSelectIn) and nReverseRequest 
(nInit) to detect when the host has aborted to Compatibility mode.

When a High Speed device detects an error, it should terminate the current transfer and 
assume that the current byte was not successfully transferred. The interface provides no error 
detection on the data itself. Any desired error detection and recovery should be handled at a 
higher level.

Protocol Description

The High Speed protocol is described in the following section. Timing diagrams are provided to 
detail the handshake sequences. Along the bottom of each diagram are numbers corresponding 
to signal transition events. These events are listed in the "Event List" section. The event 
numbers are also shown in parentheses in the textual descriptions below to improve readability 
of the diagrams.

High Speed Negotiation Phase

To begin the Negotiation phase, the host places the High Speed extensibility request value on 
the data bus (event 0), then sets BOISEmode (nSelectIn) high and HostAck (nAutoFd) low 
(event 1). The peripheral responds by setting PeriphClk (nAck) low, nPeriphRequest (nFault) 
high, Xflag(Select) high, and nAckReverse (PError) high (event 2). The host then sets HostClk 
(nStrobe) low (event 3). The host then sets HostClk (nStrobe) and HostAck (nAutoFd) high 
(event 4), acknowledging that it has recognized a High Speed compatible peripheral. The 
peripheral then sets nAckReverse (PError) low, PeriphAck (Busy) low, and Xflag (Select) high if 
it supports ECP mode (event 5). The printer then sets PeriphClk (nAck) high (event 6), 
indicating that the other status lines may be read. The interface now enters the Setup phase. 
Figure 2 demonstrates a successful negotiation.

Extended Capabilities Port (ECP) mode: Negotiation, Setup, Forward, Termination

Figure 2. ECP mode timing (1 of 3 charts)

Failed Negotiation

If the peripheral does not support ECP mode, it will set Xflag(Select) low during negotiation. 
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When this occurs, the host must terminate the session and renegotiate for another transfer 
mode. This sequence is fully documented in the P1284 specification.

Setup Phase

The Setup phase is entered immediately following a successful negotiation. After seeing 
PeriphClk (nAck) go high, the host optionally changes to active drivers and sets HostAck 
(nAutoFd) low (event 30). The peripheral responds by setting nAckReverse (PError) high and 
optionally changing to active drivers (event 31). The interface now enters the Forward phase. 
The setup phase transitions are shown in Figure 2.

Forward Data Transfer Phase

The Forward Phase may be entered from the Forward-Idle Phase. When the peripheral is not 
busy it sets PeriphAck (Busy) low (event 32). The host then sets HostClk (nStrobe) low when it 
is prepared to send data (event 35). The data must be stable for the specified setup time prior 
to the falling edge of HostClk. The peripheral then sets PeriphAck (Busy) high to acknowledge 
the handshake (event 36). The host then sets HostClk (nStrobe) high (event 37). The peripheral 
then accepts the data and sets PeriphAck (Busy) low, completing the transfer. This sequence is 
shown in Figure 2.

The timing is designed to provide three cable round-trip times for data setup if Data is driven 
simultaneously with HostClk (nStrobe).

Aborting the Forward Data Transfer phase

There is a possibility of the forward channel becoming stalled. The stall condition will exist if the 
peripheral is unable to accept the data byte being transferred by the host at event 35. In this 
condition the peripheral will not acknowledge the handshake (event 36). A mechanism has been 
provided to recover from this condition. If the host, following event 35, determines that a stall 
condition may exist, the host may abort the transfer of the current byte by setting 
nReverseRequest (nInit) low (event 72). The peripheral, regardless of whether it has accepted 
the byte from the host (event 36 happened), shall discard the byte (if applicable) and 
acknowledge the host by setting nAckReverse (PError) low. The host then returns 
nReverseRequest (nInit) high (event 74) and the peripheral follows by returning nAckReverse 
(PError) high (event 75). This sequence, shown in Figure 4, will return the interface to the state 
that existed prior to host event 35.

Forward to Reverse Phase

The Forward to Reverse phase is entered from the Forward phase. The host tri-states the data 
bus and sets HostAck (nAutoFd) low (event 38). After waiting for the minimum setup time, the 
host then sets nReverseRequest (nInit) low (event 39). The peripheral then acknowledges the 
reversal by setting nAckReverse (PError) low (event 40). The peripheral is now permitted to 
drive the data bus after setting nStrobe high. The interface now enters the Reverse phase. This 
sequence is shown in Figure 3.

Extended Capabilities Port (ECP) Mode: Forward to Reverse (Fwd2Rev), Reverse, 
Reverse to Forward (Rev2Fwd)
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Figure 3. ECP mode timing (2 of 3)

Extended Capabilities Port (ECP) Mode: Host Transfer Recovery

Figure 4. ECP mode timing (3 of 3)

Reverse Data Transfer Phase

The Reverse phase may be entered from the Reverse-Idle phase. After the previous byte has 
been accepted, the host sets HostAck (nAutoFd) low (event 46). The peripheral then sets 
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PeriphClk (nAck) low when it has data to send (event 43). The data must be stable for the 
specified setup time prior to the falling edge of PeriphClk. When the host is ready to accept a 
byte, it sets HostAck (nAutoFd) high to acknowledge the handshake (event 44). The peripheral 
then sets PeriphClk (nAck) high, causing the host to accept the data (event 45). After the host 
has accepted the data, it sets HostAck (nAutoFd) low (event 46), completing the transfer. This 
sequence is shown in Figure 3.

Reverse to Forward Phase

The Reverse to Forward phase is entered from the Reverse phase. HostAck (nAutoFd) may be 
high or low when the Reverse to Forward phase is entered. The host sets nReverseRequest 
(nInit) high (event 47). The peripheral then tri-states the data bus, sets PeriphAck (Busy) low to 
indicate the proper forward channel status, and sets PeriphClk (nAck) high (event 48). If the 
peripheral was in the middle of a data transfer (PeriphClk low), it assumes that the data byte will 
be discarded by the host and suspends the transfer. After waiting the minimum setup time, the 
peripheral then sets nAckReverse (PError) high to acknowledge the change of direction (event 
49). The host is now permitted to drive the data bus. The interface now enters the Forward 
phase. This sequence is shown in Figure 3.

Valid Termination

To terminate from P1284 mode, the host sets BOISEmode (nSelectIn) low (event 22), which will 
initiate one of two types of termination. The first type is a handshake that allows the printer to 
tell the host when it has returned to compatible mode. The second is an immediate abort, with 
no guarantee of interface integrity. If the interface was in a "valid" state, which is any state 
where a reverse data transfer is not in progress, the printer will perform the handshake. If the 
interface was not in a "valid" state, the printer will abort immediately. Valid states are indicated 
in the data transfer diagrams by BOISEmode (nSelectIn) being shown as a heavy line.

To terminate from a valid state, the printer will respond to BOISEmode (nSelectIn) being set low 
by setting nAckReverse(PError) to low and PeriphAck (Busy) and nPeriphRequest (nFault) high 
(event 23). The printer will then set Xflag (Select) to its opposite sense and PeriphClk (nAck) 
low (event 24). The host then sets HostAck (nAutoFd) low (event 25). The printer then sets the 
compatible mode printer status on nPeriphRequest (nFault), Xflag (Select) and nAckReverse 
(PError) while the host sets the compatible mode status on nReverseRequest (nInit) (event 26). 
The printer then sets PeriphClk (nAck) high (event 27). The host ends the termination 
handshake by setting HostAck (nAutoFd) high (event 29), which returns the interface to the 
compatible mode idle phase. The printer may then change PeriphAck (Busy) (event 30) to 
accept host-to-printer data. This sequence is shown following a data transfer in Figure 2.

Aborting a Transfer

When BOISEmode (nSelectIn) is set low in an invalid state, the printer aborts immediately. This 
is to protect both the printer and the host. The unexpected transition of BOISEmode (nSelectIn) 
and possibly other signals could be caused by a user switching a switch box at the wrong time, 
or a cable that has worked loose. If a reverse channel data transfer is aborted, the current byte 
in transit is lost, but the printer will hold that byte in its output register. The next time the host 
performs a reverse channel transfer, that byte will be the first one sent.

Event List

The timing charts that constitute Figures 2, 3, and 4 contain numbers corresponding to the 
events that cause the transitions. Following is a list of those numbers and descriptions of the  
corresponding events.

Figure 2 Numbers and Events
0 Host sets extensibility request value on data bus.
1 Host requests a ECP mode transfer by setting BOISEmode (nSelectIn) high and 

HostAck (nAutoFd) low.
2 Peripheral indicates ECP mode support by setting nAckReverse (PError), Xflag (Select), 

and nPeriphRequest (nFault) high, and PeriphClk (nAck) low.
3 Host sets HostClk (nStrobe) low to latch extensibility request value into printer.
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4 After waiting the minimum HostClk (nStrobe) pulse width, the host sets HostClk 
(nStrobe) and HostAck (nAutoFd) high to acknowledge the peripheral's support of the 
High Speed protocol.

5 Peripheral sets nAckReverse (PError) low. Xflag (Select) is set to reflect the peripheral's 
support of the requested extension. PeriphAck (Busy) is set to indicate whether the 
printer can accept data from the host.

6 Peripheral sets PeriphClk (nAck) high, informing the host that the four interface status 
signals are valid.
Note: Events 7 through 21 are defined in the IEEE P1284 specification document; these 
events deal with Byte and Nibble modes and are not discussed here.

22 Host sets BOISEmode (nSelectIn) low and HostAck (nAutoFd) high to request 
termination of ECP mode.

23 Peripheral sets PeriphAck (Busy) and nPeriphRequest (nFault) high, and nAckReverse 
(PError) low.

24 Peripheral acknowledges host's request by setting PeriphClk (nAck) low and Xflag 
(Select) to its opposite sense.

25 Host handshakes with peripheral by setting HostAck (nAutoFd) low.
26 Peripheral sets nAckReverse (PError), nPeriphRequest (nFault), and Xflag (Select) to 

their current compatible mode values. PeriphAck (Busy) is still high to block incoming 
data.

27 Peripheral completes handshake by setting PeriphClk (nAck) high.
28 Host completes handshake by setting HostAck (nAutoFd) high.
29 Peripheral updates PeriphAck (Busy) to current compatible mode status.
30 Host sets HostAck (nAutoFd) low to acknowledge successful negotiation.
31 Peripheral acknowledges that it is now operating in ECP mode by raising nAckReverse 

(PError). PeriphAck (Busy) and nPeriphRequest (nFault) are now active.
32 The peripheral drives HostAck (nAutoFd) low, indicating that it has accepted the data. 

This signals the end of the transfer.
33 The host is idle.
34 Host places Data on the bus. The command bit (nCmd/HostAck) is driven to the 

appropriate level.
35 The host sets HostClk (nStrobe) low to indicate valid data is on the bus.
36 The peripheral handshakes, setting PeriphAck (Busy) high.
37 The host raises nStrobe to continue the handshake. The peripheral will use this edge of 

nStrobe to latch the data.
Figures 3 and 4, Numbers and Events
38 The host tri-states the Data bus and sets HostAck (nAutoFd) low to prepare for a bus 

reversal.
39 The Host sets nReverseRequest (nInit) low to initiate a bus reversal.
40 The peripheral sets nAckReverse (PError) low to acknowledge the bus reversal. 

(nAutoFd) is now active.
41 The peripheral is now idle.
42  The peripheral drives Data and nCmd ( Busy ) onto the bus.
43 The peripheral sets PeriphClk (nAck) low to indicate that data is available on the bus.
44 The host acknowledges the assertion of PeriphClk (nAck) by setting HostAck (nAutoFd) 

high.
45 The peripheral continues the handshake by setting PeriphClk (nAck) high.
46  The host completes the transfer, accepting the byte by setting HostAck (nAutoFd) low.
47 The host sets nReverseRequest (nInit) high to initiate a bus reversal (back to the forward 

direction). The host may continue to handshake, receiving "don't care" data.
48 The peripheral terminates any ongoing transfer, tri-states the data bus, sets PeriphClk 

(nAck) high, and places valid status on the PeriphAck (Busy) line.
49 The peripheral acknowledges that the bus has been relinquished by setting nAckReverse 
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(PError) high.
50 The host drives the data bus and continues with forward data transfer.
72 After waiting for the minimum required time (Ts), the host may abort the host to 

peripheral transfer in progress by setting nReverseRequest (nInit) low.
73 The peripheral handshakes, setting nAckReverse (PError) low, and if not already 

PeriphAck (Busy) low, indicating that the peripheral-to-host data transfer in progress has 
been aborted and the data byte has been discarded.

74 The host raises nReverseRequest to continue the handshake.
75 The peripheral completes the handshake by raising nAckReverse (PError) high, returning 

the link to a host-idle condition.

 

Section 3: ISA Implementation Standard
  

Overview

This specification describes the standard ISA interface to the extended capabilities port (ECP). 
All ISA devices supporting ECP must meet the requirements contained in this section or the 
port will not be supported by Microsoft.

Description

The port is software- and hardware-compatible with existing parallel ports so that it may be used 
as a standard LPT port if ECP is not required. The port is designed to be simple and requires a 
small number of gates to implement. It does not do any "protocol" negotiation, rather it provides 
an automatic high-burst bandwidth channel that supports DMA for ECP in both the forward and 
reverse directions.

Small FIFOs are employed in both forward and reverse directions to smooth data flow and 
improve the maximum bandwidth requirement. The size of the FIFO must be at least 16 bytes 
deep.

The port supports an automatic handshake for the standard parallel port to improve 
compatibility mode transfer speed.

The port also supports run-length encoded (RLE) decompression (required) in hardware. 
Compression is accomplished by counting identical bytes and transmitting an RLE byte that 
indicates how many times the next byte is to be repeated. Decompression simply intercepts the 
RLE byte and repeats the following byte the specified number of times. Hardware support for 
compression is optional. Please consult Section 2 for signal protocol details on ECP.

Description of Pins

Table 6. ECP Parallel Port Signal List
  

Name Qty Dir
Host
Pin #

Slave
Pin # ECP Function

nStrobe 1 O 1 1 During write operations nStrobe registers data or 
address into the slave on the asserting edge 
(handshakes with Busy).

data<7:0>8 I/O 9-2 9-2 Contains address or data or RLE data.
nAck 1 I 10 10 Indicates valid data driven by the peripheral when 

asserted. This signal handshakes with nAutoFd in 
reverse.

Busy 1 I 11 11 This signal deasserts to indicate that the peripheral 
can accept data. This signal handshakes with 
nStrobe in the forward direction. In the reverse 
direction this signal, when low, indicates the data is 
RLE.
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PError 1 I 12 12 Used to acknowledge a change in the direction the 
transfer (asserted = forward).

Select 1 I 13 13 Indicates printer on line.
nAutoFd 1 O 14 14 Requests a byte of data from the peripheral when 

asserted, handshaking with nAck in the reverse 
direction. In the forward direction this signal indicates 
whether the data lines contain ECP address or data.

nFault 1 I 15 32 Generates an error interrupt when asserted.
nInit 1 O 16 31 Sets the transfer direction (asserted = reverse, 

deasserted = forward).
nSelectIn 1 O 17 36 Always deasserted in ECP mode.
gnd 1 — 18 33 Aux-Out
gnd 1 — 19 19 Return ground for strobe.
gnd 1 — 20 21 Return ground for data<1>.
gnd 1 — 21 23 Return ground for data<3>.
gnd 1 — 22 25 Return ground for data<5>.
gnd 1 — 23 27 Return ground for data<7>.
gnd 1 — 24 29 Return ground for Busy.
gnd 1 — 25 30 Return logic ground.
gnd NC 20 Grounded on Connector.
gnd NC 22 Grounded on Connector.
gnd NC 24 Grounded on Connector.
gnd NC 26 Grounded on Connector.
gnd NC 28 Grounded on Connector.

NC 15-17 
34-35

Unused.

ISA Connections

The interface can never stall, causing the host to hang. The width of data transfers is strictly 
controlled on an I/O address basis per this specification. All FIFO-DMA transfers are PWord 
wide, PWord aligned, and end on a PWord boundary. (The PWord value can be obtained by 
reading Configuration Register A, cnfgA , described in the next section.) Single-byte-wide 
transfers are always possible with standard or PS/2 mode using program control of the control 
signals.

Table 7. ISA Interface
  

Name Qty Dir Function

da<10:0> 11 I/O System Address bus
sd<15-7:0> 16-8 I/O System Data Bus
~ioR 1 I I/O Read Command
~ioW 1 I I/O Write Command
~ioCs16 1 O I/O is 16 bit
dRq 1 O DRQ DMA Request

(Note: Use a 1K pulldown here to prevent requests.)
~dAck 1 I DACK DMA Grant
iRq 1 O IRQ
sysClk 1 I System Clock
resetDrv 1 I Reset

Register Definitions

The register definitions are based on the standard IBM addresses for LPT. All of the standard 
printer ports are supported. The additional registers attach to an upper bit decode of the 
standard LPT port definition to avoid conflict with standard ISA devices. 
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The port is equivalent to a generic parallel port interface and may be operated in that mode . 
The port registers vary depending on the mode  field in the ecr . The table below lists these 
dependencies. Operation of the devices in modes other that those specified is undefined.

Note that all addresses shown in Table 8 are added to the base of 03bch, 0278h, 0378h.

Table 8. Register Definitions
  

Name Address Size Mode Function

data 0x000 R/W byte 000-001 Data Register

ecpAFifo 0x000 W-R/W byte 011 ECP FIFO (Address)

dsr 0x001 R byte All Status Register

dcr 0x002 R/W byte All Control Register

cFifo 0x400 W-R/W PWord 010 Parallel Port Data FIFO

ecpDFifo 0x400 R/W PWord 011 ECP FIFO (Data)

tFifo 0x400 R/W PWord 110 Test FIFO

cnfgA 0x400 R-R/W byte 111 Configuration Register A 

cnfgB 0x401 R-R/W byte 111 Configuration Register B 

ecr 0x402 R/W byte All Extended Control Reg.

data

0x000 modes 000,001 (Parallel Port Data Register)

This is the standard parallel port data register. Writing to this register in mode 000 will drive 
data to the parallel port data lines. In all other modes the drivers may be tri-stated by setting the 
direction  bit in the dcr . Reads to this register return the value on the data lines.

ecpAFifo

0x000 mode 011 (ECP FIFO: Address/RLE)

A data byte written to this address is placed in the FIFO and tagged as a ECP Address/RLE. 
The hardware at the ECP port will transmit this byte to the peripheral automatically. The 
operation of this register is defined only for the forward direction (direction  is 0).

Table 9. ECP Address FIFO
<7> W Indicates data Type

1: Bits <6:0> are a ECP Address

0: Bit field <6:0> is a run length, indicating how many times the next data byte is 
to appear (0 = 1 time, 1 = 2 times, 2 = 3 times, and so on).

<6:0> W Address or RLE field described above.

dsr

0x001 (Device Status Register)

This read-only register reflects the inputs on the parallel port interface.

Table 10. Device Status Register
<7> R nBusy inverted version of parallel port Busy signal
<6> R nAck version of parallel port nAck signal
<5> R PError version of parallel port PError signal
<4> R Select version of the parallel port Select signal
<3> R nFault version of the parallel port nFault signal
<2:0> R reserved returns undefined when read

dcr

0x002 (Device Control Register)
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This register directly controls several output signals as well as enabling some functions. The 
drivers for nStrobe, nAutoFd, nInit, and nSelectIn are open-collector in mode 000, and are 
push-pull in all other modes.

In all modes the dcr  shall be able to override any hardware state machine and force the signal 
active. For example, writing 1s to bits<1:0> shall force nStrobe  and nAutoFd  low, even in ECP 
mode. Software will make sure that dcr bits <1:0> are set to 0 prior to entering ECP mode.

Table 11. Device Control Register
<7:6> R Reserved , returns undefined when read.
<5> R/W Direction .

1: If mode  = 000 or mode  = 010, we are standard parallel port and this bit has no 
effect (drivers are enabled). Otherwise, this bit tri-states the drivers and sets the 
direction so that data will be read from the peripheral. Note: some designs 
actually force this bit to a 0 when in modes 000 or 010. Software must be in PS2 
mode 001 in order to reliably write this bit to a 1.

0: Drivers are enabled. DMA, data are written to the peripheral.

<4> R/W ackIntEn .

1: Enables an interrupt on the rising edge of nAck .

0: Disables the nAck  interrupt.
<3> R/W SelectIn  is inverted and then driven as parallel port nSelectIn .
<2> R/W nInit is driven as parallel port nInit .
<1> R/W autofd is inverted and then driven as parallel port nAutoFd .
<0> R/W strobe is inverted and then driven as parallel port nStrobe .

cFifo

0x400, mode = 010 (Parallel Port Data FIFO)

PWords written or DMAed from the system to this FIFO are transmitted by a hardware 
handshake to the peripheral using the standard parallel port protocol. Transfers to the FIFO are 
PWord aligned. If partial PWords need to be transferred then the operation must be handled in 
mode 000. This mode is only defined for the forward direction.

ecpDFifo

0x400, mode = 011 (ECP Data FIFO)

PWords written or DMAed from the system to this FIFO when direction  is 0 are transmitted to 
the peripheral by hardware handshake using the ECP parallel port protocol. Transfers to the 
FIFO are PWord-aligned. If odd bytes need to be transferred, the operation must be handled in 
mode 000.

Data PWords from the peripheral are read under automatic hardware handshake from ECP into 
this FIFO when direction  is 1. Reads or DMAs from the FIFO will return PWords of ECP data 
to the system.

tFifo

0x400, mode = 110 (Test mode)

Data PWords may be read, written, or DMAed to or from the system to this FIFO in any 
direction .

Data in the tFifo  will not be transmitted to the parallel port lines using a hardware protocol 
handshake. However, data in the tFifo  may be displayed on the parallel port data lines.

The tFifo  will not stall when overwritten or underrun. Data will simply be rewritten or overrun. 
The full  and empty  bits must always keep track of the correct FIFO state. The tFifo  will transfer 
data at the maximum ISA rate so that software can generate performance metrics.

The writeIntrThreshold  can be determined by starting with a full  tFifo , and emptying it one 
PWord at a time until serviceIntr  is set. This may generate a spurious interrupt, but will indicate 
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that the threshold has been reached. Likewise, readIntrThreshold  can be determined by 
setting the direction bit to 1, and filling the empty  tFifo  one PWord at a time until serviceIntr  is 
set.

Data PWords are always read from the head of tFifo , regardless of the value of the direction 
bit. For example, if 0x4433, 0x2211, 0x00ff is written to the FIFO, then reading the tFifo  will 
return 0x4433, 0x2211, 0x0ff (in the same order it was written).

The FIFO size and interrupt threshold can be determined by writing PWords and checking the 
full  and serviceIntr  bits.

cnfgA

0x400, mode = 111 (Configuration Register A)

This register allows software to obtain implementation-specific information. All ISA ports shall 
implement the read-only impID  as a minimum.

Table 12. Configuration Register A
<7> R Indicates if interrupts are pulsed or ISA-Level.

1: Interrupts are ISA-Level (See Appendix B).
0: Interrupts are ISA-Pulses.

<6:4> R impID.  Implementation ID number; identifies the design and PWord size.
0x00: The design is a 16-bit implementation (PWord = 2 bytes).
0x01: The design is an 8-bit implementation (PWord = 1 byte).
0x02: The design is a 32-bit implementation (PWord = 4 bytes).
0x03-0x07:Reserved and not supported by Microsoft Software.

<3> R/RW misc.  reserved.  May be used for anything design-specific. If software, may 
try to write it to a 1.

<2> R nByteInTransceiver.  This design-dependent, read-only parameter indicates if 
the design uses an extra pipeline byte when transmitting ECP in event 35. 
See the section on ECP Host Recovery for more information.

0: When transmitting (at event 35) there is 1 byte in the transceiver waiting to be 
transmitted that does not affect the FIFO full  bit.

1: When transmitting (at event 35) the state of the full  bit includes the byte being 
transmitted. There are no extra bytes to be accounted for at abort time.

<1:0> R/RW This field is a "don't care" for a PWord size of 1 byte. For Host Recovery 
situations these bits indicate what fraction of a PWord was not transmitted so 
that software can retransmit the unsent bytes. If the PWord size is 2 or 4 
bytes, the value of these two bits is a snapshot of the last PWord being 
transmitted in mode 011 (event 35) when the FIFO was reset (port was 
transitioned from mode 011 to mode 000 or 001).

00: The PWord at the head of the FIFO contained a complete PWord.
01: The PWord at the head of the FIFO contained only 1 valid byte.
10: The PWord at the head of the FIFO contained 2 valid bytes.
11: The PWord at the head of the FIFO contained 3 valid bytes.

cnfgB

0x401, mode = 111 (Configuration Register B)

This register allows software to control the selecting of interrupts and DMA channels. A 
read-write implementation implies a "software-configurable" device. All ISA ports must 
implement this as a read-only register as a minimum.

Some or all of the bits may be read-only; for example, if the port is configurable but only 
supports 8-bit DMA transfers, then <2> will be a read-only bit set to a 0, while <1:0> may be 
(R/W). Likewise, any or all of the interrupt bits may be read-only.

If a value is not set to 000 (the jumper-default) then it is assumed that the value in the register 
is correct and software will use this interrupt and/or DMA channel.
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Table 13. Configuration Register B
<7> R/W compress.  This is an "optional" feature and need not be implemented. If 

not implemented, the bit should be read-only and always return a 0 when 
read. When this bit is 0 compression will not occur.

1: When set, this bit causes the sending state machine to compress the data 
before sending. All devices supporting compression must implement this 
bit.

0: (Default) The transmitter shall send only uncompressed (raw) data in this 
case.

<6> R intrValue.  Returns the value on the ISA iRq  line to determine possible 
conflicts.

<5:3> R-R/W intrLine.
111: Selects IRQ 5.

110: Selects IRQ 15.

101: Selects IRQ 14.

100: Selects IRQ 11.

011: Selects IRQ 10.

010: Selects IRQ 9.

001: Selects IRQ 7 (default).

000: If read-only, indicates that the interrupt must be selected with jumpers.

<2:0> R-R/W dmaChannel.
111: Selects DMA channel 7.

110: Selects DMA channel 6.

101: Selects DMA channel 5 (default, 16-bit).

100: Indicates jumpered 16-bit DMA if read-only.

011: Selects DMA channel 3 (default, 8-bit).

010: Selects DMA channel 2.

001: Selects DMA channel 1.

000: Indicates jumpered 8-bit DMA if read-only.

ecr

0x402 (Extended Control Register).
This register controls the extended ECP/parallel port functions.

Table 14. Extended Control Register
<7:5> R/W mode

000: Standard Parallel Port mode. In this mode the FIFO is reset and common 
collector drivers are used on the control lines (nStrobe , nAutoFd , nInit , and 
nSelectIn ). Setting the direction  bit will not tri-state the output drivers in this 
mode.

001: PS/2 Parallel Port mode. Same as above except that direction  may be used to 
tri-state the data  lines, and reading the data  register returns the value on the 
data  lines and not the value in the data  register. It is always best for the 
hardware design to read the value of the lines and not the register. (Some old 
Centronics interfaces actually returned the reg value and not the wire value.) 
All drivers have active pull-ups (push-pull).

010: Parallel Port FIFO mode. This is the same as 000 except that PWords are 
written or DMAed to the FIFO. FIFO data is automatically transmitted using the 
standard parallel port protocol. Note that this mode is only useful when 
direction  is 0. All drivers have active pull-ups (push-pull).

011: ECP Parallel Port mode. In the forward direction (direction  is 0), PWords 
placed into the ecpDFifo  and bytes written to the ecpAFifo  are placed in a 
single FIFO and transmitted automatically to the peripheral using ECP 
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Protocol. In the reverse direction (direction  is 1), bytes are moved from the 
ECP parallel port and packed into PWords in the ecpDFifo . All drivers have 
active pull-ups (push-pull).

100: Vendor-specified function.

101: Vendor-specified function.

110: Test mode. In this mode the FIFO may be written and read, but the data will 
not be transmitted on the parallel port.

111: Configuration mode. In this mode the cnfgA  and cnfgB  registers are 
accessible at 0x400 and 0x401.

<4> R/W nErrIntrEn  (valid only in ECP mode)
1: Disables the interrupt generated on the asserting edge of nFault .
0: Enables an interrupt pulse on the high to low edge of nFault . Note that an 

interrupt will be generated if nFault  is asserted (interrupting) and this bit is 
written from a 1 to a 0. This prevents interrupts from being lost in the time 
between the read of the ecr and the write of the ecr .

<3> R/W dmaEn
1: Enables DMA (DMA starts when serviceIntr  is 0).

0: Disables DMA unconditionally.

<2> R/W serviceIntr
1: Disables DMA and all of the service interrupts.

0: Enables one of the following 3 cases of interrupts. Once one of the 3 service 
interrupts has occurred, serviceIntr  bit shall be set to a 1 by hardware. Writing 
this bit to a 1 will not cause an interrupt.
case 
dmaEn=1 :

During DMA (this bit is set to a 1 when terminal count is 
reached).

case
dmaEn=0 
direction=0 :

This bit shall be set to 1 whenever there are 
writeIntrThreshold  or more PWords free in the FIFO.

 case
dmaEn=0 
direction=1 :

This bit shall be set to 1 whenever there are 
readIntrThreshold  or more valid PWords to be read from the 
FIFO.

<1> R full
1: direction = 0. The FIFO cannot accept another PWord.

1: direction  = 1. The FIFO is completely full.

0: direction  = 0. The FIFO has at least 1 free PWord.

0: direction  = 1. The FIFO has at least 1 free byte.
<0> R empty

1: direction  = 0. The FIFO is completely empty.

1: direction  = 1. The FIFO contains less than 1 PWord of data.

0: direction  = 0. The FIFO contains at least 1 byte of data.

0: direction  = 1. The FIFO contains at least 1 PWord of data.

Operation

Interrupts

An interrupt shall be generated in the following cases:

• When serviceIntr  is 0, dmaEn  is 1, and the DMA reaches a terminal count.

• When serviceIntr  is 0, dmaEn  is 0, direction is 0, and there are writeIntrThreshold  or 
more free PWords in the FIFO. Note that this means an interrupt will be generated when 
serviceIntr  is cleared to 0 whenever there are writeIntrThreshold  or more free PWords in 
the FIFO.
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• When serviceIntr  is 0, dmaEn  is 0, direction  is 1, and there are readIntrThreshold or 
more full PWords in the FIFO. Note that this means an interrupt will be generated when 
serviceIntr  is cleared to 0 whenever there are readIntrThreshold  or more full PWords in 
the FIFO.

• When nErrIntrEn  is 0 and nFault  transitions from high to low, or when nErrIntrEn  is set 
from 1 to 0 and nFault  is asserted.

• When ackIntEn  is 1 the way existing parallel ports implement this today. The interrupt 
generated is ISA-friendly in that it may pulse the interrupt line low; optionally it may also 
drive a level (see Appendix B).

  

Mode Switching/Software Control

Software will execute P1284 negotiation and all operation prior to a data transfer phase under 
programmed I/O control (mode 000 or 001). Hardware provides an automatic control line 
handshake, moving data between the FIFO and the ECP port only in the data transfer phase 
(modes 011 or 010).

Setting the mode to 011 or 010 will cause the hardware to initiate data transfer.

If the port is in mode 000 or 001 it may switch to any other mode. If the port is not in mode 000 
or 001 it can only be switched into mode 000 or 001. The direction  can only be changed in 
mode 001.

Once in an extended forward mode, the software should wait for the FIFO to be empty  before 
switching back to mode 000 or 001. In this case all control signals will be deasserted before the 
mode switch. In an ECP reverse mode the software waits for all the data to be read from the 
FIFO before changing back to mode 000 or 001. Since the automatic hardware ECP reverse 
handshake only cares about the state of the FIFO, it may have acquired extra data that will be 
discarded. It may in fact be in the middle of a transfer when the mode is changed back to 000 or 
001; in this case, the port will deassert nAutoFd independent of the state of the transfer. The 
design will not cause glitches on the handshake signals if the software meets the constraints 
above.

ECP Operation

Prior to ECP operation the Host must negotiate on the parallel port to determine if the 
peripheral supports the ECP protocol. Consult Section 2 for details. This is a somewhat 
complex negotiation carried out under program control in mode 000.

After negotiation, it is necessary to initialize some of the port bits. The following are required:

• Set Direction  = 0, enabling the drivers.

• Set strobe = 0, causing the nStrobe  signal to default to the deasserted state.

• Set autoFd  = 0, causing the nAutoFd  signal to default to the deasserted state.

• Set mode  = 011 (ECP mode)
  

ECP address/RLE bytes or data PWords may be sent automatically by writing the ecpAFifo  or 
ecpDFifo , respectively.

Note that all FIFO data transfers are PWord-wide and PWord-aligned. Address/RLE transfers 
are byte-wide and only allowed in the forward direction.

The host may switch directions by first switching to mode = 001, negotiating for the forward or 
reverse channel, setting direction  to 1 or 0, then setting mode = 011. When direction  is 1 the 
hardware shall handshake for each ECP read data byte and attempt to fill the FIFO. PWords 
may then be read from the ecpDFifo  as long as it is not empty .

ECP transfers may also be accomplished (albeit slowly) by handshaking individual bytes under 
program control in mode = 001 or 000.

DMA

DMA uses the standard PC DMA services. The software first sets up the direction and state as 
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in the programmed I/O case. Then it programs the DMA controller in the PC with the desired 
count and memory address. Then it sets dmaEn  to 1 and serviceIntr  to 0. Lastly, it unmasks 
the DMA at the DMA controller. The DMA will empty or fill the FIFO using the appropriate 
direction  and mode .

DMA is always to or from the FIFO located at 0x400.

When the terminal count in the DMA controller is reached, an interrupt is generated and 
serviceIntr  is asserted, disabling DMA. In order to prevent possible blocking of refresh 
requests, dReq  shall not be asserted for more than 32 DMA cycles in a row.

DMA may be disabled in the middle of a transfer by first disabling the host DMA controller, then 
setting serviceIntr  to 1, setting dmaEn  to 0, and waiting for the FIFO to become empty  or full . 
Restarting the DMA is accomplished by enabling DMA in the host, setting dmaEn  to 1, and 
setting serviceIntr  to 0.

After the end of a DMA transfer in the forward direction, software must wait until the FIFO is 
empty  and the state of the busy  line (visible in the dsr)  is low. This ensures that all data has 
been transmitted to the peripheral.

Interrupt-Driven Programmed I/O

The ECP or parallel port FIFOs may also be operated using interrupt-driven programmed I/O. In 
the forward direction an interrupt occurs when serviceIntr  is 0 and there are 
writeIntrThreshold  or more PWords free in the FIFO. At this time, if the FIFO is empty  it can 
be filled with a single burst before the empty  bit needs to be re-read. Otherwise it can be filled 
with writeIntrThreshold  PWords.

In the reverse direction, an interrupt occurs when serviceIntr  is 0 and readIntrThreshold  
PWords are available in the FIFO. If at this time the FIFO is full , it can be emptied completely 
in a single burst, otherwise readIntrThreshold  PWords may be read from the FIFO in a single 
burst.

Software can determine the writeIntrThreshold , readIntrThreshold , and FIFO depth by 
accessing the FIFO in Test mode.

Real Time Constraints

Though we cannot constrain the PC ISA bus itself, we can constrain the ECP port interface so 
that it operates as fast as possible. Some PC ISA implementations can be adjusted in software 
to speed up the DMA or I/O transfer. An implementation must ensure, however, that whatever 
bandwidth is on the ISA is not lost in the interface.

Timing Diagrams

Standard Parallel Port

The standard parallel port is run at or near the peak 500 Kbytes/sec allowed in the forward 
direction using DMA. The state machine does not examine nAck  and begins the next DMA 
based on Busy .
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Figure 5. Standard parallel port timing diagram

ISA Interface

I/O read/write

The I/O read, write, and DMA timings on the ISA bus are well known industry standards. This 
document does not describe them.

ECP parallel port timing

The timing is designed to allow operation at approximately 2.0 Mbytes/sec over a 15-foot cable. 
If a shorter cable is used then the bandwidth will increase. The maximum timings from the host 
side are required. The timings should be as tight as possible to enhance performance.

Figure 6. ECP parallel port forward timing diagram
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Figure 7. ECP parallel port backward timing diagram

Electrical Information

Table 15. Timing Characteristics
  

Parameter Location Minimum Maximum

tds    driver 0 infinite
tdh driver 0 infinite
tlh receiver 75ns infinite
thh driver 0 1.0s
thl receiver 0 35ms
tll receiver 0 infinite

Preliminary Discussion of Cable and Driver Characteristics

There are several problems designing the cable-driver-receiver system. First, there is the 
problem of impedance matching. We measured a number of cables from various manufacturers 
in various lengths. All cables were shielded with at least a foil shield. Most cables were of the 
foil shield, 18-wire variety (one ground line).

While switching more than one line, the impedance of the cables varied from 49 to 100 Ω. With 
one-line switching, all cables presented a more uniform 49-62 Ω impedance.

Thus, in some cases we can implement incident wave switching on the handshake lines. The 
data lines will incident-wave-switch given a good cable, but data setup time is added to allow 
poor cables (six feet in length and under) to function properly.

Unfortunately, incident wave switching works only when there is no significant inductive 
coupling from other signal lines. This is true as long as there is only one-line switching in the 
system. When the data lines switch, a noise spike is generated on other signal lines (that is, 
nStrobe  and nAck ).

In order to guarantee noise immunity, the receiver shall ensure that the strobe (either nAck  or 
nStrobe ) has been asserted for at least tlh ns before responding. This serves to make the 
system more impervious to inductive switching noise.

Likewise, the driver port state machine will not examine the control handshake response lines 
until the data has had time to switch.
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Some handshake signals (tll, thl, thh) may be assumed to incident-switch since there is no noise 
coupling and a reasonable impedance match.

The RC network is designed to provide an RF filter, and to match the cable's impedance. The 
capacitance has the effect of lowering the characteristic impedance, and this is matched by the 
lower driver impedance range. Of major importance is that the capacitance on both the driver 
and receiver be of the same value to attain operation without reflections.

Table 16. Cable Requirements
  

Cable (Shielded) Minimum Maximum

Z0 (multiple switching, length <= 6 feet) 48 Ω 100 Ω
Z0 (multiple switching, length > 6 feet) 48 Ω 65 Ω

DC Characteristics

Table 17. DC Characteristics
  

Rs Driver (pull-down) 30 50 ΩΩ

VCC 4.75 5.25 V
Vil 1.0 V
Vih 2.0 VCC V

Table 18. Capacitance
Capacitor pf tolerance

Cdata 180 10%

Ccontrol 180 10%

Figure 8. Driver electronics diagram: One implementation of this specification
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Appendix A: Peripheral-Side Design Note
  

The specifications and guidelines described in this document are specific to ISA implementation 
on a host PC system. Peripherals tend to have bus architecture that has nothing in common 
with the host PC architecture.

Although this document is not meant to provide a guideline for ECP port design on a 
peripheral,  you need to keep the following special consideration in mind.

The peripheral must always return data when a byte is requested. Peripheral devices that know 
the total number of bytes to be transmitted must not stop sending data after that number of 
bytes is reached. Additional "don't care" data bytes must be sent to "pad" the transfer. The host 
interface will discard any extra bytes received. The extra "don't care" bytes are useful to provide 
alignment to wider busses (that is, 16-bit, 32-bit, 64-bit).

Use of nFault (nPeripheralRequest)

When a peripheral wishes to interrupt the host, it asserts nFault low. It will hold nFault low until 
service is established or until a negotiation phase. If faster latency is desired, it is a good idea to 
continue to accept or transmit data while nFault is asserted. If latency is not a problem (that is, 
an error interrupt) then stalling the transfer and asserting nFault is acceptable.

 

Appendix B: Known Enhancements to This Standard
  

Detection of FIFO State Errors

At least one port design has implemented a feature that generates an error if the FIFO is 
overwritten in the forward direction or overread in the reverse direction. This error should never 
occur with proper hardware and software design. In the case of the error, some designs may set 
both the full  and empty  bits in the ecr  and generate a service interrupt (setting the service 
interrupt bit).

In order to clear the FIFO error condition, software shall exit ECP mode, placing the port 
instead into Standard (000) or PS2 (001) mode.

This feature is noted here so that drivers may be able to interpret the event properly.

Use of Nonpulsed (Level-Triggered) Interrupts

The original design of this port generated pulses on each interrupt event. This will work fine on 
ISA machines, but some designers wish to make the port function in the standard level ISA 
fashion. In order to do this, the level interrupt is enabled (driven low) whenever the device is in 
ECP, Test, or Centronics FIFO mode. When an interrupt condition exists, the signal is driven 
high.

After receiving, the interrupt driver will read the ECR to determine the cause of the interrupt. It 
then writes the ECR, setting the serviceIntr  bit to 1 and the nErrIntrEn  bit to 1. This masks all 
interrupt sources and causes the iRq  line to go low. After servicing the Interrupt, the driver will 
re-enable interrupts, if desired, by writing serviceIntr  and/or nErrIntrEn  bits to 0.

After the completion of each DMA transfer (terminal count), the driver shall first write dmaEn  to 
0 before beginning another DMA transfer.

The software driver shall ensure that the interrupt due to nAck  is disabled whenever the port is 
using ECP protocol or ECP mode to transfer data.
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Appendix C: Host Recovery of a Forward Transfer at (Event 35)
  

Background

Long after this specification was implemented, IEEE noticed a potential problem for some 
designs: It was possible for some peripherals to stall forever in event 35 and there was no way 
for the host to legally "break out" of the forward transfer without data loss and protocol violation. 
The specification was modified to allow for a Host Recovery phase.

Software can easily implement the recovery handshake; however, software must determine the 
total number of bytes that remain in the FIFO first so they can be retransmitted. The basic idea 
is to fill the FIFO so we know how many bytes were in the FIFO. Then software adjusts for any 
partially transmitted PWords or bytes that may be in an output transceiver stage. This byte 
adjustment data is placed in cnfgA <2:0>.

Software will perform the following steps to recover from a Forward Data Transfer at event 35:

[The ECP port is in mode 011, stuck on event 35, trying to transmit, and we want to recover.]
1. Write to the dcr  driving the nStrobe  signal low. This prevents further data transfers even if 

the peripheral starts accepting data.
2. The number of PWords in the FIFO at abort time is computed by writing PWords to the 

FIFO until the full  is set to 1. For PWord sizes of 2 and 4 bytes, the PWord at the head of 
the FIFO may be partially transmitted.

3. The host writes the ecr  and sets the mode to 001. This causes the port to reset the FIFO 
and load FIFO state information into cnfgA <1:0>. This will be used by software to 
determine how many bytes remain untransmitted in the PWord at the head of the FIFO.
Note     Steps 4 through 8 describe the Recovery Handshake.

4. The host tri-states its drivers by writing the dcr direction  bit to 1.

5. The host writes the dcr  setting nInit  low and waits for dsr  PE signal to go low.

6. The host writes the dcr  setting nStrobe  high.

7. The host writes the dcr  setting nInit  high and waits for dsr  PE signal to go high.

8. The host has recovered and is in the Forward Idle phase. It now reads cnfgA  and computes 
the actual number of bytes that need to be retransmitted. The software takes the number of 
PWords in the FIFO, and adjusts for a partial PWord and for a byte in the output transceiver 
by using the values in cnfgA <2:0>.

  

Example 1

Suppose we have a byte-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 2 bytes to the FIFO to make it full . The value in cnfgA <1:0> does not 
matter, since this is a byte-wide interface; however, the 0 in cnfgA <2> indicates that there is a 
byte in the output transceiver we must count. Thus the total number of bytes to be re-sent is:

Bytes to be reset = (32-2) + 1 (transceiver byte)

Example 2

Suppose we have a word-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 111b. 
At abort time we find that 2 more PWords make the FIFO full . The value in cnfgA <1> does not 
matter, since this is a word-wide interface. The 1 in cnfgA <2> indicates that there are no bytes 
in the output transceiver, and the 1 in cnfgA <0> indicates that the PWord at the head of the 
FIFO is partial, containing only 1 byte. Thus:

PWords in FIFO = 32 - 2 = 30

One of these is a partial PWord, thus:

• Complete PWords in FIFO = 29

• Partial PWords in FIFO = 1

• Bytes to be reset = (29) * 2 + 0(transceiver byte)+ 1(partial PWord) = 59 bytes
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Example 3

Suppose we have a 32-bit-wide interface, a FIFO depth of 16 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 4 PWords to fill the FIFO; thus we know that there are 12 PWord entries 
in the FIFO used. The value in cnfgA  indicates that there is 1 byte in the transceiver and the 
PWord in the FIFO being transmitted contains only 3 bytes. Thus:

• PWords in FIFO = 16 - 4 = 12

• Complete PWords in FIFO = 11

• Bytes to be re-sent = 4 * 11 + 3 (partial bytes in PWord being transmitted) + 1 (transceiver 
byte) = 48 bytes

  

 

ECP Driver Hardware Notes
  

Revision: 1.1
July 20, 1993

Microsoft assumes no liability for direct, indirect, incidental, consequential, or other damages 
arising from the use of this specification contained herein, and reserves the right to update, 
revise, or change any information in this document without notice.

 

Document History
  

  

Revision Date Action Author(s)

1.0 6-1-93 Wrote first draft of notes Dave Voth
1.1 7-9-93 Updated Abort Section to reflect IEEE spec wording Dave Voth

 

Introduction
  

Document Purpose

This document is a set of notes to aid the software engineer in writing drivers for the ECP/ISA 
interface. It attempts to impart an understanding of the hardware and answer some commonly 
asked questions about writing ECP drivers.

The reader of this document should be aware that the port specification, not this document, is 
the official source of information. If there are any conflicts between this document and the ECP 
ISA port specification, this document should be considered in error.

Other Documents

The reader should be familiar with the Standard P1284 by IEEE and the 
Microsoft/Hewlett-Packard ISA ECP Port Specification.

Scope

This document is useful for all compatible ECP ISA port devices.

Overview

The ECP ISA parallel port is an enhancement to the existing port. It offers hardware-assisted 
data transfer in any of several modes. The hardware assist accelerates the transfer by providing 
handshaking on the control lines reducing the software burden.
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The driver is responsible for port detection, configuration, and any data transfer and/or 
alignment operations. The data transfer operations may use interrupts and/or DMA.

 

API Interface
  

The actual mechanism a driver will use for receiving or transmitting data from an application 
through the operating system is beyond the scope of this document. What is specified here is 
the required range of API functionality and those functions that the interface must provide, and 
not exactly how they are implemented. The exact parameters and return values are not defined 
here. For example, many of the functions described here will be carried out by an ioctl  
procedure and may not have specific procedure calls of their own.

The drivers shall be able to implement the following interface functionality:
  

API Function and Purpose Before Call After Call Method of Operation

Initialize() Undefined Compatibility Not applicable
Open()–Negotiates the peripheral 
into P1284 ECP mode.

Compatibility 
mode

Forward-Idle Not applicable

Close()–Terminates any ongoing 
operations and negotiates the 
peripheral into compatibility mode.

Any ECP phase Compatibility 
mode

Not applicable

SetChannelAddress(0..0x7f)–Sets 
the peripherals data channel to a 
specified value.

Any ECP phase Forward-Idle Hardware assist or 
software emulation

ReadString(char* lpsBuffer, int 
byteCount)–Negotiates to reverse, 
reads byteCount or more bytes 
from the peripheral and places 
byteCount bytes into lpsBuffer. 
Then negotiates back.

Any ECP phase Reverse Hardware assist (DMA 
or Intr or polled)

WriteString(char * lpsBuffer, int 
byteCount)–Writes the specified 
number of bytes from lpsBuffer to 
the peripheral.

Any ECP phase Forward-Idle Hardware assist (DMA 
or interrupt or polled)

ReadByte()–reads a byte from the 
peripheral.

Any ECP phase Reverse Hardware assist

WriteByte()–Writes a byte to the 
peripheral.

Any ECP phase Forward-Idle Software emulation or 
hardware assist

Abort() Any ECP phase Forward-Idle Software emulation
SetAbortTimeout(int 
seconds)–Sets the time the driver 
must wait before it Abort()s the 
transfer if no progress is being 
made.

Forward or 
Reverse-Transfer 
phase

Forward-Idle Software emulation

 

Port Detection: Initialize()
  

Prior to any driver being installed, or perhaps as a check of the installed driver, software must 
check the ISA port for the presence of an ECP ISA port. This can be done in many ways, but a 
couple of key features are noteworthy:

• Generally the port is detected by the presence of the ECR register.

• This must be done after boot time and the port must be in an idle state.
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1. Read the ECR and verify that the Full bit is a 0 and the Empty bit is a 1. Verify that this 
differs from the corresponding bit-position values in the dcr .

2. Now we know that the Port is probably an ECP port and we can try to do some 
additional testing. Write the ECR to 0x34 and read the ECR: It should contain 0x35 
(Full and Empty are read-only status).

  

  

Port Information

After the port is detected, it is important to determine some of the attributes of the port. This is 
done by writing the ECP register with 0xf4, placing the port in Configuration mode.

Reading cnfgA , you determine PWord size (if the port is 1, 2, or 4 bytes wide). This knowledge 
is essential for setting up DMA and programmed I/O transfers.

Bit 7 of configuration A register is useful for setting up the nFault  interrupt. If this bit is set to 1 
then the driver may enable both nFault  and service interrupt at the same time. If this bit is 0 
then the driver must allow only one interrupt type at a time (more on this later). In any case, this 
information is usually collected once at boot time.

Next the driver should determine if the port supports hardware compression. The compress  bit 
field allows software to turn off (or on) any hardware compression. Software should attempt to 
write compress  to 1 and then read it back. Devices not supporting hardware compression will 
return a 0 while devices supporting compression will allow this bit to be written to a 1. The 
compression  bit should then be initialized to 0 (until such a time as a compressed data transfer 
is desired).

Bit 6 of cnfgB  is useful for detecting interrupt line conflicts. If this bit is 0 when read, we are 
guaranteed to have an interrupt conflict. The software should report the conflict and not enable 
interrupts. If bit 6 is read as a 1 then there may or may not be an interrupt conflict.

The other bit fields in cnfgB  (intrLine , dmaChannel ) were intended to allow for a 
software-configurable hardware implementation. Unfortunately, most (if not all) designs do not 
have enough pins to implement this and will return read-only 0s in this register.

Software should attempt to write intrLine  and dmaChannel  to the state defined in the win.ini 
file. If undefined, then the default state (Intr channel 7, DMA channel 3 or 5) should be tried. 
Software must try to detect resource conflicts and ensure that no other hardware is sharing the 
resources. In any case the iRq  , dRq  selection process must be modifiable via the windows 
ports dialog box, win.ini file, so the user can override the default settings.

Direction Bit and Mode 000, 001

Beware! Setting the port to mode 000 may clear the direction bit on some designs. For 
example, if software writes direction bit to 1 in mode 000, then sets the mode to 011 (ECP 
mode), the direction bit will still remain 0 and the ECP mode will be in the forward direction. 
Software, to avoid this potential problem, should not use mode 000, but use only mode 001 as 
the direction bit is writeable in mode 001. Mode 001 is identical to mode 000 except the 
direction bit functions properly.

FIFO Information and Test

The size of the FIFO and the interrupt thresholds can be determined in test mode. These 
parameters are acquired via the following sequence of events:

• The chip is placed in forward test mode with the interrupts off. The FIFO is written one 
PWord at a time until the full  bit is set. The total number of PWords written equals the size 
of the FIFO, which is assumed to be the same in either direction.

• The serviceIntr  bit is written first to 1 then 0, enabling the service interrupt (the FIFO is still 
full from the previous step). PWords are then read from the FIFO until a service interrupt 
occurs (serviceIntr becomes set to 1). The number of PWords read from the FIFO is equal 
to the writeIntrThreshold .

• Software should verify that the interrupt was in fact registered at the PIC by installing an 
interrupt handler and counting the interrupts. The writeIntrThreshold  indicates the number 
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of bytes that may safely be written when an interrupt occurs.

• Software then initializes the FIFO by setting the mode field to 001, and places the port in 
the reverse direction by setting the direction  bit to 1 in the dcr . The port is then placed 
back in test mode and service interrupt is written first to 1, then to 0 (enabling the interrupt). 
PWords are then written to the FIFO until a service interrupt occurs (serviceIntr becomes 
set to 1). The number of PWords written to the FIFO is equal to the readIntrThreshold .

• Software should verify that the interrupt was in fact registered at the PIC by installing an 
interrupt handler and counting the interrupts. The readIntrThreshold  indicates the number 
of bytes that may be safely read when an interrupt occurs.

  

 

Port Initialization (Open)
  

When an application opens a channel through the port, software shall use the P1284 negotiation 
to place the peripheral in the Forward-Idle state. The ecr  should be set to 0x34 by the time this 
call returns.

 

Forward Transfer
  

WriteByte()

Software will execute the proper negotiation sequence to place the peripheral into the 
Forward-Idle state if it needs to. Software may then, using the dcr /dsr  and data register, write a 
byte to the peripheral. Software may also use the hardware to assist the data transfer if the 
PWord size is 1 byte. This is done by writing to the FIFO when the ecr  is set to ECP mode with 
the byte to be transmitted.

To ensure that the byte has been completely transmitted in ECP mode, or prior to changing the 
mode bits, the FIFO must be empty  and the state of busy  must be low.

SetChannelAddress(0..0x7f)

Software will execute the proper negotiation sequence to place the peripheral into the 
Forward-Idle state if it needs to. Software may then, using the DCR/DSR and data register, write 
a byte to the peripheral. It may also write to the aFifo  if it has already set up the port in ECP 
mode (011).

WriteString()-Programmed I/O

Because the channel has been established via the Open call, the job of the driver at this point is 
very specific. If the driver does not use interrupts or DMA it may use the FIFO and automatic 
hardware handshake provided by the hardware to transfer data.

1. Set Port in ECP mode.
2. Use String Repeat Operation to move the desired number of PWords to the FIFO. If there 

are extra bytes left over due to byte-PWord misalignment, the driver must change to STD 
mode after the FIFO is empty  and then transfer the remaining bytes using programmed I/O 
to the dcr /dsr /data  registers.

3. When the FIFO is empty and the state of the busy signal is low, the data has been 
transferred and the operation is over. Note that if for any reason both the empty  and full  
bits are simultaneously set, an error has occurred and should be reported.

4. IF nFault  in the DSR is asserted, a message or some signaling mechanism must be passed 
back to a user-defined service routine for handling.

  

WriteString()-Interrupt-Driven Programmed I/O Forward Data Transfer
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An interrupt may be used to indicate that the port requires service (more data) for string 
transfers that exceed a FIFO size. Of course, prior to the transfer an interrupt service routine 
must be installed and the port set up properly. The interrupt service routine handles the interrupt 
and refills the FIFO with data. The steps below must be followed in order by the interrupt 
handler:

1. Read ecr . If serviceIntr  is not set, then the interrupt was false and the service routine 
should exit. Read DSR if an nFault  interrupt is asserting, then send a Message to signal 
that fact to the peripheral.

2. Write ecr  to 0x74. This sets serviceIntr  to 1 and nErrIntrEn  to 1, masking the interrupts.

3. If the empty  bit was set in the ECR, then FIFO-size PWords may be written to FIFO, 
otherwise writeIntrThreshold  PWords may be written to the FIFO. A string repeat 
command of PWord width should be used to maximize performance.

4. Hardware will move the FIFO data to the peripheral using the ECP mode.
5. The ecr  may be read again, if desired, to see if empty  is 1. If so, the hardware has 

completely sent the previous data burst and the FIFO may be filled with a FIFO-size burst 
transfer. Rechecking the empty  a few times will greatly improve the high-end performance, 
as the interrupt latency is usually around 100ms.

6. If more data remains to be transferred and the FIFO is not empty , the interrupt service 
routine should enable interrupts by unmasking the service interrupt (and possibly the nFault  
interrupt) just before returning from the interrupt routine.

  

Cleanup

After the transfer (remaining byte count < PWord) to the FIFO has been completed, the driver 
must verify that the empty  bit is 1 in the ecr and the state of busy  is low, to ensure that the last 
data has been transferred. If software changes the mode field in the ecr  prior to empty , the 
data in the FIFO will be lost.

If a misalignment exists (remaining count != 0 < PWord) between the PWord size and number 
of bytes to be transmitted at the end of a transfer, the driver must not use the FIFO to transfer 
the final misaligned byte(s). It must do so in STD mode using the DSR/DCR/DATA registers.

WriteString()-DMA-Driven Forward Data Transfer

DMA may be used to move a specific amount of data. Of course, to use DMA the device must 
have the use of a DMA channel (dRq ) and interrupt (iRq ). Software should do some sanity 
checking sometime in the process to ensure that the device is actually connected to the channel 
and interrupt.

The steps below must be followed in order to set up the DMA:

1. The ecr is written to 0x34, clearing the FIFO. The DMA controller is programmed with 
buffer address and count. The DMA controller remains masked at this time.

2. An interrupt routine is installed to handle the resulting terminal count interrupt. The ecr  is 
then written to 0x7C, setting dmaEn  first to 1 and then to 78, enabling the serviceIntr . 
Lastly, the DMA is unmasked at the DMA controller and data is moved to the peripheral.

3. DMA is complete when a service interrupt occurs. The interrupt handler follows the 
following steps:
a. Read ecr  and check the interrupt sources. If no interrupt occurred then the interrupt was 

false and the routine should be exited.
b. Write ecr  to 0x74. This masks interrupts by setting serviceIntr  and nErrIntrEn  to 1.

c. If the interrupt was caused by the service interrupt, the DMA is complete. The dmaEn  
bit in the ecr  must then be written to a 0.

d. Software must wait for the FIFO to become empty  and the state of busy  to be low 
before the transfer is considered complete.

e. If desirable or necessary, set up another DMA and reenable interrupts as before.
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Negotiating from Forward to Reverse
  

In order to do a reverse ECP transfer, it is necessary to change the phase of the peripheral from 
forward to reverse. This is done by negotiation and is carried out by the following steps. Be sure 
to refer to IEEE P1284 and the ECP ISA port specification.

1. Complete the current forward transfer.
2. Place the ECP port into PS2 mode (001).
3. Set the direction bit to 1 (reverse), causing the ECP port data drivers to tri-state.
4. Set the ECP port into ECP mode (011), enabling the hardware assist.
5. Write to the DCR, causing nInit  to go low. This requests a reverse transfer from the 

peripheral.
6. The peripheral will drive pe low when it has started the reverse transfer. Hardware will 

automatically move data into the ECP FIFO from the ECP data lines.
7. Set up a ReadString or execute a ReadByte operation.

  

 

Reverse Data Transfer
  

ReadByte()

Software will set the ECP port into hardware-assisted reverse mode (see "Negotiating from 
Forward to Reverse") and negotiate the peripheral into the Reverse phase if it has not already 
done so. This will cause the hardware to read data from the peripheral and place it into the 
FIFO. When the FIFO is not empty , a PWord may be read from the FIFO and the byte 
requested returned.

If a subsequent Read() command is issued, the driver may read another PWord burst from the 
FIFO or use the unused part of a previously read PWord in order to return the byte. If a 
subsequent ReadString()  command is issued, the driver sets up and executes the operation. 
However, in both of these two cases, negotiation must not occur and the mode (ECP = 011) of 
the port must not be changed, or data loss will result.

If a Write , WriteString , or Close  command is issued, the phase and mode of the port will of 
course be changed.

ReadString()

Software will set the ECP port into hardware-assisted reverse mode (see "Negotiating from 
Forward to Reverse") and negotiate the peripheral into the Reverse phase if it has not already 
done so. This will cause the hardware to read data from the peripheral and place it into the 
FIFO. When the FIFO is not empty , a PWord may be read from the FIFO and the byte 
requested returned.

If a subsequent Read() command is issued, the driver may read another PWord burst from the 
FIFO or use the unused part of a previously read PWord in order to return the byte. If a 
subsequent ReadString()  command is issued, the driver sets up and executes the operation. 
However, in both of these two cases, negotiation must not occur and the mode (ECP = 011) of 
the port must not be changed, or data loss will result.

If a Write , WriteString , or Close  command is issued, the phase and mode of the port will of 
course be changed.

Interrupt Driven Programmed I/O

One method of moving string data from the FIFO is via interrupt-driven programmed I/O. As 
data in the FIFO reaches the readIntrThereshold  it generates a service interrupt. The interrupt 
routine moves the data from the FIFO to memory. The following sequence should be used by 
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the interrupt service routine:

1. Read the ecr  to determine the source of the interrupt. If no interrupt source is found, the 
interrupt is false and should be ignored.

2. Mask the interrupts by writing serviceIntr  and nErrIntrEn  to 1.

3. If the full  bit in the ecr  is set, the entire FIFO may be read; otherwise a readIntrThreshold  
number of PWords may be read from the FIFO. A string repeat command should be used to 
maximize performance.

4. The peripheral will attempt to keep the FIFO full, sending extra "don't care" data to fix any 
FIFO alignment problems. Thus, software may read more bytes than required and discard 
any unneeded bytes in order to generate correct alignment. For example, say the host 
wants to read 5 bytes from a FIFO with a PWord size of 2 bytes. Software reads 3 PWords, 
discarding the extra byte.

5. When the interrupt service is complete, the interrupts are unmasked if more data transfer is 
required.

  

DMA-Driven Reverse Transfer

DMA may be used to move a specific amount of data from the FIFO to memory. Of course, to 
use DMA, the device must have use of a DMA channel (dRq ) and interrupt (iRq ). Software 
should do some sanity checking sometime in the process to ensure that the device is actually 
connected to the channel and interrupt.

The steps below must be followed in order to set up the DMA:

1. Prior to negotiation, the DMA controller is programmed with buffer address and count. The 
DMA controller remains masked at this time.

2. An interrupt routine is installed to handle the resulting terminal count interrupt. The ecr  is 
then written to 0x78; this sets (enables) the serviceIntr  and the DMA. Lastly, the DMA is 
unmasked at the DMA controller—the DMA is ready to go. Some devices allow the nFault  
interrupt to be safely enabled (0x68) at the same time as serviceInterrupt  (see discussion 
of nFault  interrupt).

3. After negotiation into the reverse direction, the peripheral will fill the FIFO and the DMA will 
move the data into memory.

4. DMA is complete when a service interrupt occurs. At that time the number of PWords 
programmed for the DMA transfer have been moved to memory. The interrupt service 
routine should follow the following steps:
a. Read ecr  and check the interrupt sources. If no interrupt occurred, the interrupt was 

false and the routine should be exited.
b. Write ecr  to 0x74. This masks interrupts by setting serviceIntr  and nErrIntrEn  to 1.

c. If the interrupt was caused by the service interrupt, the DMA is complete. The dmaEn  
bit in the ecr  must then be written to 0.

d. If the FIFO is not empty , software may read another PWord from the FIFO in order to 
fix an alignment problem. For example, suppose 4K+1 bytes were required from a 
2-byte wide PWord interface. The DMA could transfer 4K bytes using DMA, then the 
software could read 1 additional PWord from the FIFO and extract the extra byte.

e. If the desired number of bytes is greater than the DMA buffer size, multiple transfers 
are required. In this case the ECP port must be kept in ECP mode until all the data has 
been moved. Changing modes will delete valid data from the FIFO that cannot be 
recovered.
In order to do multiple buffer transfers, the DMA controller should be set up for another 
transfer and enabled (the dmaEn  bit is set to 1).

f. In order to restart a multi-buffer transfer, the service interrupts must be unmasked and 
the interrupt service routine exited.
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Reverse to Forward Negotiation
  

After the ECP port has moved data in ECP mode (011) in the reverse direction and a change of 
direction is required, the following steps must be taken:

1. First, negotiate the state of the ECP port (the peripheral) back into forward mode. This is 
done by setting nInit  high and waiting for the state of pe go high. This causes the peripheral 
to terminate any ongoing reverse transfer.

2. The mode of the ECP port is changed to PS2 mode 001.
3. The direction bit is changed to 0. At this point, the bus and the ECP port are in the 

forward-idle state.
  

 

Abort()
  

Background

Long after this specification was implemented, IEEE noticed a potential problem for some 
designs: It was possible for some peripherals to stall forever in event 35 and there was no way 
for the host to legally "break out" of the forward transfer without data loss and protocol violation. 
The specification was modified to allow for a Host Recovery phase.

Software can easily implement the recovery handshake; however, software must first determine 
the total number of bytes that remain in the FIFO so they can be retransmitted. The basic idea 
is to fill the FIFO so we know how many bytes were in the FIFO. Then software adjusts for any 
partially transmitted PWords or bytes that may be in an output transceiver stage. This byte 
adjustment data is placed in cnfgA <2:0>.

Software will perform the following steps to recover from a Forward Data Transfer at event 35:

1. The ECP port is in mode 011, stuck on event 35, trying to transmit, and we want to recover.
2. Write to the dcr , driving the nStrobe  signal low. This prevents further data transfers, even 

if the peripheral starts accepting data.
3. The number of PWords in the FIFO at abort time is computed by writing PWords to the 

FIFO until the full  is set to 1. For PWord sizes of 2 and 4 bytes, the PWord at the head of 
the FIFO may be partially transmitted.

4. The host writes the ecr  and sets the mode to 001. This causes the port to reset the FIFO 
and load FIFO state information into cnfgA <1:0>. This will be used by software to 
determine how many bytes remain untransmitted in the PWord at the head of the FIFO.

  

  

Note    Steps 4 through 8 describe the Recovery Handshake.
  

1. The host tri-states its drivers by writing dcr direction  bit to 1.

2. The host writes the dcr , setting nInit  low, and waits for dsr  pe signal to go low.

3. The host writes the dcr , setting nStrobe  high.

4. The host writes the dcr , setting nInit  high, and waits for dsr  pe signal to go high.

5. The host has recovered and is in the Forward Idle phase. It now reads cnfgA  and computes 
the actual number of bytes that need to be retransmitted. The software takes the number of 
PWords in the FIFO, and adjusts for a partial PWord and for a byte in the output transceiver 
by using the values in cnfgA <2:0>.

  

Example 1

Suppose we have a byte-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 2 bytes to the FIFO to make it full . The value in cnfgA <1:0> does not 
matter, since this is a byte-wide interface; however, the 0 in cnfgA <2> indicates that there is a 
byte in the output transceiver we must count. Thus the total number of bytes to be re-sent is:

Bytes to be reset = (32-2) + 1 (transceiver byte)
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Example 2

Suppose we have a word-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 111b. 
At abort time we find that 2 more PWords make the FIFO full . The value in cnfgA <1> does not 
matter, since this is a word-wide interface. The 1 in cnfgA <2> indicates that there are no bytes 
in the output transceiver, and the 1 in cnfgA <0> indicates that the PWord at the head of the 
FIFO is partial, containing only 1 byte. Thus:

PWords in FIFO = 32 - 2 = 30

One of these is a partial PWord, thus:

• Complete PWords in FIFO = 29

• Partial PWords in FIFO = 1

• Bytes to be reset = (29) * 2 + 0(transceiver byte)+ 1(partial PWord) = 59 bytes
  

Example 3

Suppose we have a 32-bit-wide interface, a FIFO depth of 16 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 4 PWords to fill the FIFO; thus we know that there are 12 PWord entries 
in the FIFO used. The value in cnfgA  indicates that there is 1 byte in the transceiver and the 
PWord in the FIFO being transmitted contains only 3 bytes. Thus:

• PWords in FIFO = 16 - 4 = 12

• Complete PWords in FIFO = 11

• Bytes to be re-sent = 4 * 11 + 3 (partial bytes in PWord being transmitted) + 1 (transceiver 
byte) = 48 bytes

  

When a device aborts a transfer, the duty of the software is to return the port to the 
Forward-Idle state without data loss. If the port is in the reverse direction, this is done by simply 
negotiating into Forward-Idle. If the port is Forward phase (stuck in state 35) then the software 
needs to find out how many bytes are in the FIFO before issuing the abort sequence.

1. Write to the dcr , setting nStrobe  low.

2. Fill the FIFO until it is full . At this point there are FIFO-size bytes in the FIFO, and software 
can determine how many bytes have not been transmitted.

3. Set the ecr  mode to 001 or 000, resetting the FIFO and returning the port to standard mode.
4. Complete the abort sequence.

  

 

Time-out on Transfer
  

During any transfer, it is entirely possible that the peripheral will stall indefinitely and the 
interrupt routine may not get called. To report the time-out case (in which data has not been 
transmitted for a time-out period) a time-out must be provided. The time-out period value is 
beyond the scope of this document, but is in the range of seconds.

 

Discussion of nFault Interrupt
  

The nFault  interrupt, referred to in the P1284 spec as nPeriphRequest , is essentially a 
level-triggered interrupt that allows the peripheral to interrupt the host. It may do this when 
moving data or when it is not moving data.

Some ECP designs (denoted by bit 7 = 1 in cnfgA ) have been designed to allow an nFault  
interrupt to occur with the service interrupt. In this case, it is acceptable for the driver to have 
both sources enabled at the same time.

When bit 7 = 0 in cnfgA , the nFault  interrupt must always be masked when service interrupt is 

Discussion of nFault Interrupt
(C) 1992-1995 Microsoft Corporation. All rights reserved.

Specs: Extended Capabilities Port Page 37 Microsoft Development Library



enabled. In this case, the software must poll the nFault  during idle data transfer and examine 
nFault  state sometime during the data transfer itself. A good way to provide this support is to 
add the polling case to the time-out routine so it samples the signal state every 100ms or so.

Software must support the case in which bit 7 = 0 in cnfgA  and may support the other case as 
well in order to improve nFault  interrupt latency for some designs.

Software must never be in a state in which it is unable to report nFault  interrupts while the 
peripheral (not the ecr  mode field) is in ECP mode.

 

ECP Compliance Test Functional Specification
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Introduction
  

Document Purpose

This design specification from Microsoft describes the setup and use of the software called the 
ECP compliance test.

Other Documents

The reader should be familiar with the Microsoft (ECP) Standard document Standard P1284 by 
IEEE; it is a parent document of this document. An understanding of it is essential.

Overview

The ECP compliance test is used to verify that a given ECP ISA port functions properly. Of 
course, the test cannot possibly test all possible combinations of problems. It is useful however 
to verify much of the known ECP hardware design functions. The ECP compliance test must 
pass on all 386 IBM Compatible PCs in order for an ECP port to be in compliance with the 
Microsoft ECP Port Specification. 

There are several Items that can only be checked by direct measurement or design. These are 
specified later in this document.

Vocabulary

The following terms are used in this document:

assert
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When a signal asserts, it transitions to a "true" state; when a signal deasserts it transitions 
to a "false" state.

forward
Host-to-Peripheral communication.

reverse 
Peripheral-to-Host communication.

1
A high level.

0
A low level.

 

Hardware Test Setup
  

The test is set up on a single ISA PC. Two ECP cards are placed in a PC at different LPT port 
addresses (0x278, 0x378, 0x3bc). The cards must use interrupt and DMA channels that do not 
conflict with any devices existing on the system.

After the cards are installed, they are connected together with a cable in such a way that the 
ECP handshake lines are swapped; this allows loop back testing of ECP functions.

Port-to-Port Test Cable Connections
  

Name Pin Name Pin

nStrobe 1 nAck 10
Data 2-9 Data 2-9
nAck 10 nStrobe 1
Busy 11 nAutoFd 14
*PError 12 *nInit 16
*Select 13 *Select, *nSelectIn 13,17
nAutoFd 14 Busy 11
*nFault 15 *nSelectIn 17
*nInit 16 *PError 12
*nSelectIn 17 *nFault 15

* Note: These connections are not tested in the current version of comply.exe, as they are not 
directly responsible for data movement. Thus some cable setups may not have these 
connections. However, testing of these connections may occur in subsequent revisions of the 
test, so older test cables may need modification.

The test must be run on a 386 on an ISA bus running Microsoft® Windows™ version 3.1 or later 
in enhanced mode.

 

Installing and Running the Test
  

This software is generally supplied by Microsoft in the form of a set of floppies and a 
specification known as the ECP Adaptation Kit. Read the instructions on the kit concerning the 
compliance test and copy all the files associated with the compliance test into their own 
directory called c:\comply.

The compliance test requires no VXDs or other software, and must run under Windows 3.1 or 
higher; Windows NT™ will not work.
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Documentation for the individual files are recorded in the makefile. The complete set of source 
files, executable files, and makefiles are supplied. To recompile the test (not required), one 
must install the Microsoft Windows Software Development Kit (SDK) and use a suitable c 
compiler (c7 in this case).

Under Windows, use the File Manager and double-click on the executable, 
c:\comply\comply.exe. This will run the test and present you with a window.

The first thing you must do is to specify the settings (click on Settings).

Settings

• The settings menu is used to inform the software of the specific hardware configuration. 
After selecting the settings menu a dialog box is presented to the user.

• If a port exists (LPT[1, 2, 3]) it is labeled as either STD (standard parallel port) or ECP. 
Software determines a port is an ECP port by writing and reading the ecr  of that port. If the 
port is a standard port, the ecr will not exist, usually returning the value of the DSR instead.

• The user must then use one ECP port for transmitter and another as the receiver.

• The user must also specify which interrupt and DMA channel are associated with the 
transmitter and receiver.

• The Cable Test will be grayed out (disabled) if the some of the settings are unspecified or if 
either transmitter or receiver is not an ECP port. Thus incomplete settings prevent further 
tests from being run.

• The settings are saved in the win.ini file under the [comply] heading in the current Windows 
directory.

  

Info

If any test fails, no state change will be made to any of the port registers. This is done to allow 
the user to examine those registers to help identify the problem.

Selecting Info will display the current state of the transmitter and receiver registers. It also 
displays some information that is gathered in test mode about the FIFO size and interrupt 
thresholds.

Info may be selected any time and is never disabled. Of course, selecting Info prior to Settings 
may not be very useful.

Cable Test

Assuming the settings have been entered, the Cable Test dialog box item will become visible. 
Clicking on Cable Test will verify the continuity of the cable. If errors exist in the cable 
construction, the test will fail and indicate which wires it did not find a proper connection.

If the cable test passes, it will enable both the register test and the test mode test.

Register Test

Assuming the cable test has passed, the Register Test dialog box item will become visible.

This test verifies that every register bit can be written and read according to the specifications. 
No attempt is made to verify the functionality of a specific register bit, just the ability to write 
and/or read those bits specified in the spec.

This test also reads the configuration registers, determines the PWord size of the port, and 
verifies, if possible, the DMA channel and interrupt line settings.

If the test fails, an appropriate error message is displayed. If the test passes, a message box is 
displayed.

Test Mode Test

The test mode test is used to determine the size of the FIFOs, the service interrupt thresholds, 
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and general test mode functionality for both the forward and reverse directions. After this 
information is obtained, it may be displayed by selecting Info.

The test also verifies that interrupts do indeed occur on the specified interrupt line according to 
the test mode specification. If the interrupt line is not connected as specified in Settings, or if 
the interrupt is not functioning properly, this test will fail.

Since this test generates information required in both the Centronics and ECP tests, both Cent 
and ECP tests are grayed out until this test is passed.

Centronics Test

The Centronics test is used to try to verify, as much as possible, the function of the 
hardware-assisted Centronics Port (Mode 010).

There are two software drivers used to transmit information. These may be tested individually or 
one after the other by setting the appropriate check boxes.

The interrupt-driven programmed I/O software driver is activated on the service interrupt and 
bursts data to the FIFO whenever an interrupt is generated. If the FIFO is empty, a burst equal 
to the FIFO SIZE is sent; otherwise a burst size equal to that allowed by the write interrupt 
threshold is sent. This interrupt-driven software driver continues until it has transmitted 8192 
bytes.

The other software driver performs a single DMA transfer of 8192 bytes.

Test Sequence

The test first asserts Busy  (High ) to block the transfer. Then the transfer is enabled and the 
FIFO is checked to make sure it is full. Busy  is then lowered and the transfer is in progress. 
Unfortunately there is no way to verify the data or timing of nStrobe , this must be done using a 
logic analyzer.

The transfer is given a specified period of time in which to complete (.5 sec).

After this time various sanity checks are made about the expected state of the port. For 
example, the service interrupt bit should be 1, DMA transfers should generate exactly 1 
interrupt, and interrupt-driven programmed I/O transfers must generate over some small 
number of interrupts.

The data pattern may be selected from the menu and may be useful in debugging specific 
problems.

ECP Test

This is the bulk of the testing and thus the dialog box is somewhat complicated. There are three 
different software driver models for the transmitter and three driver models for the receiver. In 
all cases, 8192 bytes of data are transmitted, received, and verified for each legally selected 
transmitter/receiver combination.

PIO Transmitter

This software driver emulates the ECP protocol by writing to the transmitter DCR,DATA and 
reading from its DSR register in the standard mode (mode 000). This is how the driver checks 
the protocol independent of the timing.

The PIO transmitter presents valid data only during the last portion of the ECP transaction. ECP 
receivers that accept the data (incorrectly) on the failing edge of nStrobe  will fail this test and 
receive 0xaa as data.

Selecting the compression option will cause this model to compress runs of like data. This 
means that random data and all 1s/all 0s data patterns will be compressed, but the ff00 and 
55aa data patterns will be unaffected.

The combination of this driver and the PIO Receiver is not tested.

INTR Transmitter
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This software driver is activated whenever an interrupt occurs on the transmitter. On each 
interrupt it bursts PWords of either FIFO size (empty transmitter FIFO) or write-interrupt 
threshold size (not empty transmitter FIFO). After the bursts it reenables the interrupt by writing 
the service interrupt to 0.

Selecting the compression option will cause this model to compress runs of like data and write 
RLE count bytes into the AFifo (to verify the function of the AFifo). Note that this means that 
random data and all 1s/all 0s data patterns will be compressed, but the ff00 and 55aa data will 
be unaffected.

This driver is tested against all selected receiver combinations.

DMA Transmitter

This software driver uses DMA to move the 8192 bytes of test data.

Selecting the compression option has no effect on this test, as there is no way to do DMA and 
compression.

This driver is not tested against the DMA receiver driver.

PIO Receiver

This software driver emulates the ECP protocol by writing to the transmitter DCR and reading 
from DSR and DATA in PS2 mode (mode 001). This is useful to check the protocol independent 
of the timing.

The PIO receiver checks valid data on both portions of the ECP transaction. ECP transmitters 
that remove the data (incorrectly) after the failing edge of nStrobe  will fail this test.

This model will decompress any data that happens to be compressed.

The combination of this driver and the PIO transmitter is not tested.

INTR Receiver

This software driver is activated whenever an interrupt occurs on the receiver. On each interrupt 
it reads bursts of PWords of FIFO size (full receiver FIFO) or read-interrupt threshold size (not 
full receiver FIFO). After the bursts it reenables the interrupt by writing the service interrupt to 0.

The ECP hardware is counted on to decompress any compressed data.

This driver is tested against all selected transmitters.

DMA Receiver

This software driver uses DMA to move the 8192 bytes of test data.

The hardware is counted on to decompress any compressed data.

This driver is not tested against the DMA transmitter.

ECPAbortTest

This tests to make sure that the port can execute the abort sequence (Spec version 1.14 and 
later) and that no bytes are lost. The test fills the FIFO with FIFO size PWords while Busy  is 
low. At this time, if bit 2 in cnfgA  is 0 then the FIFO should not be full until one more byte is 
added.

Software then places nStrobe  low (via the DCR) and Busy  is switched high, software tests to 
make sure that the DCR controls nStrobe  at this time and that nStrobe  is still low.

If the port is a 16-bit one, the test checks that bit 1 of cnfgA  correctly reports the possible partial 
byte and that the FIFO is full when expected.

As with the rest of this test suite, the 32-bit port has not been implemented.

Misc Test

Installing and Running the Test
(C) 1992-1995 Microsoft Corporation. All rights reserved.

Specs: Extended Capabilities Port Page 42 Microsoft Development Library



This test checks several miscellaneous functions not covered in the rest of the test. The first 
thing tested is the nFault  ECP interrupt function. Both the assertion of nFault  when enabled or 
the enabling of the interrupt when nFault  is low should generate an interrupt.

The nAck  interrupt is tested to make sure that toggling nAck  will generate an interrupt when 
enabled.

Lastly, a check is made to ensure the DCR and DSR registers are functional when in ECP mode.

 

Meeting Compliance
  

In order to meet compliance requirements, the following tests and measurements are required:

• Run the device as transmitter and receiver for all test modes and data patterns without 
failure.

• Click on Info and verify that the proper FIFO size, PWord size, and interrupt thresholds 
have been detected.

• Verify the Centronics mode timing and protocol with a logic analyzer.

• Run the test on as many different PC types as possible.

• Verify that all ECP mode drivers are push-pull, that they have an impedance-controlled 
series resistor of at least 20 Ohms, and that the typical resistance of the combination of the 
driver-resistor pair is in the 45-65 Ohm range.

• Examine the waveform in a typical open-ended cable and verify that the impedance match 
is reasonable (no horrible overshoot, undershoot, or ringing for the single line switching 
case).

• Run the ECP test in loop mode for a long period of time with Random data.
  

 

Known Problems
  

It is useful to test the new design with the Xilinx reference design. Some problems have been 
uncovered with this design and they are noted here:

• Most systems have a pulldown on DRQ to keep it low when not in use. However, some do 
not, and there is not currently a pulldown on the Xilinx board. If problems occur on the Xilinx 
board, pulling down DRQ5 with a 1K resistor may fix them.

• On one system the Xilinx design generated parity errors during DMA in the forward direction 
only. This was with an OPTI system board chip set. This problem has not been tracked 
down, but has not been seen with any commercial vendor designs, only the one case of the 
Xilinx design.

  

 

Corrections to Previous Versions (Revisions) of the Extended 
Capabilities Port Protocol and ISA Interface Standard

  

Date: 14 July 1993
  

Revision # Date

1.07 2 Dec 1992
1.08 18 Dec 1992
1.09 7 Jan 1993
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1.10 4 Feb 1993
1.11 10 Feb 1993
1.12 28 Apr 1993
1.14 14 July 1993

Corrections to Revision 1.07 Only (brings document to Revision 1.08 level)
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Forward-Idle

When the host has no data to send, it keeps HostClk (nStrobe) high and the peripheral will 
leave PeriphAck (Busy) low.

Page 19

Forward Data Transfer phase

The Forward phase may be entered from the Forward-Idle phase. When the peripheral is not 
busy, it sets PeriphAck (Busy) low (event 32). The host then sets HostClk (nStrobe) low when it 
is prepared to send data (event 35). The data must be stable for the specified setup time prior 
to the falling edge of HostClk. The peripheral then sets PeriphAck (Busy) high to acknowledge 
the handshake (event 36). The host then sets HostClk (nStrobe) high (event 37). The peripheral 
then accepts the data and sets PeriphAck (Busy) low, completing the transfer. This sequence is 
shown in Figure 2.

The timing is designed to provide three cable round-trip times for data setup if Data is driven 
simultaneously with HostClk (nStrobe).

Reverse Data Transfer phase

The Reverse phase may be entered from the Reverse-Idle phase. After the pervious byte has 
been accepted, the host sets HostAck (nAutoFd) low (event 46). The peripheral then sets 
PeriphClk (nAck) low when it has data to send (event 43). The data must be stable for the 
specified setup time prior to the falling edge of PeriphClk. When the host is ready it to accept a 
byte, it sets HostAck (nAutoFd) high to acknowledge the handshake (event 44). The peripheral 
then sets PeriphClk (nAck) high (event 45). After the host has accepted the data, it sets 
HostAck (nAutoFd) low (event 46), completing the transfer. This sequence is shown in Figure 3.

Page 33

Table 14. Extended Control Register
0: Enables an interrupt pulse on the high to low edge of nFault . Note that an 

interrupt will be generated if nFault  is asserted (interrupting) and this bit is 
written from 1 to 0. This prevents interrupts from being lost in the time 
between the read of the ecr and the write of the ecr .

<3> R/W dmaEn 
1: Enables DMA (DMA starts when serviceIntr  is 0).

0: Disables DMA unconditionally.

<2> R/W serviceIntr 
1: Disables DMA and all of the service interrupts.

0: Enables one of the following 3 cases of interrupts. Once one of the 3 service 
interrupts has occurred serviceIntr bit shall be set to a 1 by hardware. Writing 
this bit to a 1 will not cause an interrupt.
case
dmaEn=1:

During DMA (this bit is set to a 1 when terminal count is 
reached).

case
dmaEn=0 
direction=0:

This bit shall be set to 1 whenever there are 
writeIntrThreshold  or more PWords free in the FIFO.
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 case
dmaEn=0 
direction=1:

This bit shall be set to 1 whenever there are 
readIntrThreshold  or more valid PWords to be read from 
the FIFO.

<1> R full
1: direction = 0 The FIFO cannot accept another PWord.

1: direction  = 1 The FIFO is completely full.

0: direction  = 0 The FIFO has at least 1 free PWord.

0: direction  = 1 The FIFO has at least 1 free byte.
<0> R empty

1: direction  = 0 The FIFO is completely empty.

1: direction  = 1 The FIFO contains less than 1 PWord of data.

0: direction  = 0 The FIFO contains at least 1 byte of data.

0: direction  = 1 The FIFO contains at least 1 PWord of data.

Corrections to Revision 1.07 and Revision 1.08 (brings document to Rev 
1.09 level)

Page 28

Table 8, corrections to ecpAFifo and cFifo:

Table 8. Register Definitions
  

Name Address Size Mode Function

ecpAFifo 0x000 R-R/W byte 011 ECP FIFO (Address)

cFifo 0x400 R-R/W PWord 010 Parallel Port Data FIFO

Page 32

Table 14, correction to mode 001:

Table 14. Extended Control Register
<7:5> R/W mode

001: PS/2 Parallel Port mode. Same as above except that direction  may be used to 
tri-state the data lines, and reading the data  register returns the value on the 
data  lines and not the value in the data  register. It is always best for the 
hardware design to read the value of the lines and not the register (some old 
Centronics interfaces actually returned the reg value and not the wire value). 
All drivers have active pull-ups (push-pull).

Corrections for Revision 1.09 (brings document to Rev 1.10 level)

Page 19

Reverse to Forward phase

The Reverse to Forward phase is entered from the Reverse phase. HostAck (nAutoFd) may be 
high or low when the Reverse to Forward phase is entered. The host sets nReverseRequest 
(nInit) high (event 47). The peripheral then tri-states the data bus, sets PeriphAck (Busy) low to 
indicate the proper forward channel status, and sets PeriphClk (nAck) high (event 48). If the 
peripheral was in the middle of a data transfer (PeriphClk low) it assumes that the data byte will 
be discarded by the host and suspends the transfer. After waiting the minimum setup time, the 
peripheral then sets nAckReverse (PError) high to acknowledge the change of direction (event 
49). The host is now permitted to drive the data bus. The interface now enters the Forward 
phase. This sequence is shown in Figure 3.

Page 20

Valid termination
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To terminate from P1284 mode the host sets BOISEmode (nSelectIn) low (event 22), which will 
initiate one of two types of termination. The first type is a handshake which allows the printer to 
tell the host when it has returned to Compatible mode. The second is an immediate abort, with 
no guarantee of interface integrity. If the interface was in a "valid" state, which is any state 
where a reverse data transfer is not in progress, the printer will perform the handshake. If the 
interface was not in a "valid" state, the printer will abort immediately. Valid states are indicated 
in the data transfer diagrams by BOISEmode (nSelectIn) being shown as a heavy line.

To terminate from a valid state, the printer will respond to BOISEmode (nSelectIn) being set low 
by setting nAckReverse(PError) to low and PeriphAck (Busy) and nPeriphRequest (nFault) high 
(event 23). The printer will then set Xflag (Select) to its opposite sense, and PeriphClk (nAck) 
low (event 24). The host then sets HostAck (nAutoFd) low (event 25). The printer then sets the 
compatible mode printer status on nPeriphRequest (nFault), Xflag (Select), nAckReverse 
(PError), and nReverseRequest (nInit) (event 26). The printer then sets PeriphClk (nAck) high 
(event 27). The host ends the termination handshake by setting HostAck (nAutoFd) high (event 
29), which returns the interface to the compatible mode idle phase. The printer may then 
change PeriphAck (Busy) (event 30) to accept host-to-printer data. This sequence is shown 
following a data transfer in figure 2.

Page 21 (NO modifications to the timing diagrams, just a simple modification to 
ECP ID on the Data(8..1) line)

Extended Capabilities Port (ECP) Mode: Negotiation, Setup, Forward, Termination

Figure 2. ECP mode timing (1 of 2)

Page 28 (incorrect in all revisions prior to 1.10)

Table 8, corrections to ecpAFifo and cFifo:

Table 8. Register Definitions
  

Name Address Size Mode Function

ecpAFifo 0x000 W-R/W byte 011 ECP FIFO (Address)

cFifo 0x400 W-R/W PWord 010 Parallel Port Data FIFO
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Page 41 (new to Rev 1.10, was not part of Rev 1.09)

Appendix A: Peripheral—Side Design Note

The specifications and guidelines described in this document are specific to ISA implementation 
on a host PC system. Peripherals tend to have bus architecture that has nothing in common 
with the host PC architecture.

Although this document is not meant to provide a guideline for ECP port design on a peripheral, 
you need to keep the following special consideration in mind.

The peripheral must always return data when a byte is requested. Peripheral devices that know 
the total number of bytes to be transmitted must not stop sending data after that number of 
bytes is reached. Additional "don't care" data bytes must be sent to "pad" the transfer. The host 
interface will discard any extra bytes received. The extra "don't care" bytes are useful to provide 
alignment to wider busses (i.e., 16-bit, 32-bit, 64-bit).

Page 23 (was incorrect in all versions prior to 1.11)

The following events in figure 2 are corrected:

Figure 2

0 Host sets extensibility request value on data bus.
34 Host places Data on the bus. The command bit (nCmd/HostAck) is driven to the 

appropriate level.

Corrections to Revision 1.11 ONLY (brings it to Revision 1.12 level)

Page 11 (was incorrect in all versions prior to 1.12)

The new paragraph is listed here:

PeriphAck (Busy)

The peripheral uses this signal to flow control in the forward direction. It is an "interlocked" 
handshake with nStrobe. PeriphAck also provides command information in the reverse direction.

Page 20 (was incorrect in all versions prior to 1.12)

Valid termination

First paragraph is the same. The second paragraph is changed:

To terminate from a valid state, the printer will respond to BOISEmode (nSelectIn) being set low 
by setting nAckReverse(PError) to low and PeriphAck (Busy) and nPeriphRequest (nFault) high 
(event 23). The printer will then set Xflag (Select) to its opposite sense, and PeriphClk (nAck) 
low (event 24). The host then sets HostAck (nAutoFd) low (event 25). The printer then sets the 
compatible mode printer status on nPeriphRequest (nFault), Xflag (Select), and nAckReverse 
(PError) while the host sets the compatible mode status on nReverseRequest (nInit) (event 26). 
The printer then sets PeriphClk (nAck) high (event 27). The host ends the termination 
handshake by setting HostAck (nAutoFd) high (event 29), which returns the interface to the 
compatible mode idle phase. The printer may then change PeriphAck (Busy) (event 30) to 
accept host-to-printer data. This sequence is shown following a data transfer in figure 2.

Page 26 (was incorrect in all versions prior to 1.12)

Busy 1 I 11 11 This signal deasserts to indicate that the peripheral can 
accept data. This signal handshakes with nStrobe in the 
forward direction. In the reverse direction this signal, 
when low, indicates the data is RLE.

Page 31 (was incorrect in all versions prior to 1.11)

0: (Default) The transmitter shall send only uncompressed (raw) data in this case.
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Appendix B (added for version 1.12)

Appendix B: Known Deviations from or Additions to the ISA Standard

Detection of FIFO state errors

At least one port design has implemented a feature that generates an error if the FIFO is 
overwritten in the forward direction or overread in the reverse direction. This error should never 
occur with proper hardware and software design. In the case of the error some designs may set 
both the full  and empty  bits in the ecr  and generate a service interrupt (setting the service 
interrupt bit).

This feature is noted here so that drivers may be able to interpret the event properly.

Use of level-triggered interrupts/Non-ISA designs

The port, as defined, functions properly on ISA with the use of edge-triggered interrupts. In 
order for this port to function properly on busses that use level-triggered interrupts, a 
modification to the hardware must be made.

The difficulty is that the service interrupt bit serves as both an enable and an interrupt. To use 
level-triggered interrupts, the service interrupt shall be disabled when in standard or PS2 mode 
(mode 000,001). Depending on the bus, interrupt disabling will either tri-state the interrupt line 
or force it to a noninterrupting state. This gives the software the ability to independently enable 
and sense the interrupt. When enabled (not mode 001, 000), the value of the service interrupt 
bit may be translated directly, logically into a level-sensitive interrupt. Otherwise the function of 
the service interrupt bit remains as specified.

None of the other interrupt sources presents a problem for conversion of the port to a 
level-sensitive interrupt scheme.

Corrections for Revision 1.12 (brings document to Rev 1.13 level)

Page 31 (was incorrect in all versions prior to 1.13)

Table 12. Configuration Register A (Added Bits)
<7> R Indicates if interrupts are pulsed or ISA-level.

1: Interrupts are ISA-level (see Appendix B).
0: Interrupts are ISA-pulses.

<6:4> R impID.  Implementation ID number; identifies the design and PWord size.
0x00: The design is a 16-bit implementation (PWord = 2 bytes).
0x01: The design is an 8-bit implementation (PWord = 1 byte).
0x02: The design is a 32-bit implementation (PWord = 4 bytes).
0x03-0x07:Reserved and not supported by Microsoft software.

Page 35 (was incorrect in all versions prior to 1.13; prior to Rev 1.13 this was on 
page 34)

• When ackIntEn  is 1, the way existing parallel ports implement this today. The interrupt 
generated is ISA-friendly in that it may pulse the interrupt line low. Optionally it may also 
drive a level (see Appendix B).

  

Appendix B: Known Enhancements to This Standard (significantly modified in 
version 1.13)

Use of nonpulsed (level-triggered) interrupts

The original design of this port generated pulses on each interrupt event. This will work fine on 
ISA machines, but some designers wish to make the port function in the standard level-ISA 
fashion. In order to do this, the level interrupt is enabled in (driven low) whenever the device is 
in ECP, Test, or Centronics FIFO mode. When an interrupt condition exists, the signal is driven 
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high.

After receiving, the interrupt driver will read the ECR to determine the cause of the interrupt. It 
then writes the ECR, setting the serviceIntr  bit to 1 and the nErrIntrEn bit to 1. This masks all 
interrupt sources and causes the iRq  line to go low. After servicing the interrupt, the driver will 
reenable interrupts, if desired, by writing the serviceIntr  and/or nErrIntrEn  bits to 0.

After the completion of each DMA transfer (terminal count), the driver shall first write dmaEn  to 
0 before beginning another DMA transfer.

The software driver shall ensure that the interrupt due to nAck  is disabled whenever the port is 
using ECP protocol or ECP mode to transfer data.

Corrections for Revision 1.13 (brings document to Rev 1.14 level)

Page 11

nPeriphRequest (nFault)

During ECP mode the peripheral is permitted (but not required) to drive this pin low to request a 
reverse transfer. The request is merely a "hint" to the host; the host has ultimate control over 
the transfer direction. This signal provides a mechanism for peer-to-peer communication. . This 
signal would be typically used to generate an interrupt to the host CPU. The signal is asserted 
low and kept there until the interrupt is serviced or the port exits ECP mode.

Page 12

nReverseRequest (nInit)

This pin is driven low to place the channel in the reverse direction. The peripheral is only 
allowed to drive the bidirectional data bus while in ECP mode  when BOISEmode is high and 
nReverseRequest is low.

Page 15

TR specified, TL/TS modified slightly.

Table 5. Signal Timing
  

Time Minimum Maximum

TH 0 1.0 sec.

TT 0 infinite

TL 0 35 ms

TS 35ms

TP 500 ns

TD 0 ns

TR Host may enter Data Transfer Recovery after TS (Software 
application-dependent)

Page 20

Describes Host Data Recovery.

Aborting the Forward Data Transfer phase

There is a possibility of the forward channel becoming stalled. The stall condition will exist if the 
peripheral is unable to accept the data byte being transferred by the host at event 35. In this 
condition the peripheral will not acknowledge the handshake (event 36). A mechanism has been 
provided to recover from this condition. If the host, following event 35, determines that a stall 
condition exists, the host may abort the transfer of the current byte by setting nReverseRequest 
(nInit) low (event 72). The peripheral, regardless of whether it has accepted the byte from the 
host (event 36 happened), shall discard the byte (if applicable) and acknowledge the host by 
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setting nAckReverse (PError) low. The host then returns nReverseRequest (nInit) high (event 
74) and the peripheral follows by returning nAckReverse (PError) high (event 75). This 
sequence, shown in figure 4, will return the interface to the state that existed prior to host event 
35.

Forward to Reverse phase

The Forward to Reverse phase is entered from the Forward phase . The host tri-states the data 
bus and sets HostAck (nAutoFd) low (event 38). After waiting for the minimum setup time, the 
host then sets nReverseRequest (nInit) low (event 39). The peripheral then acknowledges the 
reversal by setting nAckReverse (PError) low (event 40). The peripheral is now permitted to 
drive the data bus after setting nStrobe high. The interface now enters the Reverse phase. This 
sequence is shown in Figure 3.

Page 20

Clarifies when the host will accept the data on the reverse transfer.

Reverse Data Transfer phase

The Reverse phase may be entered from the Reverse-Idle phase. After the pervious byte has 
been accepted, the host sets HostAck (nAutoFd) low (event 46). The peripheral then sets 
PeriphClk (nAck) low when it has data to send (event 43). The data must be stable for the 
specified setup time prior to the falling edge of PeriphClk. When the host is ready to accept a 
byte, it sets HostAck (nAutoFd) high to acknowledge the handshake (event 44). The peripheral 
then sets PeriphClk (nAck) high, causing the host to accept the data (event 45). After the host 
has accepted the data, it sets HostAck (nAutoFd) low (event 46), completing the transfer. This 
sequence is shown in Figure 3.

Page 23

The net timing parameter Tr is added.

Init stays high at Event 26.

PError shown to toggle, not set low, at Event 23.

Page 24

nPeriph Request allowed to assert during reverse transfer.

Page 25

All-new timing diagram for Host recovery timing.

Page 27

nFault no longer needs to be deasserted in Reverse mode:

40. The peripheral sets nAckReverse (PError) low to acknowledge the bus reversal. 
(nAutoFd) is now active.

nFault no longer needs to be deasserted during a reverse transfer:

48. The peripheral terminates any ongoing transfer, tri-states the data bus, sets PeriphClk 
(nAck) high, and places valid status on the PeriphAck (Busy)  line.

New events for the Host Data Recovery:

72. After waiting for the minimum required time (Ts), the host may abort the host to peripheral 
transfer in progress by setting nReverseRequest (nInit) low.

73. The peripheral handshakes, setting nAckReverse (PError) low, and if not already 
PeriphAck (Busy) low, indicating that the peripheral-to-host data transfer in progress has 
been aborted and the data byte has been discarded.

74. The host raises nReverseRequest to continue the handshake.
75. The peripheral completes the handshake by raising nAckReverse (PError) high, returning 
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the link to a host-idle condition.

Page 30

Note to designers about pulldown resistor:

dRq 1 O DRQ DMA Request, Note: Use a 1K pulldown here to prevent 
requests.

Page 32

Added function, all current designs happen to support enforce it here. This is needed to support 
the host data recovery.

In all modes the dcr  shall be able to override any hardware state machine and force the signal 
active. For example, writing 1s to bits<1:0> shall force nStrobe  and nAutoFd  low, even in ECP 
mode. Software will make sure that dcr bits <1:0> are set to 0 prior to entering ECP mode.

Page 32

Clarifies Direction bit function (this has caused some confusion in the past).

Table 11. Device Control Register
<7:6> R Reserved , returns undefined when read.
<5> R/W Direction

1: If mode  = 000 or mode  = 010, we are standard parallel port and this bit has 
no effect (drivers are enabled). Otherwise, this bit tri-states the drivers and 
sets the direction so that data will be read from the peripheral. Note: some 
designs actually force this bit to 0 when in modes 000 or 010. Software must 
be in PS2 mode 001 in order to reliably write this bit to 1.

Page 33

Improved wording to avoid confusion.

cFifo

0x400, Mode = 010 (Parallel Port Data FIFO)

PWords written or DMAed from the system to this FIFO are transmitted by a hardware 
handshake to the peripheral using the standard parallel port protocol. Transfers to the FIFO are 
PWord-aligned. If  partial PWords need to be transferred, the operation must be handled in 
mode 000. This mode is only defined for the forward direction.

Page 34

Changes to cnfgA  to add information required to support Host Data Recovery.

Table 12. Configuration Register A
<7> R Indicates if interrupts are pulsed or ISA-level.

1: Interrupts are ISA-level (see Appendix B).
0: Interrupts are ISA-pulses.

<6:4> R impID.  Implementation ID number, identifies the design and PWord size.
0x00: The design is a 16-bit implementation (PWord = 2 bytes).
0x01: The design is an 8-bit implementation (PWord = 1 byte).
0x02: The design is a 32-bit implementation (PWord = 4 bytes).
0x03-0x07:Reserved and not supported by Microsoft software.

<3> R/RW Misc. reserved.  May be used for anything design-specific. If software, 
may try to write it to 1.

<2> R nByteInTransceiver . This design-dependent, read-only parameter 
indicates if the design uses an extra pipeline byte when transmitting ECP 
in event 35. See the section on ECP Host Recovery for more information.
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0: When transmitting (at event 35), there is 1 byte in the transceiver waiting 
to be transmitted that does not affect the FIFO full  bit.

1: When transmitting (at event 35), the state of the full  bit includes the byte 
being transmitted. There are no extra bytes to be accounted for at abort 
time.

<1:0> R/RW This field is a "don't care" for a PWord size of 1 byte. For Host Recovery 
situations these bits indicate what fraction of a PWord was not transmitted 
so that software can retransmit the unsent bytes. If the PWord size is 2 or 
4 bytes, the value of these two bits is a snapshot of the last PWord being 
transmitted in mode 011 (event 35) when the FIFO was reset (port was 
transitioned from mode 011 to mode 000 or 001).

00: The PWord at the head of the FIFO contained a complete PWord.
01: The PWord at the head of the FIFO contained only 1 valid byte.
10: The PWord at the head of the FIFO contained 2 valid bytes.
11: The PWord at the head of the FIFO contained 3 valid bytes.

Page 37

Allow vendors to do what they want with these fields:

100:  Vendor-specified function

101:  Vendor-specified function

Page 40

After the end of a DMA transfer in the forward direction, software must wait until the FIFO is 
empty  and the state of the busy  line (visible in the dsr)  is low. This ensures that all data has 
been transmitted to the peripheral.

Page 48

Examples of how software executes a host data recovery.

Appendix C: Host Recovery of a Forward Transfer at (Event 35)

Background

Long after this specification was implemented, IEEE noticed a potential problem for some 
designs. It was possible for some peripherals to stall forever in event 35 and there was no way 
for the host to legally "break out" of the forward transfer without data loss and protocol violation. 
The specification was modified to allow a for Host Recovery phase.

Software can easily implement the recovery handshake; however, software must determine the 
total number of bytes that remain in the FIFO first so they may be retransmitted. The basic idea 
is to fill the FIFO so we know how many bytes were in the FIFO. Then software adjusts for any 
partially transmitted PWords or bytes that may be in an output transceiver stage. This byte 
adjustment data is placed in cnfgA <2:0>.

Software will perform the following steps to recover from a Forward Data Transfer at event 35:

[The ECP port is in mode 011,stuck on event 35, trying to transmit, and we want to recover.]
1. Write to the dcr , driving the nStrobe  signal low. This prevents further data transfers even if 

the peripheral starts accepting data.
2. The number of PWords in the FIFO at abort time is computed by writing PWords to the 

FIFO until the full  is set to 1. For PWord sizes of 2 and 4 bytes, the PWord at the head of 
the FIFO may be partially transmitted.

3. The host writes the ecr and sets the mode to 001. This causes the port to reset the FIFO 
and load FIFO state information into cnfgA <1:0>. This will be used by software to determine 
how many bytes remain untransmitted in the PWord at the head of the FIFO.

  

Note        Steps 4 through 8 describe the Recovery Handshake.
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4. The host tri-states its drivers by writing the dcr direction  bit to 1.
5. The host writes the dcr  setting nInit  low and waits for dsr  PE signal to go low.
6. The host writes the dcr  setting nStrobe  high.
7. The host writes the dcr  setting nInit  high and waits for dsr  PE signal to go high.
8. The host has recovered and is in the Forward Idle phase. It now reads cnfgA  and computes 

the actual number of bytes that need to be retransmitted. The software takes the number of 
PWords in the FIFO, and adjusts for a partial PWord and for a byte in the output transceiver 
by using the values in cnfgA <2:0>.

Example 1

Suppose we have a byte-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 2 bytes to the FIFO to make it full . The value in cnfgA <1:0> does not 
matter, since this is a byte-wide interface; however, the 0 in cnfgA <2> indicates that there is a 
byte in the output transceiver we must count. Thus the total number of bytes to be re-sent is:

Bytes to be reset = (32-2) + 1 (transceiver byte)

Example 2

Suppose we have a word-wide interface, a FIFO depth of 32 PWords, and cnfgA <2:0> = 111b. 
At abort time we find that 2 more PWords make the FIFO full . The value in cnfgA <1> does not 
matter, since this is a word-wide interface. The 1 in cnfgA <2> indicates that there are no bytes 
in the output transceiver, and the 1 in cnfgA <0> indicates that the PWord at the head of the 
FIFO is partial, containing only 1 byte. Thus:

PWords in FIFO = 32 - 2 = 30

One of these is a partial PWord, thus:

• Complete PWords in FIFO = 29

• Partial PWords in FIFO = 1

• Bytes to be reset = (29) * 2 + 0(transceiver byte)+ 1(partial PWord) = 59 bytes

Example 3

Suppose we have a 32-bit-wide interface, a FIFO depth of 16 PWords, and cnfgA <2:0> = 011b. 
At abort time we write 4 PWords to fill the FIFO; thus we know that there are 12 PWord entries 
in the FIFO used. The value in cnfgA  indicates that there is 1 byte in the transceiver and the 
PWord in the FIFO being transmitted contains only 3 bytes. Thus:

• PWords in FIFO = 16 - 4 = 12

• Complete PWords in FIFO = 11

• Bytes to be re-sent = 4 * 11 + 3 (partial bytes in PWord being transmitted) + 1 (transceiver 
byte) = 48 bytes
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