Enterprise Server Group Intel R440LX DP Server Baseboard Technical Product Specification

Released version 4.0 Order Number: 282998-004 March, 1998

intel

The R440LX DP Server baseboard may contain design defects or errors known as errata. Characterized errata that may cause the R440LX DP Server baseboard's behavior to deviate from published specifications are documented in the R440LX DP Server Specification Update.

Revision History

Revision	vision Revision History	
Rev 1.0	Initial release of the R440LX DP Server Baseboard Technical Product Specification	9/97
Rev 2.0	Added information about the Network Interface Controller, Voltage Sequencing Characteristics, MTBF, and Year 2000 Capability.	10/97
Rev 3.0	0 Added processor information, added boot order information, added Appendix E, reformatted	
Rev 4.0	Added errata appendix. Corrected the Serial port pin-out table.	3/98

This product specification applies only to standard R440LX DP Server board set with BIOS identifier Redwd0. Information in this version of the summary applies to the BIOS Redwd0.86B.xxxx.Po1. Different versions of the BIOS may look and behave differently.

NOTE: If printing this document from an electronic file, use a PostScript printer with the appropriate PostScript print driver to insure the drawings print clearly.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice.

The Intel products referred to in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

The R440LX DP Server baseboard is Year 2000 capable. For more information with regard to the Year 2000 issue, please refer to the Intel web site at http://support.intel.com/sites/support/index.htm.

Copyright © Intel Corporation 1998. *Third-party brands and names are the property of their respective owners.

Table of Contents

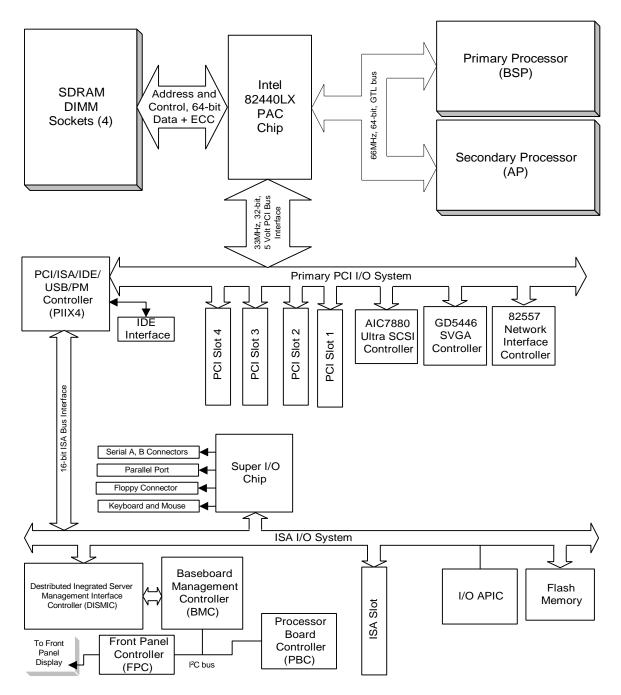
1.	Boar	d Set Des	scriptions	1
	1.1	Product O	Dverview	1
		1.1.1 Base	eboard Diagram	3
	1.2	Processor	r/PCI Host Bridge/Memory Subsystem	4
	1.3 Pe	entium II Pro	ocessor SEC Cartridge	5
		1.3.1	Retention Module	5
		1.3.2	Cartridge Connector	5
		1.3.3	Processor Heat/Fan Sinks	5
		1.3.4	Processor Bus Termination/Regulation/Power	5
		1.3.5	Termination Card	6
		1.3.6	APIC Bus	6
	1.4	440LX Ho	ost Bridge	6
	1.5 PC	CI I/O Subsy	ystem	7
		1.5.1	PCI Arbitration	7
		1.5.2	PCI-to-ISA/IDE/USB Controller (PIIX4)	8
	1.6	SCSI Sub	osystem	8
		1.6.1	Adaptec AIC-7880 PCI Signals	9
	1.7	PCI Video	0	9
		1.7.1	Video Chip PCI Signals	
		1.7.2	Video Controller PCI Commands	
		1.7.3	Video Modes	
		1.7.4	VGA connector	
	1.8 Ne	etwork Interf	face Controller (NIC)	
		8.1 Supp	ported Network Features	14
		1.8.2 NIC	C Status LEDs	
	1.9 IS	SA I/O Subs	system	
		1.9.1	I/O Controller Subsystem	
		1.9.2	Serial Ports	
		1.9.3	Parallel Port	
		1.9.4	Floppy Disk Controller	
		1.9.5	Keyboard and Mouse Connectors	
		1.9.6	Real-time Clock	
		1.9.7	General Purpose I/O	
	1.10	System R	Reset Control	20
		1.10.1	Power-up Reset	20
		1.10.2	Hard Reset	20
		1.10.3	Soft Reset	21

		1.10.4	Reset Diagram	21
	1.11	Clock Ge	eneration and Distribution	22
	1.12	Interrupts	s and I/O APIC	23
		1.12.1	PIIX4 Compatibility Interrupt Controller	23
		1.12.2	Intel I/O APIC	24
		1.12.3	Interrupt Sources	26
		1.12.4	PCI Add-in Card Slot Interrupt Sharing	27
		1.12.5	PCI Interrupt Rerouting	27
		1.12.6	Working with PCI Interrupts	
		1.12.7	Boot Order	
	1.13	System E	Board Jumpers	29
2.	Serv	er Manag	jement	31
	2.1	Server M	lanagement Controllers	32
	2.2	Baseboa	rd Management Controller (BMC)	
	2.3	Processo	or Board Controller (PBC)	
	2.4	Front Par	nel Controller (FPC)	
	2.5	Fault Res	silient Booting	
	2.6	IMB Isola	ation Buffers and Auxiliary IMB Connector	
	2.7	Server M	Ionitor Module Connector	35
	2.8	System F	Fan Interface	
	2.9	Chassis I	Intrusion	
3.	Mem	ory and C	Other Resource Mappings	
	3.1	Memory	Space	
		3.1.1	DOS Compatibility Region	40
		3.1.2	DOS Area	41
		3.1.3	ISA Window Memory	41
		3.1.4	Video or SMM Memory	41
		3.1.5	Add-in Card BIOS and Buffer Area	41
		3.1.6	Extended System BIOS	41
		3.1.7	System BIOS	41
		3.1.8	Extended Memory	41
		3.1.9	Main Memory	
		3.1.10	PCI Memory Space	42
		3.1.11	High BIOS	
		3.1.12	I/O APIC Configuration Space	43
		3.1.13	Extended Pentium [®] II Processor Region (above 4GB)	43
		3.1.14	Memory Shadowing	43
		3.1.15	SMM Mode Handling	43
	3.2	I/O Map.		44

	3.3 Accessing Configuration Space			47
		3.3.1	CONFIG_ADDRESS Register	47
		3.3.2	Device Number and IDSEL Mapping	48
	3.4	Error Hand	ling	49
	3.5	Hardware I	nitialization and Configuration	50
		3.5.1	System Initialization Sequence	50
	3.6	Server Ma	nagement Programming Interface	51
		3.6.1	Port 70h Snoop Register	51
	3.7	PCI Interru	pt to IRQ Routing Control	51
4.	BIOS,	Setup, SC	CU and SCSI Utility	53
	4.1		view	
	4.2	System BIC	DS	53
	4.3	Revision Hi	istory Format	54
5.	Board	l Sot Snor	ifications	55
5.	5.1	-	laximum Ratings	
	5.2		pecifications	
	0.2	5.2.1	Power Connection	
		-	er Consumption	
			er Supply Specifications	
			age Recovery Timing Specifications	
			age Sequencing and Power Good Signal Characteristics	
			le Voltage	
	5.3		I Specifications	
		5.3.1	Connector Specifications	
		5.3.2	PCI and ISA Connectors	
	5.4	Mean Time	Between Failures (MTBF) Data	64
		5.4.1	R440LX Board Set MTBF	
		5.4.2	RC440LX System MTBF	64
Арр	endix	A. Suppor	rted Environments	65
Арр	endix	B. Produc	t Codes/Spares	66
Арр	endix	C. Conne	ctor Pinouts/Cables	68
Арр	endix	D. Custor	ner Support	75
Арр	endix	E. Config	uration Techniques	77
App	endix	F. Errata.		78

1.Board Set Descriptions

1.1 Product Overview


The Intel R440LX DP Server is a flat baseboard design featuring a dual Pentium® II processor-based server system that combines the latest technology and integrated features to provide a high-performance platform at entry-range cost efficiency.

The R440LX DP Server baseboard utilizes the Intel 440LX AGPset, the latest in chipset technology from Intel, to maximize system performance for 32-bit application software and operating systems.

The R440LX DP Server design is complemented with an array of features. These include:

- Memory support for up to 512MB of SDRAM memory using commodity DIMM devices.
- The Intel 440LX AGPset (82440LX, 82443LX PAC controller, PIIX4)
- 1 ISA slot and PC Compatible I/O (serial, parallel, mouse, and keyboard)
- Embedded PCI I/O devices, including SCSI, IDE, NIC, and Video controllers
- Server management features
- Integrated Adaptec AIC-7880* SCSI controller
- Integrated Intel EtherExpress™ PRO/100B 10/100 NIC
- Cirrus Logic CL-GD5446* SVGA video controller
- National SuperI/O* 97307 PCI/IDE controller
- Two Single Edge Contact (SEC) cartridge connectors (to accommodate dual Pentium II processors and future processor upgrades)

The R440LX DP Server baseboard supports dual 233, 266, 300, 333, or 366 MHz Pentium II processors contained on Single Edge Contact (SEC) cartridges. The SEC cartridges enclose the processor with 512KB of integrated ECC L2 cache to enable high-frequency operation. There are two SEC cartridge connectors that are embedded on the R440LX DP Server baseboard, each with embedded VRM 8.1-compliant voltage regulators (DC-to-DC converter). The R440LX DP Server baseboard design will accommodate identified upgrades to future Intel processing technology.

1.1.1 Baseboard Diagram

The following diagram shows the placement of major components and connector interfaces on the R440LX DP Server baseboard. A mechanical layout is available in the appendix.

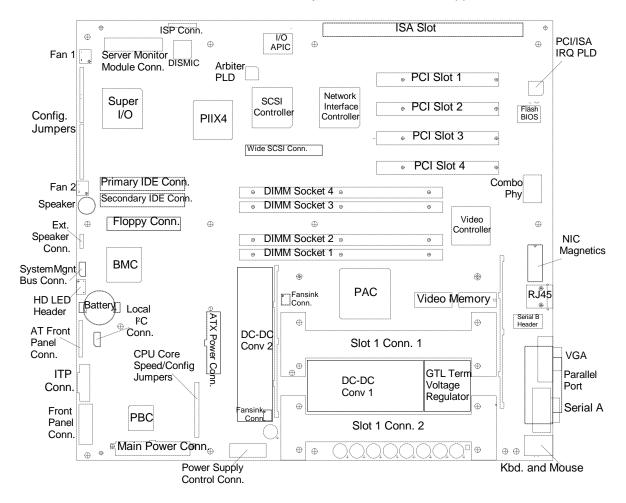


Figure 2 R440LX Baseboard Layout

1.2 Processor/PCI Host Bridge/Memory Subsystem

The processor/PCI bridge/memory subsystem consists of one or two identical Pentium II processor SEC cartridges, and support circuitry on the baseboard consisting of the following:

- Intel 82443LX PCI/AGP controller (PAC) PCI host bridge and memory controller
- Dual SEC connectors that accept the Pentium II processor SEC cartridges
- Processor host bus GTL+ support circuitry, including termination power supply
- Embedded DC-to-DC voltage converter (VRM) for both processor SEC cartridges
- APIC bus
- Miscellaneous logic for reset configuration, processor SEC cartridge presence detection, ITP port, and server management

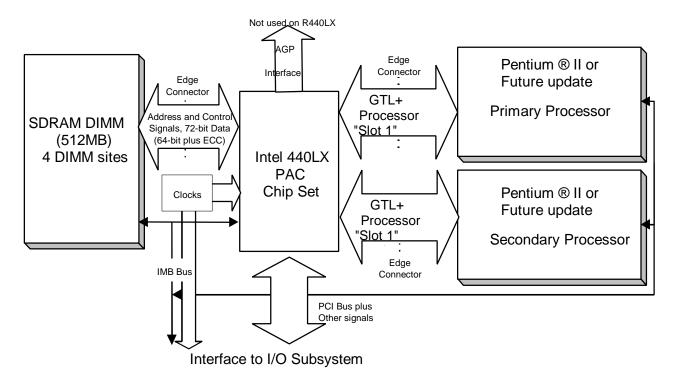


Figure 3 Processor/PCI Host Bridge/Memory Subsystem

1.3 Pentium II Processor SEC Cartridge

The R440LX DP Server baseboard is designed to accommodate Pentium II processors at speeds from 233 MHz to 366 MHz. Previous Intel processors utilized technology which housed the processor core/L1 cache, and L2 cache in a dual-cavity PGA package. However, with the introduction of the Pentium II processor, the Single Edge Contact (SEC) cartridge was implemented. The SEC cartridge encloses the processor core/L1 cache and the L2 cache on a pre-assembled printed circuit board, approximately 2.5" x 5" in size.

The L2 cache and processor core/L1 cache is connected using a private bus that is isolated from the processor host bus. The Pentium II processor's L2 cache bus operates at half of the processor core frequency. To compensate for the cache bus speed, the internal L1 data and code caches have been enlarged to 16KB.

The Pentium II processor SEC cartridge's external interface is designed to be ready for multiprocessing. Each processor contains a local APIC section for interrupt handling. When two SEC cartridges are installed, they must be of identical revision, core voltage, and bus/core speeds.

1.3.1 Retention Module

The Pentium II processor retention module is used to add stability to the SEC connector and a way of providing attachment to the baseboard. The implementation of the retention module is different than found on other Intel manufactured baseboards. For example; the material used, a single module, and the screws that are used instead of captive nuts are differences in the design of the module.

1.3.2 Cartridge Connector

The Pentium II processor SEC connector conforms to the "Slot 1" specification, which can also accommodate future processor SEC cartridges. The baseboard provides two SEC cartridge connectors. Processors and Slot 1 connectors are keyed to ensure proper orientation.

1.3.3 Processor Heat/Fan Sinks

The R440LX DP Server baseboard is not dependent on having fansinks. The term "fansinks" comes from the fan assembly that attaches to the SEC cartridge. The use of the fansink is not required, unless the thermal characteristics of the chassis require extra cooling. For the proper cooling of the processor please refer to the Pentium II processor specifications.

1.3.4 Processor Bus Termination/Regulation/Power

The termination circuitry required by the Pentium II processor bus (GTL+) signaling environment and the circuitry to set the GTL+ reference voltage, are implemented directly on the SEC cartridges. The baseboard provides 1.5V GTL+ termination power (VTT), and VRM 8.1-compliant DC-to-DC converters to provide processor power (VCCP) at each connector. Power for primary processor is derived from the +12V supply, and the secondary processor utilizes the +5V supply using an embedded DC-DC converter onboard. Both VRM's are on the baseboard.

1.3.5 Termination Card

Logic is provided on the baseboard to detect the presence and identity of installed processor or termination cards. If only one Pentium II processor SEC cartridge is installed in a system, a termination card *must* be installed in the vacant SEC connector to ensure reliable system operation. The termination card contains GTL+ termination circuitry, clock signal termination, and Test Access Port (TAP) bypassing for the vacant connector. The R440LX DP Server supports termination's cards with VID bit 11111 or 01110. This allows the baseboard to except commodity termination cards.

1.3.6 APIC Bus

Interrupt notification and generation for the Pentium II processors is done using an independent path between local APICs in each processor and the Intel I/O APIC located on the baseboard. This simple bus consists of two data signals and one clock line. Refer to the *I/O APIC and Interrupts* section later in this chapter for more information.

1.4 440LX Host Bridge

The 82443LX PCI/A.G.P. controller (PAC) is the host bridge between the Pentium II processors and I/O systems. The 82443LX PAC is a 492-pin ball-grid array (BGA) device that performs control signal translations and manages the data path. The host bridge in the PAC supports one or two processors at a processor host bus frequency of 66 MHz, with 32-bit addressing, optimized in-order and request queue (IOQ), and dynamic deferred transaction support. The GTL+ host bus connects the processor cartridge with other resources in the system through the 440LX PAC host bridge. The host bridge translates 64-bit operations in the GTL+ signaling environment at 66 MHz to a 32-bit PCI I/O subsystem.

The PCI interface provides greater than 100MB/s data streamlining for PCI to DRAM accesses, while supporting concurrent processor host bus and PCI transactions to main memory. This is accomplished using extensive data buffering, with processor-to-DRAM and PCI-to-DRAM write data buffering and write-combining support for processor-to-PCI burst writes. The PCI bus supports eight PCI masters: (NIC, PCI slots 1 through 4, SCSI, PIIX4, and PAC). Note that the PCI video is a slave-only device, and does not require PCI bus mastering. All PCI masters must arbitrate for PCI access using resources supplied by both the PAC and the added arbitration logic.

The 440LX PAC also contains the memory controller for the R440LX DP Server. Memory amounts from 32MB to 512MB are possible, with a 64/72-bit non-interleaved pathway to SDRAM main memory.

ECC is provided which can detect and correct single-bit errors (SED/SEC), and detect all double-bit and some multiple-bit errors (DED). Under configuration (F2 Setup or SCU) control, you may configure parity checking, and the level of ECC desired. On power-up ECC and parity checking are disabled.

1.5 PCI I/O Subsystem

All I/O for an R440LX DP Server, including PCI and PC-compatible, is directed through PCI. The R440LX DP Server PCI bus supports the following embedded devices and connectors:

- Four 120-pin, 32-bit PCI expansion slot connectors
- PIIX4 PCI-to-ISA bridge and IDE controller
- PCI video controller, Cirrus Logic CL-GD5446
- PCI Ultra SCSI Controller, Adaptec AIC-7880
- PCI Network Interface Controller, Intel 82557

Each device under the PCI host bridge has its IDSEL signal connected to one bit out of the PCI Address/Data lines AD[31::11], which acts as a device select on the PCI bus. This determines a unique PCI device ID value for use in configuration cycles. The following table shows the bit to which each IDSEL signal is attached, along with its corresponding device number. Refer to "Accessing Configuration Space" in Chapter 3 for more information.

IDSEL Value	Device
20	PCI Slot 0
21	PCI Slot 1
22	SCSI
23	PCI Slot 2
26	PCI Slot 3
27	NIC
29	Video
31	PIIX4

Table 1 PCI Configuration IDs

1.5.1 PCI Arbitration

The R440LX DP Server PCI bus supports eight PCI masters: (NIC, PCI slots 1 through 4, SCSI, PIIX4, and PAC). All PCI masters must arbitrate for PCI access, using resources supplied by both the PAC and the added arbitration logic. Note that the PCI video is a slave-only device, and does not require PCI bus mastering. The host bridge PCI interface arbitration lines REQ_L and GNT_L are a special case in that they are internal to the host bridge. PIIX4 arbitration signals are also a special case so that access time capability for ISA masters is guaranteed. All PCI masters must arbitrate for PCI access.

1.5.2 PCI-to-ISA/IDE/USB Controller (PIIX4)

The PIIX4 provides four specific PCI functions in a single package, PCI-to-ISA bridge, IDE interface, USB controller (not used on the R440LX DP Server), and power management controller (not used). Each of the four functions in the PIIX4 contain its own set of configuration registers that appear to the R440LX DP Server system as a unique hardware controller sharing the same PCI bus interface.

The PIIX4 fully implements a 32-bit PCI master/slave interface, in accordance with the *PCI Local Bus Specification, Rev. 2.1*. The PCI interface operates at 33 MHz, using the 5V-signaling environment. The PIIX4 provides an ISA bus interface, operating at 8.33 MHz that supports a single ISA connector, Flash memory, server management interface, and the National SuperI/O controller.

The Fast IDE controller in the PIIX4 supports programmed I/O transfers up to 14MB/s and bus master IDE transfers up to 32MB/s on two IDE channels.

1.6 SCSI Subsystem

The R440LX DP Server baseboard provides an embedded SCSI host adapter: Adaptec AIC-7880. The AIC-7880 contains a SCSI controller with full-featured PCI bus master interface in a BGA package. The AIC-7880 supports either 8- or 16-bit Fast SCSI providing 10MB/s or 20MB/s (Fast-10) throughput, or Fast-20 SCSI that can burst data at 20MB/s or 40MB/s. As a PCI 2.1 bus master, the AIC-7880 supports burst data transfers on PCI up to the maximum rate of 133MB/sec using the on-chip 256 byte FIFO. The AIC-7880 also offers active negation output, controls for external differential transceivers, a disk activity output, and a SCSI terminator power-down control. Active negation output reduce the chance of data errors by actively driving both polarities of the SCSI bus, avoiding indeterminate voltage levels and common-mode noise on long cable runs. The SCSI output drivers can directly drive a 48 mA single-ended SCSI bus with no additional drivers (the SCSI segment can handle up to 15 devices). SCSI termination power is always on, regardless of the register settings for AIC-7880 SCSI termination power control features. The embedded SCSI controller on the R440LX DP Server system always sits at one end of the SCSI bus.

1.6.1 Adaptec AIC-7880 PCI Signals

The Adaptec AIC-7880 supports all of the required 32-bit PCI signals including the PERR_L and SERR_L functions. Full PCI parity is maintained on the entire data path through the controller. The device also takes advantage of PCI interrupt signaling capability, which is hardwired to PCI_INTC_L on the R440LX DP Server baseboard. The figure below shows the PCI signals supported by the AIC-7880.

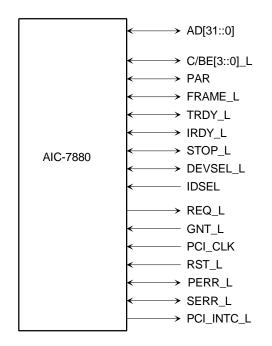


Figure 4 Embedded SCSI PCI Signals

1.7 PCI Video

The R440LX DP Server has a Cirrus Logic CL-GD5446 integrated video controller and support circuitry on the PCI bus. The CL-GD5446 32-bit VGA Graphics Accelerator component contains a SVGA video controller, Clock Generator, and 80 MHz RAMDAC. Two 256 K x 16 EDO DRAM chips provide 1MB of 60 ns video memory. The CL-GD5446 supports a variety of resolution modes: up to 1280 x 1024 and up to 64 K colors.

This SVGA subsystem supports analog VGA monitors, single and multi-frequency, interlaced and noninterlaced, up to 87 Hz vertical retrace frequency. The connector is a standard 15-pin VGA connector. The R440LX DP Server will only support 1MB of video memory and is not expandable.

1.7.1 Video Chip PCI Signals

The CL-GD5446 supports a minimal set of 32-bit PCI signals since it never acts as a PCI master. As a PCI slave device, it requires no arbitration or interrupt connections.

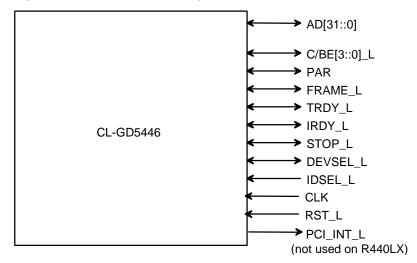


Figure 5 Video Controller PCI Signals

1.7.2 Video Controller PCI Commands

The CL-GD5446 supports the following PCI commands:

		CL-GD	5446 Support
C/BE[3::0]_L Command Type		Target	Master
0000	Interrupt Acknowledge	No	No
0001	Special Cycle	No	No
0010	I/O Read	Yes	No
0011	I/O Write	Yes	No
0100	Reserved	No	No
0101	Reserved	No	No
0110	Memory Read	Yes	No
0111	Memory Write	Yes	No
1000	Reserved	No	No
1001	Reserved	No	No
1010	Configuration Read	Yes	No
1011	Configuration Write	Yes	No
1100	Memory Read Multiple	No	No
1101	Dual Address Cycle	No	No
1110	Memory Read Line	No	No
1111	Memory Write and Invalidate	No	No

Table 2 Video Chip Supported PCI Commands

1.7.3 Video Modes

The CL-GD5446 supports all standard IBM VGA modes. With 1MB of video memory, the R440LX DP Server goes beyond standard VGA support. The following tables show the standard and extended modes that the CL-GD5446 component supports, including the number of colors and palette size (e.g., 16 colors out of 256 K colors), resolution, pixel frequency, and scan frequencies.

Mode(s)	Bits Per	Colors (number	Resolution	Pixel Freq.	Horiz. Freq.	Vert. Freq.
in Hex	Pixel 4	/palette size)	000 V 400	(MHz)	(KHz)	(Hz) 70
0, 1	•	16/256K	360 X 400	14	31.5	-
2, 3	4	16/256K	720 X 400	28	31.5	70
4, 5	4	4/256K	320 X 200	12.5	31.5	70
6	4	2/256K	640 X 200	25	31.5	70
7	4	Mono	720 X 400	28	31.5	70
D	4	16/256K	320 X 200	12.5	31.5	70
E	4	16/256K	640 X 200	25	31.5	70
F	4	Mono	640 X 350	25	31.5	70
10	4	16/256K	640 X 350	25	31.5	70
11	4	2/256K	640 X 480	25	31.5	60
12	4	16/256K	640 X 480	25	31.5	60
12+	4	16/256K	640 X 480	31.5	37.5	75
13	8	256/256K	320 X 200	12.5	31.5	70
14, 55	8	16/256K	1056 X 400	41.5	31.5	70
54	8	16/256K	1056 X 350	41.5	31.5	70
58, 6A	8	16/256K	800 X 600	40	37.8	60
58, 6A	8	16/256K	800 X 600	49.5	46.9	75
5C	8	256/256K	800 X 600	36	35.2	56
5C	8	256/256K	800 X 600	40	37.9	60
5C	8	256/256K	800 X 600	49.5	46.9	75
5D	8	16/256K (interlaced)	1024 X 768	44.9	35.5	87
5D	8	16/256K	1024 X 768	65	48.3	60
5D	8	16/256K	1024 X 768	75	56	70
5D	8	16/256K	1024 X 768	78.7	60	75
5F	8	256/256K	640 X 480	25	31.5	60
5F	8	256/256K	640 X 480	31.5	37.5	75
60	8	256/256K (interlaced)	1024 X 768	44.9	35.5	87
60	8	256/256K	1024 X 768	65	48.3	60
60	8	256/256K	1024 X 768	75	56	70
60	8	256/256K	1024 X 768	78.7	60	75
64	16	64K	640 X 480	25	31.5	60
64	16	64K	640 X 480	31.5	37.5	75

Table 3 Standard VGA Modes

Mode(s) in Hex	BPP	Colors	Resolution	Pixel Freq. (MHz)	Horiz. Freq. (KHz)	Vert. Freq. (Hz)
65	16	64K	800 X 600	36	35.2	56
65	16	64K	800 X 600	40	37.8	60
65	16	64K	800 X 600	49.5	46.9	75
66	16	32K Direct/256 Mixed	640 X 480	25	31.5	60
66	16	32K Direct/256 Mixed	640 X 480	31.5	37.5	75
67	16	32K Direct/256 Mixed	800 X 600	40	37.8	60
67	16	32K Direct/256 Mixed	800 X 600	49.5	46.9	75
6C	16	16/256K (interlaced)	1280 X 1024	75	48	87

For more information refer to the Cirrus Logic CL-GD5446 Reference Manual, Cirrus Logic CL-GD5446 Advance Product Bulletin

1.7.4 VGA connector

The following table shows the pinout of the VGA connector:

Pin	Signal	Description
1	RED	Analog color signal R
2	GREEN	Analog color signal G
3	BLUE	Analog color signal B
4	nc	No connect
5	GND	Video ground (shield)
6	GND	Video ground (shield)
7	GND	Video ground (shield)
8	GND	Video ground (shield)
9	nc	No connect
10	GND	Video ground
11	nc	No connect
12	DDCDAT	Monitor ID data
13	HSYNC	Horizontal Sync
14	VSYNC	Vertical Sync
15	DDCCLK	Monitor ID clock

Table 4 Video Port Connector Pinout

For more information refer to the *Cirrus Logic CL-GD5446 Reference Manual* or *Cirrus Logic CL-GD5446 Advance Product Bulletin.*

1.8 Network Interface Controller (NIC)

The R440LX DP Server supports a 10BASE-T/100BASE-TX network subsystem based on the Intel 82557 fast ethernet PCI bus controller. The Intel 82555, along with other discrete components, provides the physical layer interface. The following diagram illustrates the architecture of the network controller subsystem:

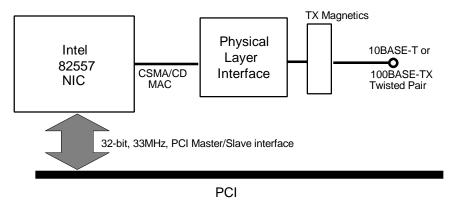


Figure 6 Network Controller Subsystem

The Intel 82557 integrated network controller is a highly integrated PCI LAN controller in a 160-pin QFP package for 10 or 100 Mbps fast ethernet networks. As a PCI bus master, the 82557 can burst data at up to 133 MB/s. This high-performance bus master interface can eliminate the intermediate copy step in receive and transmit frame copies, resulting in faster frame processing. The network operating system communicates with the 82557 controller using a memory-mapped I/O interface; PCI_INTB_L, and two large receive and transmit FIFOs. This prevents data overruns or underruns while waiting for access to the PCI bus, as well as enabling back-to-back frame transmission within the minimum 960ns inter-frame spacing. The figure below shows the PCI signals supported by the Intel 82557 integrated network controller:

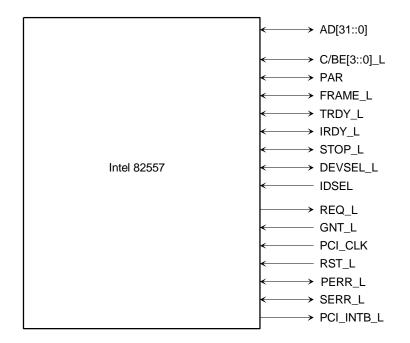


Figure 7 Embedded NIC PCI Signals

8.1 Supported Network Features

The Intel 82557 integrated network controller contains an IEEE MII compliant interface to the components necessary to implement an IEEE 802.3 100BASE-TX network connection. The R440LX DP Server supports the following features of the Intel 82557 controller:

- Glueless 32-bit PCI Bus Master Interface (Direct Drive of Bus), compatible with PCI Bus Specification, revision 2.1
- 82596-like chained memory structure, with improved dynamic transmit chaining for enhanced performance
- Programmable transmit threshold for improved bus utilization
- Early receive interrupt for concurrent processing of receive data
- On-chip counters for network management
- Auto-detect and auto-switching for 10 or 100 Mbps network speeds
- Support for both 10 Mbps and 100 Mbps networks, full or half duplex-capable, with back-to-back transmit at 100 Mbps

The Intel 82557 controller connects to the Intel 82555 part, which provides the physical layer for the LAN controller. In addition, a magnetic component is provided that terminates the 100BASE-TX connector interface. An EEPROM device stores the Ethernet ID.

1.8.2 NIC Status LEDs

The Intel 82555 component drives LEDs to indicate transmit/receive activity on the LAN, valid link to the LAN, and 10/100 Mbps operation. The location and function of each LED is shown in the following figure:

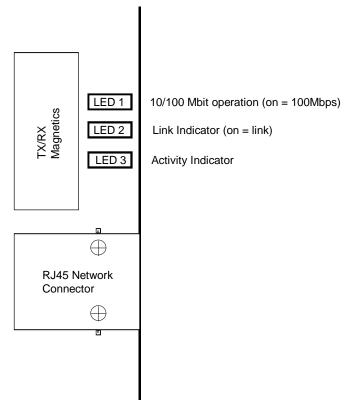


Figure 8 NIC Status LEDs

1.9 ISA I/O Subsystem

On the R440LX DP Server, the PIIX4 provides a bridge to an ISA I/O subsystem. This supports the following connectors and devices:

- ISA slot
- Flash memory for BIOS ROM and extensions
- National Semiconductor PC97307VUL SuperI/O controller, which supports the following:
 - \Rightarrow 2 PC-compatible serial ports
 - \Rightarrow Enhanced parallel port
 - \Rightarrow Floppy controller
 - \Rightarrow Keyboard/Mouse ports

The ISA I/O subsystem also connects with the Intel I/O APIC, interrupt re-router, and DISMIC. The I/O APIC handles interrupts produced by ISA devices for a multiprocessing environment. The DISMIC is a

programmable logic device that provides the host interface to the baseboard server management processor, and performs NMI and SMI control. Refer to "Interrupts and I/O APIC" later in this chapter for more information on these devices and how they are used in the R440LX DP Server interrupt structure.

1.9.1 I/O Controller Subsystem

The National SuperI/O device contains all of the necessary circuitry to control two serial ports, one parallel port, floppy disk, and PS/2-compatible keyboard and mouse. The R440LX DP Server provides the connector interface for each. In addition, the SuperI/O controller contains a real-time clock, which is unused on the R440LX DP Server system.

1.9.2 Serial Ports

Two 9-pin D-Sub connectors are provided, one in the stacked housing for serial port A and the second via an onboard header for Serial port B. Both ports are compatible with 16550A and 16450 serial port controllers, and are re-locatable. Each serial port can be set to one of four different COM ports, and can be enabled separately. When enabled, each port can be programmed to generate edge or level sensitive interrupts. When disabled, serial port interrupts are available to add-in cards. The pin-out for the two connectors is shown below:

Pin	Name	Description		
1	DCD	Data Carrier Detected		
2	RXD	Receive Data		
3	TXD	Transmit Data		
4	DTR	Data Terminal Ready		
5	GND	Ground		
6	DSR	Data Set Ready		
7	RTS	Return to Send		
8	CTS	Clear to Send		
9	RIA	Ring Indication Active		

Table 5 Serial Port A Connector Pin-out

Table 6 Serial Port B Header Connector Pin-out

Pin	Name	Description		
1	DCD	Data Carrier Detected		
2	DSR	Data Set Ready		
3	RXD	Receive Data		
4	RTS	Return to Send		
5	TXD	Transmit Data		
6	CTS	Clear to Send		
7	DTR	Data Terminal Ready		
8	RIA	Ring Indication Active		
9	GND	Ground		
10	nc			

1.9.3 Parallel Port

The 25/15-pin high rise connector stacks the parallel port connector over the VGA and serial Port A connector. The National SuperI/O controller provides an IEEE 1284-compliant 25-pin bi-directional

parallel port. BIOS programming of the SuperI/O controller registers enable the parallel port and determine the port address and interrupt. When disabled, the interrupt is available to add-in cards. The pinout is shown below:

Pin	Name	Pin	Name
1	STROBE_L	14	AUFDXT_L
2	D0	15	ERROR_L
3	D1	16	INIT_L
4	D2	17	SLCTIN_L
5	D3	18	GND
6	D4	19	GND
7	D5	20	GND
8	D6	21	GND
9	D7	22	GND
10	ACK_L	23	GND
11	BUSY	24	GND
12	PE	25	GND
13	SLCT		

Table 7 Parallel Port Connector Pin-out

1.9.4 Floppy Disk Controller

The FDC on the SuperI/O controller is functionally compatible with the PC8477, a widely used component, which contains a superset of the floppy disk controllers in the DP8473 and N82077 floppy controllers.. The baseboard provides the 24 MHz clock, termination resistors, and component selects. All other FDC functions are integrated into the SuperI/O controller, including analog data separator and 16-byte FIFO. The floppy disk connector on the baseboard has the following pin-out:

Pin	Name	Pin	Name
1	GND	18	FD_DIR_L
2	FD_DENSEL	19	GND
3	GND	20	FD_STEP_L
4	nc	21	GND
5	Key	22	FD_WDATA_L
6	FD_DRATE0	23	GND
7	GND	24	FD_WGATE_L
8	FD_INDEX_L	25	GND
9	GND	26	FD_TRK0_L
10	FD_MTR0_L	27	FD_MSEN0
11	GND	28	FD_WPROT_L
12	FD_DR1_L	29	GND
13	GND	30	FD_RDATA_L
14	FD_DR0_L	31	GND
15	GND	32	FD_HDSEL_L
16	FD_MTR1_L	33	GND
17	FD_MSEN1	34	FD_DSKCHG_L

Table 8 Floppy Port Connector Pin-out

1.9.5 Keyboard and Mouse Connectors

The keyboard and mouse connectors are mounted within a single stacked housing. The mouse connector is stacked over the keyboard connector. External to the board they appear as two connectors. Both the keyboard controller and the mouse controller are software compatible with the 8042AH and PC87911. The keyboard and mouse connectors are PS/2 compatible, with pin-out shown below:

Pin	Signal	Description
1	KEYDAT	Keyboard Data
2	(NC)	
3	GND	Ground
4	FUSED_VCC	+5 V, fused
5	KEYCLK	Keyboard Clock
6	(NC)	

Table 9 Keyboard Connector Pin-out

Pin	Signal	Description
1	MSEDAT	Mouse Data
2	(NC)	
3	GND	Ground
4	FUSED_VCC	+5 V, fused
5	MSECLK	Mouse Clock
6	(NC)	

1.9.6 Real-time Clock

This feature is not used on the R440LX DP Server. The PIIX4 performs this function.

1.9.7 General Purpose I/O

In addition to the dedicated features, the integrated National SuperI/O controller has sixteen available general purpose I/O selects and three available programmable component selects. The following tables describe the use of these ports.

Signal	Description	Address Range
CS0_L	Unused	
CS1_L	Unused	
CS2_L	Unused	

Table 11 General Purpose Chip Select Assignment

Signal	Name	Description
GPIO10		Unused.
GPIO11		Unused.
GPIO12		Unused.
GPIO13		Unused.
GPIO14		Unused.
GPIO15		Unused.
GPIO16		Unused.
GPIO17		Unused.
GPIO20	EXT_SMI_EN_L	Enables SDRAM ECC errors to generate SMIs
GPIO21	BMC_SMI_EN_L	Enables BMC to generate SMIs
GPIO22	PERR_SMI_EN_L	Enables PCI PERR to generate SMIs
GPIO23		Unused.
GPIO24		Unused.
GPIO25		Unused.
GPIO26		Unused.
GPIO27		Unused.

Table 12 General Purpose I/O Assignment

1.10 System Reset Control

Reset circuitry on the R440LX DP Server baseboard monitors reset from the front panel, PIIX4, I/O controller, and processor subsystem to determine proper reset sequencing for all types of reset. The reset logic is designed to accommodate a variety of ways to reset the system, which can be divided into the following categories:

- Power-up reset
- Hard reset
- Soft (programmed) reset

1.10.1 Power-up Reset

Power-up reset occurs on the initial application of power to the system. The power supply asserts its "power good" signal within 400ms to 2000ms of its output voltages being stable. The Front Panel Controller (FPC) monitors this signal, and asserts its power good output 30 to 40ms after detecting the power supply's pwr_good signal asserted. The onboard VRMs are designed to provide stable processing power 30ms to 40ms after the main power is stable.

1.10.2 Hard Reset

Hard reset may be initiated by software or by the user resetting the system through the front panel. For software initiated hard reset, the PIIX4 Reset Control register should be used. The front panel reset is routed to the PIIX4 through the reset and power controller. Both sources of hard reset cause the PIIX4 to assert ISA bus reset (**RST_RSTDRV**) and PCI reset (**RST_P_RST_LB**). **RST_RSTDRV** resets the ISA subsystem, while **RST_P_RST_L** resets the PCI bus. The R440LX DP Server receives the PCI reset signal and propagates it to the processor subsystem.

1.10.3 Soft Reset

Soft resets may be generated by the keyboard controller (**RST_KB_L**) or by the chipset in the processor subsection (**RST_INIT_REQ_L**). The two sources of soft reset are combined in the reset logic and routed to the processor subsection via the **RST_INIT_CPU_L** signal. Soft reset causes the processors to begin execution in a known state without flushing caches or internal buffers.

A programmed reset may be initiated by software. Although a reset control is provided through the registers that are in the PAC, the 440LX AGPset documentation recommends that the PIIX4 reset control register be used instead for programmed resets. Refer to the 82440LX Host Bridge or PAC Component Specification for more information.

1.10.4 Reset Diagram

Reset flows throughout the R440LX DP Server baseboard as shown in the following figure.

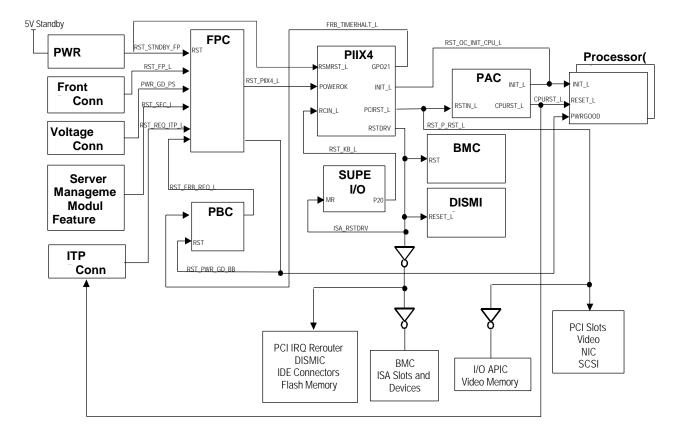


Figure 9 Reset Flow Diagram

1.11 Clock Generation and Distribution

For information on clock generation, refer to the *Mixed Voltage Clock Synthesizer/Driver Specification with SDRAM Support*. All buses on the R440LX DP Server operate using synchronous clocks. The clock synthesizer on the memory board generates clock frequencies and voltage levels required by the processor subsystem, including the following:

- 66.6 MHz at 2.5V logic levels Both Slot 1 connectors, the 82440LX, the ITP port
- 66.6 MHz at 3.3V logic levels SDRAM DIMMs
- 33.3 MHz at 3.3V logic levels Reference clock for the PCI bus clock driver
- 14.31818 MHz at 2.5V logic levels Processor and I/O APIC bus clock

There are three clock sources used on the R440LX DP Server baseboard. The first source is the Processor Clock Generator, which generates the 33.3 MHz PCI reference clock, the 66.6 MHz host clocks, and the 14.318 MHz APIC clocks. There is a second clock source, the I/O Clock Generator, which generates a 40 MHz clock for the embedded SCSI controller, a 24 MHz clock for the SuperI/O controller, a 12 MHz clock each for the BMC and PBC, a 48MHz clock for the USB^{†1}, and a 14.318 MHz clock for ISA devices. The Front Panel Controller has its own 12 MHz crystal, as it does not run from the main 5V VCC power plane on the baseboard. The following figure illustrates clock generation and distribution on the R440LX DP Server baseboard.

¹ † USB is not implemented on the R440LX DP Server.

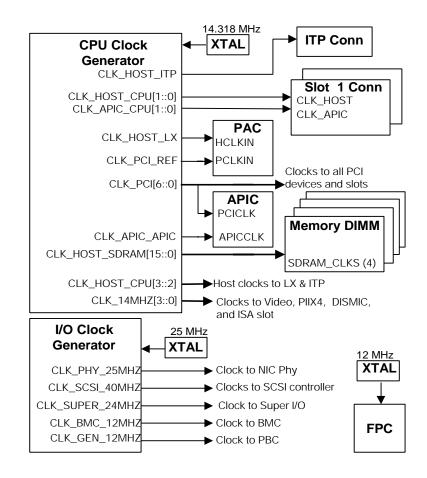
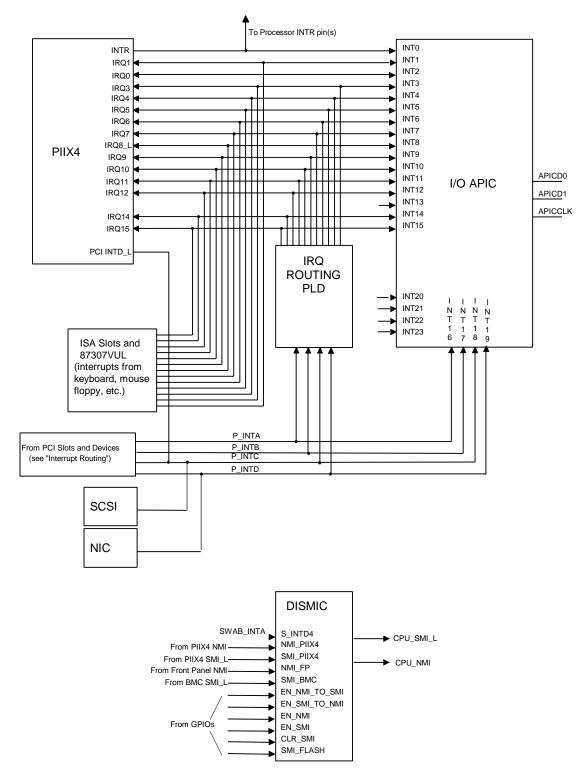


Figure 10 R440LX DP Server Baseboard Clock Distribution

1.12 Interrupts and I/O APIC

The R440LX DP Server interrupt architecture accommodates both PC-compatible PIC mode, and dualprocessor APIC mode interrupts. In addition, R440LX DP Server provides a PCI to ISA interrupt rerouting mechanism for compatibility with some multi-processor operating systems that do not fully support the APIC.


1.12.1 PIIX4 Compatibility Interrupt Controller

For PC-compatible mode, the PIIX4 provides two 82C59-compatible interrupt controllers embedded in the device. The two controllers are cascaded with interrupt levels 8-15 entering on level 2 of the primary interrupt controller (standard PC configuration). A single interrupt signal is presented to the processors, to which only one processor will respond for servicing. The PIIX4 and SuperI/O controller both contain configuration registers that define which interrupt source logically maps to I/O APIC INTx pins. In PIC mode, the PIIX4 provides a way to direct PCI interrupts onto one of the interrupt request levels 1 through 15. In the PIC mode this is only useful in compatibility mode since the redirected interrupts are not sourced on the outputs of the PIIX4. For more information on the PIIX4 compatibility, refer to the *Intel 440LX AGPset data book*.

1.12.2 Intel I/O APIC

For APIC mode, R440LX DP Server interrupt architecture incorporates the Intel I/O APIC device to manage and broadcast interrupts to local APICs in each processor. The I/O APIC device monitors interrupt requests from devices and then sends a message corresponding to the interrupt via the APIC bus to the processor's local APIC. The APIC bus minimizes interrupt latency time for compatibility interrupt sources, in both single and dual processor operation. The I/O APIC can also supply greater than 16 interrupt levels to the processor(s). This APIC bus consists of an APIC clock and two bi-directional data lines.

The R440LX DP Server APIC structure consists of a single I/O APIC device with 24 input interrupt requests. Compatibility interrupt levels 0 through 15 appear on inputs 0 through 15. The I/O APIC also manages 8 interrupt levels associated with PCI interrupts: PCI interrupts A through D are routed to APIC inputs 16 through 19. This supports more efficient interrupt processing. The PIIX4 also contains I/O APIC features that are not used in the R440LX DP Server platform.

1.12.3 Interrupt Sources

The following table recommends the logical interrupt mapping of interrupt sources on R440LX DP Server. The actual interrupt map is defined using configuration registers in the PIIX4 and the I/O controller. I/O redirection registers in the I/O APIC are provided for each interrupt signal, which define hardware interrupt signal characteristics for APIC messages sent to local APIC(s). Use the information provided in this table to determine how to program each interrupt.

Interrupt	I/O APIC level	Description
INTR	INT0	Processor interrupt
NMI		NMI from DISMIC to processor
IRQ1	INT1	Keyboard interrupt
Cascade	INT2	Interrupt signal from second 8259 in PIIX4
IRQ3	INT3	Serial port A or B interrupt from 97307VUL device, user-configurable.
IRQ4	INT4	Serial port A or B interrupt from 97307VUL device, user-configurable.
IRQ5	INT5	
IRQ6	INT6	Floppy disk
IRQ7	INT7	Parallel port
IRQ8_L	INT8	RTC interrupt
IRQ9	INT9	
IRQ10	INT10	
IRQ11	INT11	
IRQ12	INT12	Mouse interrupt
	INT13	
IRQ14	INT14	Compatibility IDE interrupt from primary channel IDE devices 0 and 1
IRQ15	INT15	
PCI_INTA_L	INT16	PCI Interrupt signal A
PCI_INTB_L	INT17	PCI Interrupt signal B
PCI_INTC_L	INT18	PCI Interrupt signal C
PCI_INTD_L	INT19	PCI Interrupt signal D
SMI_L		System Management Interrupt. General-purpose error indicator from a control PAL that provides an SMI_L from non-traditional error sources (PERR_L, SERR_L, and others).

Table 13 Interrupt Definitions

1.12.4 PCI Add-in Card Slot Interrupt Sharing

The following figure shows how PCI interrupts, when shared between slots and embedded controllers are cascaded to avoid conflicts (since most PCI cards use PCI_INTA_L as their interrupt pin).

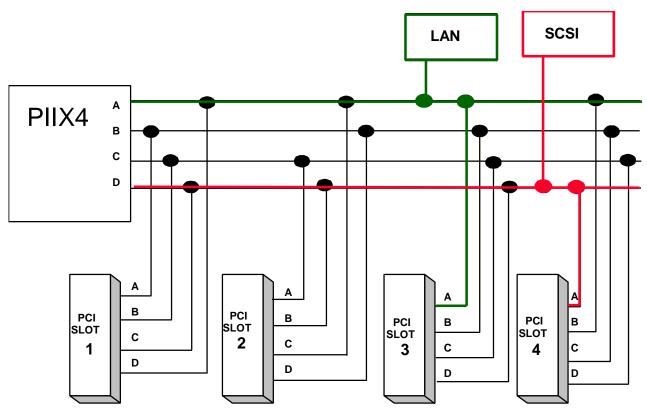


Figure 12 PCI Slot Interrupt Swizzle

1.12.5 PCI Interrupt Rerouting

Some multi-processing (MP) operating systems are unable to handle interrupts from PCI slots and devices as pure PCI interrupts, via inputs 16-19 (allocated to PCI) of the I/O APIC. Rather, they expect PCI interrupts to be delivered as ISA IRQs. Multi-processing operating systems may also expect some interrupts from the PC-compatible PIC in the PIIX4, and others from the I/O APIC (mixed mode). Some device drivers check whether the device uses one of the traditional IRQs, and if not (when the PCI interrupt is connected directly to the I/O APIC), the driver fails to install or run properly. The PIIX4 performs internal PCI to IRQ interrupt steering so that PCI interrupts can be delivered to the PIC. However, the PCI interrupt steering feature is unidirectional, which means that it cannot redirect PCI interrupts to the I/O APIC.

For these reasons, R440LX DP Server incorporates an external PCI to IRQ re-router circuit, that can be programmed to pass PCI interrupts through to inputs 16-19 of the I/O APIC, or deliver a specific PCI interrupt to an ISA IRQ. Under software control, a PCI interrupt can be individually rerouted to an ISA IRQ signal.

Two 8-bit registers are provided in the re-router circuit, with each nibble of a register controlling a specific PCI Interrupt line via PIO commands. The PIIX4 decodes the address of the PIO command and produces a chip-select, which is controlled using the PIIX4 programmable chip select control register (78h - 79h). The re-router uses only 2 bytes of the minimum 4 selectable, so aliases are provided.

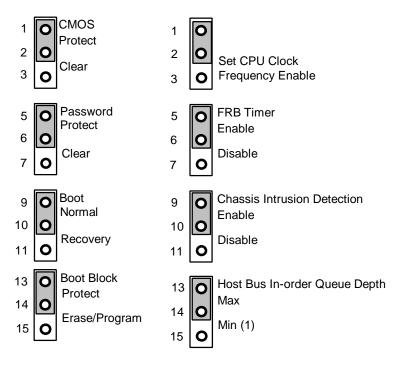
1.12.6 Working with PCI Interrupts

The R440LX DP Server baseboard shares PCI bus resources with onboard devices. The list below gives some guidelines to reduce the possibility of conflicts and performance restrictions.

- Try to stay away from installing a LAN adapter in Slot 3. Either the configuration may not work or it may reduce the performance quality on the network. If the server needs an additional LAN adapter, install it in Slot 1 or 2 and this will allow for maximum throughput. Slot 4 could have the same results as Slot 3 and should not be used if possible
- 2) When configuring a RAID controller in the R440LX DP Server baseboard, Slots 1 and 2 are better for performance and configuration. This is due to the onboard resources that are being used. Another consideration is to have this RAID pack as the boot device. (Refer to Table 14 Boot Order.)

When integrating peripherals into a server system, taking into consideration the architecture of the PCI bus and the onboard resources can help in making the right choices and offering a reliable server.

1.12.7 Boot Order


The baseboard boot order for non-multi-boot cards is outlined in the following table. On the R440LX DP Server baseboard multi-boot cards will always sign-on ahead of all other cards and onboard SCSI.

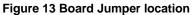

Order	Boot Device
1	Onboard IDE
2	Onboard SCSI
3	PCI Slot 1
4	PCI Slot 2
5	PCI Slot 3
6	PCI Slot 4

Table 14 Boot Order

1.13 System Board Jumpers

Two 15-pin single inline headers provide eight 3-pin jumper blocks that control various configuration options, as shown in the figure below. The shaded areas show default jumper placement for each configurable option.

The following table details the baseboard jumper functions.

Function	Pins (default in bold)	What it does at system reset
CMOS clear	1-2, Protect	Preserves the contents of NVRAM.
	2-3, Erase	Replaces the contents of NVRAM with the Intel manufacturing default settings.
Password clear	5-6, Protect	Maintains the current system password.
	6-7, Erase	Clears the password.
Recovery Boot	9-10, Normal	System attempts to boot using the BIOS stored in flash memory.
	10-11, Recovery	BIOS attempts a recovery boot, loading BIOS code from a floppy diskette into the flash device. This is typically used when the BIOS code has been corrupted.
Boot Block Write Protect	13-14, Protect	BIOS boot block is write-protected
	14-15	BIOS boot block is erasable and programmable
		CAUTION: Programming the boot block incorrectly will prevent the system from booting.
Clock Enable	1-2, Protect	Processor speed configuration is protected.
	2-3, Enable	Processor speed configuration is enabled. Changes can be made in BIOS/SCU.
FRB Timer Enable	5-6, Enable	FRB operation is enabled (system boots from processor 1 if processor 0 fails)
	6-7, Disable	FRB is disabled
Chassis Intrusion Detection	9-10, Enable	Switch installed on chassis indicates when cover has been removed.
	10-11, Disable	Chassis intrusion switch is bypassed.
Host Bus In-order Queue	13-14, Max	Host in-order queue depth is set at maximum to increase system performance
	14-15, Min (1)	Host in-order queue depth is set at 1 Normally used for debugging and slower legacy PCI/ISA add-in cards.

Table 15 Board Jumper description

2. Server Management

The baseboard contains three controllers that are responsible for the server management features on the baseboard as part of a private IMB (Intelligent Management Bus) based communications network that extends throughout the server chassis and beyond. The Baseboard Management Controller (BMC) is the primary controller, monitoring and logging key events as well as passing messages to the other distributed controllers in the system. The BMC interfaces to the ISA bus via a programmable logic component, the Distributed Integrated Server Management & Interface Controller (DISMIC). The Front Panel Controller (FPC) controls the reset and power on/off circuitry on the baseboard, and interfaces to the BMC via the IMB bus. The Processor Board Controller (PBC) monitors processor cartridge temperature and voltages, controls Fault-Resilient Booting (FRB), and provides the interface to the module serial number and board ID information. It can be polled for current status, or configured to automatically send an alert message when an error condition is detected. The PBC also uses the IMB bus for communication with the baseboard.

Server management architecture on the R440LX DP Server features three controllers for server management and monitoring, as shown in the following figure:

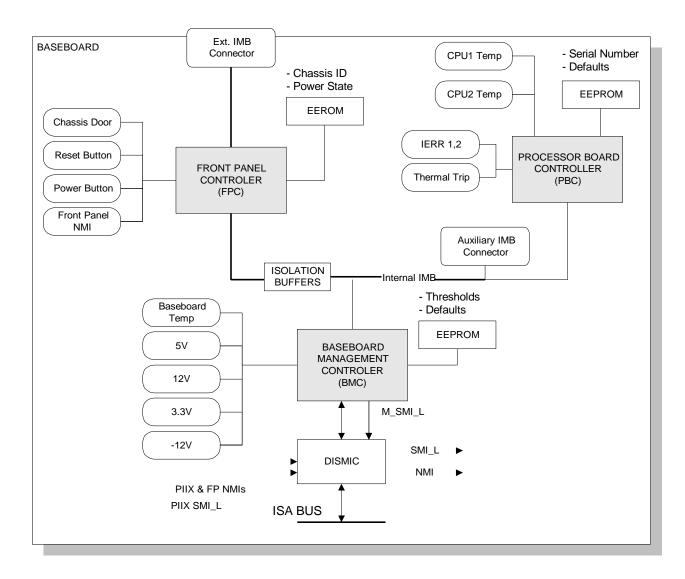


Figure 14 R440LX DP Server Management Block Diagram

2.1 Server Management Controllers

Three controllers are provided on R440LX DP Server for server management and monitoring functions:

- Front Panel Controller (FPC)
- Processor Board Controller (PBC)
- Baseboard Management Processor (BMC)

2.2 Baseboard Management Controller (BMC)

The BMC is an 8051-compatible controller located on the R440LX DP Server baseboard. The BMC directly monitors baseboard power supply and SCSI termination voltages using an onboard Analog to Digital Converter (ADC) and checks the status of the fan fail indicators. The BMC also monitors system temperature sensors on the Intelligent Management Bus. When any monitored parameter is outside defined thresholds, the BMC generates an SMI (Server Management Interupt). The BMC also provides general purpose I/O (GPIO) functions, and acts as the primary communications gateway to the FPC, PBC, and DISMIC by providing support routines for IMB and ISA communications.

An EEPROM associated with the secondary baseboard temperature sensor contains the Chassis ID, Baseboard ID, Power State, and Baseboard Temperature during power-off conditions. These values are managed by the BMC through the IMB bus.

2.3 Processor Board Controller (PBC)

The PBC monitors processor voltage levels, processor thermal trip, and internal error signals. It can be polled for immediate status or configured to automatically send an alert message when an error condition is detected. The PBC implementation was mirrored from the B440FX DP server (a dual Pentium Pro technology based server system) and kept the same name. There is not a processor board on the R440LX DP Server.

2.4 Front Panel Controller (FPC)

The FPC manages the front panel system power on/off control, the system reset, and the NMI buttons, along with the external IMB interface. The device is powered from the +5V Standby, to allow it to monitor the system while system power is switched off. The FPC controls main power to the baseboard and is responsible for monitoring all sources of power control both on and off the baseboard including the Front Panel, Server Monitor Module, PIIX4, and RTC power control signals. The FPC retains the current power-state, even if main power is momentarily lost.

The FPC also detects chassis intrusion by monitoring an external switch via a front panel board or the baseboard chassis intrusion connector.

2.5 Fault Resilient Booting

The PBC implements Fault Resilient Booting (FRB) levels 1, 2, and 3. If two processors are installed and the processor designated as the Boot Strap Processor(BSP) fails to complete the boot process, FRB attempts to boot the system using the alternate processor.

- FRB level 1 is for recovery from a BIST failure detected during POST. This FRB recovery is fully handled by BIOS code.
- FRB level 2 is for recovery from a Watchdog time out during POST. The Watchdog timer for FRB level 2 detection is implemented in the PBC.
- FRB level 3 is for recovery from a Watchdog time out on Hard Reset/Power-up. Hardware functionality for this level of FRB is provided by the BMC on the processor subsystem.

FRB-3 is managed by the PBC, which controls the ability to boot using either processor in the event of a catastrophic processor failure. On power-up, a timer starts that can only be stopped by a healthy processor using the GPIO bit, FRB_TMRHLT_L, on the PIIX4. If the primary processor fails to halt the FRB timer before time out, the controller asserts STOP_FLUSH to the processor and asserts FRB_RST_L for 10ms. When the system comes out of reset, the primary processor is unable to act as the BSP (Boot strap Processor) allowing the other processor to take over the boot process.

2.6 IMB Isolation Buffers and Auxiliary IMB Connector

Buffers are provided to isolate the baseboard temperature sensors, auxiliary IMB connector, and FPC from the rest of the IMB bus. These buffers, running on the standby supply, keep the bus alive to the FPC even though main power is switched off. This allows the FPC to communicate with its IMB EEPROM (in the secondary baseboard temperature sensor) at all times, and provides a way to remotely control power via the auxiliary IMB connector.

Pin	Signal
1	Local IMB SCL
2	GND
3	Local IMB SDA

Table 16 Auxiliary IMB Connector Pinout

Warning! A shorted IMB connection at the auxiliary IMB connector will prevent restoration of main power.

2.7 Server Monitor Module Connector

The Server Monitor Module feature connector is supported on the baseboard. Several of the undefined connector pins have been allocated for two IEEE 1149.1 channels. The contents of the 26-pin connector is shown in the following table.

Pin	Signal	Description
1	CPU_SMI_L	System Management Interrupt
2	LOCAL_I2C_SCL	IMB clock line
3	GND	Ground
4	Reserved	-
5	PWR_CNTRL_SFC_L	Host power supply on/off control
6	LOCAL_I2C_SDA	IMB serial data line
7	5VSTNDBY	+5V standby indication (power OK)
8	KEYLOCK_SFC_L	Keyboard lock signal
9	CPU_NMI	Non-maskable interrupt indication
10	VCC3	3.3V power supply status input
11	RST_SFC_L	Baseboard reset signal from Server Monitor Module
12	GND	Ground
13	GND	Ground
14	Reserved	-
15	SECURE_MODE_BMC	Secure mode indication
16	GND	Ground
17	SFC_CHASSIS_INSTRUSION_L	Chassis intrusion indication
18	Reserved	-
19	Reserved	-
20	GND	Ground
21	Reserved	-
22	Reserved	-
23	Reserved	unused
24	Reserved	-
25	Key pin (nc)	Connector key
26	Reserved	-

2.8 System Fan Interface

The R440LX DP Server baseboard provides four 3-pin, shrouded, and keyed fan connectors. Two of these connectors, located next to each Pentium II processor cartridges on the baseboard, are for a fansink. The remaining two connectors on the baseboard attach to chassis fans equipped with a sensor that indicates whether the fan is operating. The sensor pins for these fans are routed to the BMC for failure monitoring. The chassis fan connector and the fansink connector have the following pin-out:

Table 18 Chassis Fan Connector Pin-out

Pin	Signal
1	GND
2	Fan Sensor
3	+12V

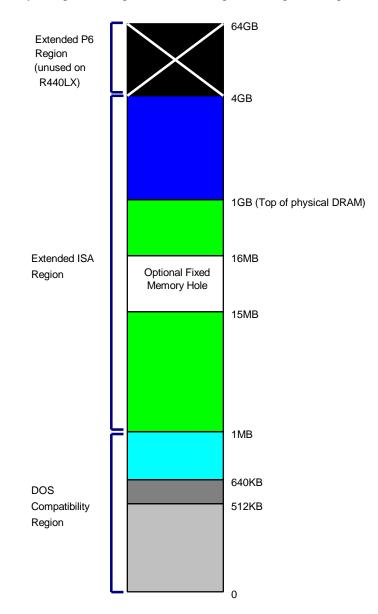
Table 19 Fansink Connector Pin-out

Pin	Signal
1	GND
2	+12V
3	Fan Sensor

2.9 Chassis Intrusion

The chassis intrusion header has been added to the baseboard of the R440LX DP Server. It is a 3pin, shrouded and keyed connector located near the NIC indicator LEDs. Intrusion has occurred when the signal is open, chassis is secure when pulled to ground. The chassis intrusion header has the following pin out.

Table 20 Chassis Intrusion Pin-ou


Pin	Signal
1	Chassis Intrusion
2	GND
3	Chassis Intrusion

3. Memory and Other Resource Mappings

This chapter describes the initial programming environment including address maps for memory and I/O, techniques and considerations for programming ASIC registers, and hardware options configuration.

3.1 Memory Space

At the highest level, Pentium II processor address space is divided into 4 regions, as shown in the following figure. Each region contains sub-regions, as described in following sections. Attributes can be independently assigned to regions and sub-regions using PAC registers.

3.1.1 DOS Compatibility Region

The first region of memory below 1MB was defined for early PCs, and must be maintained for compatibility reasons. This region is divided into sub-regions as shown in the following figure.

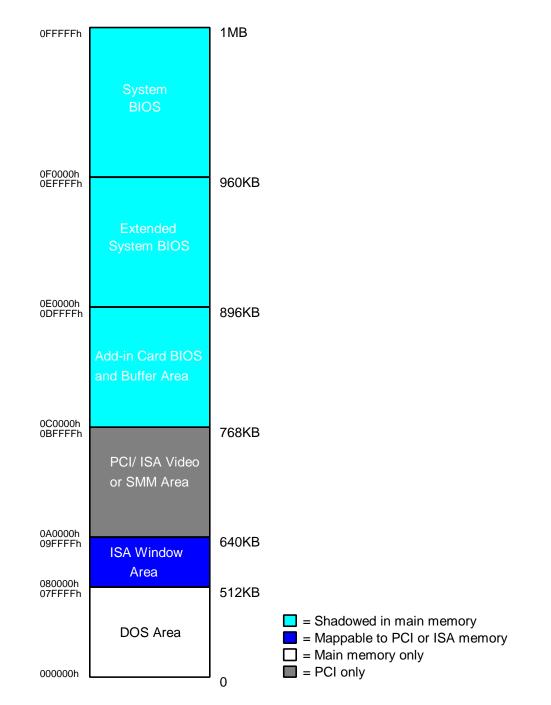


Figure 16 DOS Compatibility Region

3.1.2 DOS Area

The DOS region is 512KB in the address range 0 to 07FFFFh. This region is fixed and all accesses go to main memory.

3.1.3 ISA Window Memory

The ISA Window Memory is 128KB between the addresses of 080000h to 09FFFFh. This area can be mapped to the PCI bus or main memory.

3.1.4 Video or SMM Memory

The 128KB Graphics Adapter Memory region at 0A0000h to 0BFFFFh is normally mapped to the VGA controller on the PCI bus. This region is also the default region for SMM space. The SMM region can be remapped by programming the SMRAM Control Register in the PAC.

3.1.5 Add-in Card BIOS and Buffer Area

The 128KB region between addresses 0C0000h and 0DFFFFh is divided into eight segments of 16KB segments mapped to ISA memory space, each with programmable attributes, for expansion card buffers. Historically, the 32KB region from 0C0000h to 0C7FFFh has contained the video BIOS location on a video card. However, on R440LX DP Server, the video BIOS is located in the Extended BIOS or System BIOS areas.

3.1.6 Extended System BIOS

This 64KB region from 0E0000h to 0EFFFFh is divided into 4 blocks of 16KB each, and may be mapped with programmable attributes to map to either main memory or to the PCI bus. Typically, this area is used for RAM or ROM.

3.1.7 System BIOS

The 64KB region from 0F0000h to 0FFFFFh is treated as a single block. By default this area is normally Read/Write disabled with accesses forwarded to the PCI bus. Through manipulation of R/W attributes, this region can be shadowed into main memory.

3.1.8 Extended Memory

Extended memory on R440LX DP Server is defined as all address space greater than 1MB. The Extended Memory region covers 4GB of address space from addresses 0100000h to FFFFFFFh, as shown in the following figure.

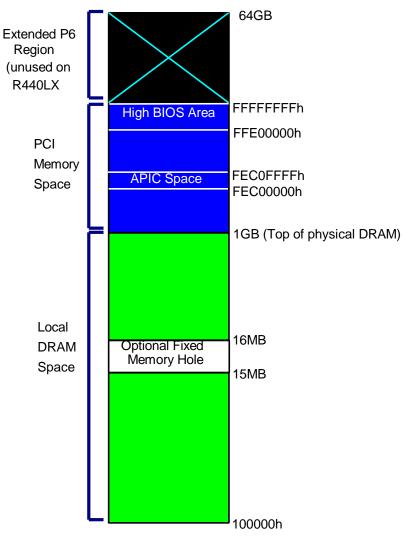


Figure 17 Extended Memory Map

3.1.9 Main Memory

All installed SDRAM greater than 1MB is mapped to local main memory, up to the top of physical memory that is located at 1GB. Memory between 1MB to 15MB is considered to be standard ISA extended memory. 1MB of memory starting at 15MB can be optionally mapped to the PCI bus memory space. The remainder of this space, up to 1GB, is always mapped to main memory.

3.1.10 PCI Memory Space

Memory addresses between 1GB and 4GB are mapped to the PCI bus. This region is divided into three sections: High BIOS, APIC Configuration Space, and General-purpose PCI Memory.

The General-purpose PCI Memory area is typically used for memory-mapped I/O to PCI devices. The memory address space for each device is set using PCI configuration registers

3.1.11 High BIOS

The top 2MB of Extended Memory is reserved for the system BIOS, extended BIOS is for PCI devices, and A20 aliasing by the system BIOS. The Pentium II processor begins executing from the High BIOS region after reset. Only 256KB of the high BIOS area is actually required by the BIOS, but 2MB is required by Pentium II processor MTRR programming.

3.1.12 I/O APIC Configuration Space

A 64KB block located 20MB below 4GB (0FEC00000h to 0FEC0FFFh) is reserved for the I/O APIC configuration space.

I/O APIC units are located beginning at a base address determined by subtracting 013FFFF0h from the reset vector. The first I/O APIC is located at FEC00000h. Each I/O APIC unit is located at FEC0x000h where x is the I/O APIC unit (0 through F).

3.1.13 Extended Pentium^a II Processor Region (above 4GB)

A Pentium II processor-based system can have up to 64GB of addressable memory. However, the 82440LX AGPset only supports 32-bit addressing, with the BIOS operating in 4GB of address space (the memory DIMMs provide up to 512MB of main memory). All accesses to the region from 4GB to 64GB are claimed by the PAC and terminated. Write data is dropped and zeroes are returned on reads.

3.1.14 Memory Shadowing

Any block of memory that can be designated as read-only or write-only can be "shadowed" into memory located on the Pentium II processor bus. Typically, this is done to allow ROM code to execute more rapidly out of RAM. ROM is designated read-only during the copy process while RAM at the same address is designated write-only. After copying, the RAM is designated read-only and the ROM is designated write-only (shadowed). Processor bus transactions are routed accordingly. Transactions originating from the PCI bus or ISA masters and targeted at shadowed memory blocks will not appear on the processor's bus.

3.1.15 SMM Mode Handling

A Pentium II processor asserts SMMEM_L in its Request Phase if it is operating in System Management Mode (SMM). SM code resides in SMRAM. SMRAM can overlap with memory residing on the Pentium II processor bus or memory normally residing on the PCI bus. The PAC determines where SMRAM space is located through the value of the SMM Range configuration space register.

The SMRAM Enable bit in the SMRAM Enable configuration register will determine how the SM accesses are handled by the PAC component. When the SMRAM Enable bit is zero (SMRAM disabled), accesses to the SMM Range with SMMEM_L asserted are ignored by the PAC. When the SMRAM Enable bit is one (SMRAM enabled), accesses to the SMM range with SMMEM_L asserted are claimed by the PAC.

If the SMMEM_L signal is not asserted, the SMM Range is not decoded regardless of the state of the SMRAM Enable bit (this allows SMRAM to overlap with memory normally residing on the processor bus).

In summary, when the SMMEM_L signal is asserted, the SMM Range is similar to a Memory Space Gap, where the SMM Enable bit either enables or disables the memory gap.

The SMI_L signal may be asserted in the Response Phase by a device in SMM power-down mode.

Refer to the System Management RAM Control Register (SMRAM 72h)

3.2 I/O Map

The PAC allows I/O addresses to be mapped to the processor bus or through designated bridges in a multi-bridge system. Other PCI devices, including PIIX4, have built-in features that support PC-compatible I/O devices and functions, which are mapped to specific addresses in I/O space. On R440LX DP Server, the PIIX4 provides the bridge to ISA functions. The I/O map in the following table shows the location in R440LX DP Server I/O space of all directly I/O-accessible registers. PCI configuration space registers for each device control mapping in I/O and memory spaces, and other features that may affect the global I/O map. All configuration space registers for PCI devices are described in Chapter 5. The SuperI/O controller contains configuration registers that are accessed through an index and data port mechanism.

Table 21 R440LX I/O Map

Address(es)	Resource	Notes	
0000h - 000Fh	DMA Controller 1		
0010h - 001Fh	DMA Controller 1 aliased from 0000h - 000Fh		
0020h - 0021h	Interrupt Controller 1		
0022h - 0023h			
0024h - 0025h	Interrupt Controller 1	aliased from 0020h - 0021h	
0026h - 0027h			
0028h - 0029h	Interrupt Controller 1	aliased from 0020h - 0021h	
002Ah - 002Bh			
002Ch - 002Dh	Interrupt Controller 1	aliased from 0020h - 0021h	
002Eh - 002Fh	SuperI/O Index and Data Ports		
0030h - 0031h	Interrupt Controller 1	aliased from 0020h - 0021h	
0032h - 0033h			
0034h - 0035h	Interrupt Controller 1	aliased from 0020h - 0021h	
0036h - 0037h			
0038h - 0039h	Interrupt Controller 1	aliased from 0020h - 0021h	
003Ah - 003Bh			
003Ch - 003Dh	Interrupt Controller 1	aliased from 0020h - 0021h	
003Eh - 003Fh			
0040h - 0043h	Programmable Timers		
0044h - 004Fh			
0050h - 0053h	Programmable Timers	aliased from 0040h - 0043h	
0054h - 005Fh			
0060h, 0064h	Keyboard Controller	Keyboard chip select from 97307	
0061h	NMI Status & Control Register		
0063h	NMI Status & Control Register aliased		
0065h	NMI Status & Control Register aliased		
0067h	NMI Status & Control Register aliased		
0070h	NMI Mask (bit 7) & RTC Address (bits 6::0)		
0072h	NMI Mask (bit 7) & RTC Address (bits 6::0) aliased from 0070h		
0074h	NMI Mask (bit 7) & RTC Address (bits 6::0) aliased from 0070h		
0076h	NMI Mask (bit 7) & RTC Address (bits 6::0) aliased from 0070h		
0071h	RTC Data		
0073h	RTC Data	aliased from 0071h	
0075h	RTC Data aliased from 0071h		
0077h	RTC Data aliased from 0071h		

Address(es)	Resource	Notes
0080h - 0081h	BIOS Timer	
0080h - 008Fh	DMA Low Page Register PIIX4	
0090h - 0091h	DMA Low Page Register (aliased) PIIX4	
0092h	System Control Port A (PC-AT control Port) PIIX4	
	(this port not aliased in DMA range)	
0093h - 009Fh	DMA Low Page Register (aliased)	PIIX4
0094h	Video Display Controller	
00A0h - 00A1h	Interrupt Controller 2	PIIX4
00A4h - 00A15	Interrupt Controller 2 (aliased)	PIIX4
00A8h - 00A19	Interrupt Controller 2 (aliased)	PIIX4
00ACh - 00ADh	Interrupt Controller 2 (aliased)	PIIX4
00B0h - 00B1h	Interrupt Controller 2 (aliased)	PIIX4
00B2h	Advanced Power Management Control	PIIX4
00B3h	Advanced Power Management Status	PIIX4
00B4h - 00B5h	Interrupt Controller 2 (aliased)	PIIX4
00B8h - 00B9h	Interrupt Controller 2 (aliased)	PIIX4
00BCh - 00BDh	Interrupt Controller 2 (aliased)	PIIX4
00C0h - 00DFh	DMA Controller 2	PIIX4
00F0h	Clear NPX error	Resets IRQ13
00F8h - 00FFh	x87 Numeric Coprocessor	
0102h	Video Display Controller	
0170h - 0177h	Secondary Fixed Disk Controller (IDE)	PIIX4 (not used)
01F0h - 01F7h	Primary Fixed Disk Controller (IDE)	PIIX4
0200h - 0207h	Game I/O Port	Not used
0220h - 022Fh	Serial Port A	
0238h - 023Fh	Serial Port B	
0278h - 027Fh	Parallel Port 3	
02E8h - 02EFh	Serial Port B	
02F8h - 02FFh	Serial Port B	
0338h - 033Fh	Serial Port B	
0370h - 0375h	Secondary Floppy	
0376h	Secondary IDE	
0377h	Secondary IDE/Floppy	
0378h - 037Fh	Parallel Port 2	
03B4h - 03BAh	Monochrome Display Port	
03BCh - 03BFh	Parallel Port 1 (Primary)	
03C0h - 03CFh	Video Display Controller	
03D4h - 03DAh	Color Graphics Controller	
03E8h - 03EFh	Serial Port A	
03F0h - 03F5h	Floppy Disk Controller	
03F6h - 03F7h	Primary IDE - Sec. Floppy	
03F8h - 03FFh	Serial Port A (Primary)	
0400h - 043Fh	DMA Controller 1, Extended Mode Registers. PIIX4	

Table 22 R440LX I/O Map (cont.)

Table 22 R440LX I/O Map (cont.)

Address(es)	Resource	Notes
0461h	Extended NMI / Reset Control	PIIX4

0462h	Software NMI	PIIX4	
0480h - 048Fh	DMA High Page Register. PIIX4		
04C0h - 04CFh	DMA Controller 2, High Base Register.	ligh Base Register.	
04D0h - 04D1h	Interrupt Controllers 1 and 2 Control Register.		
04D4h - 04D7h	DMA Controller 2, Extended Mode Register.		
04D8h - 04DFh	Reserved		
04E0h - 04FFh	DMA Channel Stop Registers		
0678h - 067Ah	Parallel Port (ECP)		
0778h - 077Ah	Parallel Port (ECP)		
07BCh - 07BEh	Parallel Port (ECP)		
0800h - 08FFh	NVRAM		
0C80h - 0C83h	EISA System Identifier Registers	PIIX4	
0C84h	Board Revision Register		
0C85h - 0C86h	BIOS Function Control		
0CA9h	DISMIC Data Register	Server management mailbox	
0CAAh	DISMIC Control/Status Register registers.		
0CABh	DISMIC Flags Register		
0CF8h	PCI CONFIG_ADDRESS Register	Located in PAC	
0CF9h	PAC Turbo and Reset control	PIIX4	
0CFCh	PCI CONFIG_DATA Register	Located in PAC	
46E8h	Video Display Controller		
xx00 - xx1F*	SCSI registers Refer to SCSI chip doc.		

*SCSI I/O base address is set using configuration registers.

3.3 Accessing Configuration Space

All PCI devices contain PCI configuration space, accessed using mechanism #1 defined in the *PCI* 2.1 Local Bus Specification. The PIIX4 is accessed as a multi-function PCI device, with 3 sets of configuration registers.

If dual processors are used, only the processor designated as the BSP should perform PCI configuration space accesses. Precautions should be taken to guarantee that only one processor is accessing configuration space at a time.

Two Dword I/O registers in the PAC are used for the configuration space register access:

- CONFIG_ADDRESS (I/O address 0CF8h)
- CONFIG_DATA (I/O address 0CFCh)

When CONFIG_ADDRESS is written to with a 32-bit value selecting the bus number, device on the bus, and specific configuration register in the device, a subsequent read or write of CONFIG_DATA initiates the data transfer to/from the selected configuration register. Byte enables are valid during accesses to CONFIG_DATA; they determine whether the configuration register is being accessed or not. Only full Dword reads and writes to CONFIG_ADDRESS are recognized as a configuration access by the PAC. All other I/O accesses to CONFIG_ADDRESS are treated as normal I/O transactions.

3.3.1 CONFIG_ADDRESS Register

CONFIG_ADDRESS is 32 bits wide and contains the field format shown in the following figure. Bits [23::16] choose a specific bus in the system. Bits [15::11] choose a specific device on the selected

bus. Bits [10::8] choose a specific function in a multi-function device. Bits [7::2] select a specific register in the configuration space of the selected device or function on the bus.

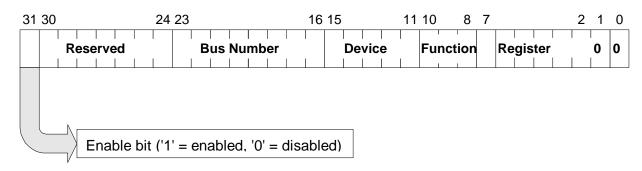


Figure 18 CONFIG_ADDRESS Register

3.3.2 Device Number and IDSEL Mapping

Each device under a PCI bridge has its IDSEL input connected to one bit out of the PCI bus address/data signals AD[31::11] for the PCI bus. Each IDSEL-mapped AD bit acts as a chip select for each device on PCI. The host bridge responds to a unique PCI device ID value, that along with the bus number, cause the assertion of IDSEL for a particular device during configuration cycles. The following table shows the correspondence between IDSEL values and PCI device numbers for the PCI bus. The lower 5-bits of the device number are used in CONFIG_ADDRESS bits [15::11].

	PCI Bus	
IDSEL	Device #	Device
31	10100b	PIIX4
30	10011b	
29	10010b	CL-GD5446 video chip
28	10001b	
27	10000b	82557 NIC
26	01111b	PCI Slot 4
25	01110b	
24	01101b	
23	01100b	PCI Slot 3
22	01011b	Adaptec AIC-7880
21	01010b	PCI Slot 2
20	01001b	PCI Slot 1
19	01000b	
18	00111b	
17	00110b	
16	00101b	
15	00100b	
14	00011b	
13	00010b	
IDSEL	Device #	Device
12	00001b	
11	00000b	Hardwired to host bridge

Table 23 PCI Configuration IDs and Device Numbers

3.4 Error Handling

The R440LX DP Server is designed to report the following types of system errors: ISA bus, PCI bus, ECC memory, and System limit. Errors are reported using SMI_L. SMI is used for server management and advanced error processing. All errors can be intercepted by SMI for preprocessing (if SMI_L is enabled), or handled directly by NMI handlers. Some errors have to generate an NMI even if they are intercepted by the SMI, because the traditional way to handle errors in PC architecture is via the NMI. The R440LX emulates non-ISA errors as ISA-compatible using NMI and SMI_L.

Three error handlers are required: BIOS NMI handler, OS NMI handler, and SMI handler. The SMI has the highest priority to process the errors and is OS-transparent. The OS NMI handler can process all errors as well, even when the SMI is disabled. In this case, some errors are SMI resources that can be routed to the NMI. The BIOS NMI handler processes the ISA-compatible errors and disables the NMI only.

Refer to the BIOS specification for R440LX DP Server for more information on error handling mechanisms.

3.5 Hardware Initialization and Configuration

This section describes the following:

- System initialization
- Programming considerations for various portions of the I/O system

3.5.1 System Initialization Sequence

A Pentium II processor system based on the 82440LX AGPset is initialized and configured in the following manner.

System power is applied. The power-supply provides resets using the RST_PWR_GD_BB signal. PCI reset (RST_P_RST_L) is driven to tri-state the PCI bus in order to prevent PCI output buffers from short circuiting when the PCI power rails are not within the specified tolerances. The PAC asserts G_CPURST_L to reset the processor(s).

The PAC is initialized, with its internal registers set to default values.

Before G_CPURST_L is deasserted, the PAC asserts BREQ0_L. Processor(s) in the system determine which host bus agents they are, Agent 0 or Agent 1, according whether their BREQ0_L or BREQ1_L is asserted. This determines bus arbitration priority and order.

The processor(s) in the system determines which processor will be the BSP by issuing Bootstrap Inter-Processor Interrupts (BIPI) on the APIC data bus. The non-BSP processor becomes an application processor and idles, waiting for a Startup Inter-Processor Interrupt (SIPI).

The BSP begins by fetching the first instruction from the reset vector.

PAC registers are updated to reflect memory configuration. SDRAM is sized and initialized.

All PCI and ISA I/O subsystems are initialized and prepared for booting.

3.6 Server Management Programming Interface

DISMIC mailbox registers provide a mechanism for communications between IMB server management bus agents, and SMS or SMI handler code running on the server. DISMIC mailbox register space, physically located in the device, is mapped to BMC external data memory and ISA I/O space. This shared register space consists of three byte-wide registers:

- Flags Register provides semaphores for use in various defined operations
- Control/Status Register accepts commands and returns completion codes
- Data Register provides a port for transactions that exchange data

In addition to the ports described above, the DISMIC contains a port 070h snoop register. See the section titled "Port 70h Snoop Register" below for further information.

SMS and SMI handler code interacts with the register interface using a variety of read and write commands encapsulated in messages. The origin of a message is specified during a particular transaction using Control Codes that are unique to the transaction, allowing the interface to allocate priority to various sources, and control SMI handler and SMS precedence (the SMI handler can always abort or temporarily interrupt any transaction).

Refer to the *Distributed Baseboard Management Controller Interface Specification* for more information.

3.6.1 Port 70h Snoop Register

The Port 70h Snoop Register reads back the state of bit 7 of I/O port 70h (RTC NMI enable bit) to the BMC. This register shadows any ISA write to port 70h. Due to architectural constraints in the DISMIC, the contents of this register cannot be made available for direct I/O read access at an alternate address location on the ISA bus. Access to the register's contents is provided only through the BMC using a command defined for this purpose.

3.7 PCI Interrupt to IRQ Routing Control

Embedded in a separate programmable logic device is logic for rerouting of PCI interrupts to ISA IRQs. Two I/O locations are reserved by the BIOS using the PIIX4 Programmable Chip Select Control register, for control of the PCI to IRQ re-router feature: CA4h and CA5h. Writes to the upper and lower nibble of each byte determine whether the interrupt is passed through to the I/O APIC, or rerouted to an ISA IRQ input on the PIIX4. The following figure shows the PCI interrupt line associated with each nibble.

A0	= 1	A0 = 0		
PCI_INTD_L	PCI_INTC_L	PCI_INTB_L	PCI_INTA_L	

Bit 0

Figure 19 PCI to IRQ Rerouter Control Bytes

The following table reviews PCI to IRQ nibble encoding.

Value	Meaning
0000b	Pass interrupt through to I/O APIC (default)
0001b	Reserved
0010b	Reserved
0011b	Reroute PCI_INTn_L to IRQ3
0100b	Reserved
0101b	Reroute PCI_INTn_L to IRQ5
0110b	Reserved
0111b	Reroute PCI_INTn_L to IRQ7
1000b	Reserved
1001b	Reroute PCI_INTn_L to IRQ9
1010b	Reroute PCI_INTn_L to IRQ10
1011b	Reroute PCI_INTn_L to IRQ11
1100b	Reserved
1101b	Reserved
1110b	Reserved
1111b	Reroute PCI_INTn_L to IRQ15

Table 24 PCI to IRQ Rerouter Nibble Encoding

4.1 BIOS Overview

The term "BIOS" refers to the following:

- System BIOS, that controls basic system functionality using stored configuration values.
- Configuration Utilities (CU) consisting of Flash ROM-resident Setup utility and system memoryresident System Configuration Utility (SCU), that provides user control of configuration values stored in NVRAM and battery-backed CMOS configuration RAM.
- Flash Memory Update utility (IFLASH), that loads predefined areas of Flash ROM with Setup, BIOS, and other code/data.

The following figure shows the relationship between BIOS components and register spaces. Unshaded areas are loaded into Flash using the Flash Memory Update Utility (IFLASH).

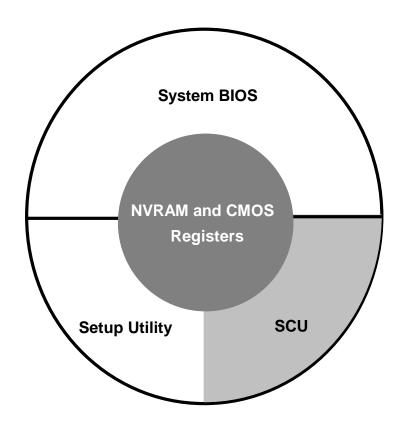
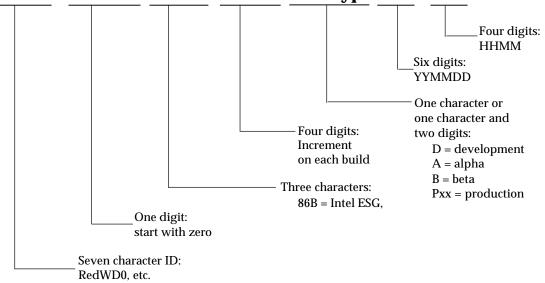


Figure 20 R440LX BIOS Architecture

4.2 System BIOS

The system BIOS is the core of the Flash ROM-resident portion of the BIOS. The system BIOS provides standard PC-BIOS services and some new industry standards, such as Plug and Play, DMI. In addition, the system BIOS provides R440LX specific support features such as security, SMP support, fault resilient booting (FRB), logging of critical events, server management features, CMOS configuration RAM defaults, multiple language support, defective DIMM detection and remapping, automatic detection of video adapters, PCI BIOS interface, option ROM shadowing, system information reporting, ECC support, SMI support, user-supplied BIOS support, L2 cache support, IMB support, memory sizing, boot drive sequencing, and resource allocation support.


The BIOS Setup and System Configuration Utility (SCU) are covered in detail in the R440LX DP Server Product Guide.

4.3 Revision History Format

The BIOS Revision Identification is used to track board, OEM, and build revision information for any given BIOS. This identifier can be a maximum of 32 characters. The first 28 characters have been defined using the following format:

The figure below illustrates a standard 32-byte BIOS ID.

BoardID&BoardRev.OEMID.BuildID.BuildType.Date&Time

This chapter specifies the operational parameters and physical characteristics for R440LX DP Server. This is a board-level specification only. System specifications are beyond the scope of this document.

5.1 Absolute Maximum Ratings

Operation of R440LX at conditions beyond those shown in the following table may cause permanent damage to the system (provided for stress testing only). Exposure to absolute maximum rating conditions for extended periods may affect system reliability.

Operating Temperature	+5°C to +35°C
Storage Temperature	-55°C to +150°C
Voltage on any signal with respect to ground	-0.3V to V _{DD} + 0.3V **
3.3V Supply Voltage with Respect to ground	-0.3 to +3.63V
5V Supply Voltage with Respect to ground	-0.3 to +5.5V

Table 25 Absolute Maximum Conditions

** V_{DD} means supply voltage for the device.

Chassis design must provide proper airflow to avoid exceeding Pentium II processor maximum case temperature.

5.2 Electrical Specifications

DC specifications for R440LX power connectors and module power budgets are summarized here. Electrical characteristics for major connector interfaces (including DC and AC specifications) can be obtained from other documents:

- PCI Connectors -- PCI Local Bus Specification Rev. 2.1
- ISA slots -- EISA Bus Specification

5.2.1 Power Connection

Main power supply connection is obtained using the 24-pin main connector, which attaches to the power supply via 18 AWG wire of the color shown below.

Pin	Signal	Color	Pin	Signal	Color
1	+5 Vdc	Red	13	+5 Vdc	Red
2	+5 Vdc	Red	14	+5 Vdc	Red
3	-5 Vdc	White	15	+5 Vdc	Red
4	-12Vdc	Blue	16	+5 Vdc	Red
5	COM	Black	17	COM	Black
6	COM	Black	18	COM	Black
7	COM	Black	19	СОМ	Black
8	COM	Black	20	COM	Black
9	COM	Black	21	COM	Black
10	+3.3 Vdc	Orange	22	+3.3 Vdc	Orange
11	+12 Vdc	Yellow	23	+3.3 Vdc	Orange
12	+12 Vdc	Yellow	24	+12 Vdc	Yellow

Table 26 24-pin Main Power Connector Pinout

5.2.2 Power Consumption

The following table shows the power consumed on each supply line for a R440LX DP Server baseboard with 2 processors, 4 DIMMs, 4 PCI slot loads (2A @ 5V per slot), and 1 ISA slot load (Server Monitor Module board).

NOTE:

The following numbers are provided as an example. Actual power consumption will vary depending on the exact R440LX DP Server configuration. Refer to the appropriate system chassis document for more information.

Device(s)	3.3V	+5V	+12V	-12V	5VSB	1
Processors	3.04A	8.17A	3.41A			
Memory DIMMs	3.58A					
GTL Termination	2.91A					
PAC	1.20A					
Baseboard	.32A	2.56A	.2A	.15A	.08A	
Fans			1.0A			
Keyboard/Mouse		.5A				
PCI slots		8A]
ISA slot		.1A	1.0A			1
Total Current	11.05 A	19.33 A	5.61	.15A	.08A	Total
Total Power	36.47 W	96.65 W	67.32W	1.8W	.4W	202.74

Table 27 R440LX DP	Server Power	Consumption
--------------------	--------------	-------------

	3.3V	+5V	+12V	-12V	5VSB	
Col2 Power Supply	36.3 W	110.7 W*	120W	6W	.5W	273.50W
Total Board Power	36.47 W	96.65 W	67.32W	1.8W	.4W	202.74W
Total Chassis Power Available	17W	14.05 W	52.68W	4.2W	.1W	70.76W

*The total combined output power of the +3.3 and +5V channels shall not exceed 147W.

5.2.3 Power Supply Specifications

This section provides power supply design guidelines for a R440LX-based system, including voltage and current specifications, and power supply on/off sequencing characteristics.

Item	Min	Nom	Max	Units	Tolerance
VOLTAGE TOLERANCE:					
3.3 Volts	3.14	3.30	3.46	V	+5%
5 Volts	4.80	5.00	5.25	V	+5%
+12 Volts	11.40	12.00	12.60	V	+5%
-12 Volts	-11.40	-12.00	-12.60	V	+5%
-5 Volts	-4.75	-5.00	-5.25	V	+5%
5 Volts Standby	+4.75	+5.00	+5.25	V	+5%

Table 28 R440LX DP Server Power Supply Voltage Specification

Item	Min	Nom	Max	Units
TRANSIENT CURRENTS:				
Max dl/dt:				
5 Volts			0.5	A/μs
3.3 Volts			TBD	A/μs
+12 Volts			TBD	A/μs
-12 Volts			0.3	A/μs
-5 Volts			0.3	A/μs
5 Volts Standby			0.5	A/µs
Amplitude:				
5 Volts			7.0	A
3.3 Volts			0.5	A
+12 Volts			3.0	A
-12 Volts			0.5	A
-5 Volts			0.5	A
5 Volts Standby			0.01	A
REMOTE SENSE:				
Fuse Rating:		N/A		A
Sense Trace Resistance:			0.05	Ω
SINK CURRENT (While Voltage Form Off):				
Off Voltage:				
5 Volts			0.2	V
3.3 Volts			0.1	V
+12 Volts			0.1	V
-12 Volts			0.1	V
-5 Volts			0.1	V

Table 29 Transient and Remote Sense/Sink Currents

Item	Min	Nom	Max	Units	Comments
Ramp Rate(On):					
5 Volts	5		70	ms	From 10% to within regulation
3.3 Volts	5		70	ms	From 10% to within regulation
+12 Volts	5		70	ms	From 10% to within regulation
-12 Volts	5		70	ms	From 10% to within regulation
-5 Volts	5		70*	ms	From 10% to within regulation
5 Volts Standby	5		70	ms	From 10% to within regulation
Ramp "Shape" (On & Off):					Monotonic
Sequencing: (with respect to 5 Volts)					See Figure 21
3.3 Volts					
+12 Volts					
-12 Volts					
-5 Volts					
5 Volts Standby					
Power Good Signal					See Figure 22
Vil			0.4	V	
Vih	3.5			V	
lil	4.0			mA	
lih			0.2	mA	
Timing requirements				TBD	
Power On Signal				TBD	
Vol			0.4	V	
Voh	3.5			V	
lol	4.0			mA	
loh			0.2	mA	
Timing requirements				TBD	
etc.					

Table 30 Ramp Rate / Ramp Shape / Sequencing / Power Good & Power On Signals

-5V must not ramp up before +12V

5.2.4 Voltage Recovery Timing Specifications

The power supply must conform to the following specifications for voltage recovery timing under load changes:

- Voltage shall remain within +/- 5% of the nominal set voltage on the +5V, +12V and 3.3V outputs, and +/- 5% of the nominal set voltage on the -5V and -12V outputs, during instantaneous changes in +5V and +12V load up to 8 Amps, and +3.3V load steps of 5 Amps.
- 2? Voltage regulation limits shall be maintained over the entire AC input range and any steady state temperature and operating conditions specified.
- 3? Voltages shall be stable as determined by bode plot and transient response. The combined error of peak overshoot, set point, regulation, and undershoot voltage shall be less than or equal to +/-5% of the output voltage setting. The transient response measurements shall be made with a load changing repetition rate of 50Hz to 5kHz. The load slew rate shall not be greater than 0.2A/us.

5.2.5 Voltage Sequencing and Power Good Signal Characteristics

The following figures show the dynamic behavior of power signals when system power is switched on.

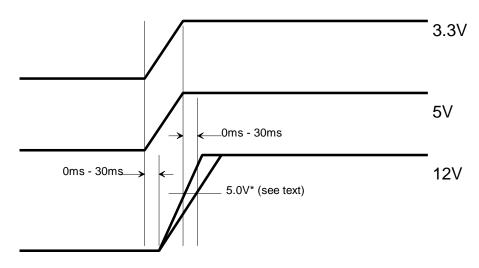
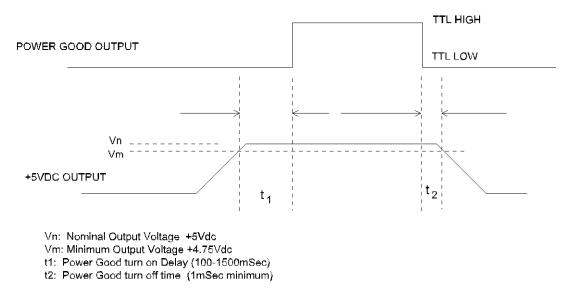



Figure 21 DC Voltage Sequencing

Note that the +3.3V and +5V supply voltages must begin their power-up ramp at the same time, and that +12V must start at the same time, or slightly after, the +5V supply. *Additionally, the +12V must reach 5.0V at the same time, or slightly after, the +5V supply reaches 5.0V. All supply voltages must have a monotonic ramp up.

Figure 22 Power Good Signal Characteristics

5.2.6 Ripple Voltage

R440LX DP Server board noise/decoupling measurements were taken with the following system configuration: 512MB SDRAM, 2 Pentium II processors, all PCI slots loaded (2 Adaptec 3940, 1 PRO100B network card, 1 3COM 3C595 network card) IDE1 with 2 hard drives, IDE2 with 1 hard drive and 1 CDROM drive, 1 floppy drive. The system was running HPIE system stress software under Windows NT.

Location	Voltage	Ripple Voltage Measurement
PCI/SDRAM	3.3V	80mVp-p
PCI	5V	40mVp-p
CPU0	Vccp	40mVp-p
CPU1	Vccp	40mVp-p
82443LX PAC	3.3V	170mVp-p
National 97307	5V	20mVp-p
Adaptec 7880B	5V	30mVp-p
Intel 82557	5V	40mVp-p
DISMIC	5V	30mVp-p
BMC	5V	40mVp-p
CKD4D Clock	3.3V	120mVp-p

Table 31 Rig	ople Voltage	Measurements
--------------	--------------	--------------

5.3 Mechanical Specifications

The following diagrams show the mechanical specifications of the R440LX baseboard. All dimensions are given in inches, and are dimensioned per ANSI Y15.4M. Maximum primary-side component height is .550" unless otherwise noted. Connectors are dimensioned to pin 1. Refer to "Connector Specifications" after the diagram for more information.

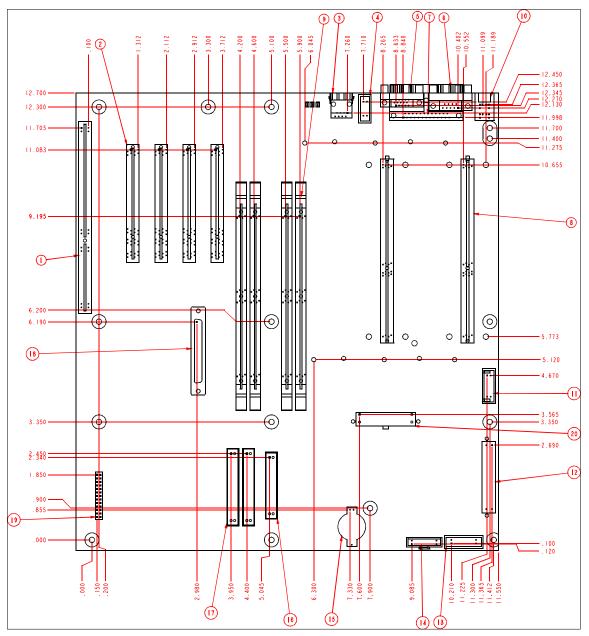


Figure 23 Baseboard Mechanical Diagram

1	ISA Conn.	6	Serial A	11 PS Ctrl Conn.		16	Floppy Conn.
2	PCI Conn.	7	Parallel Conn.	12 Main Pwr Conn.		17	IDE Conn.
3	NIC Conn.	8	Secondary Proc.	13	Front Pnl Conn.	18	Wide SCSI Conn.
4	Serial B	9	SDRAM DIMM	14	4 ITP Conn.		SMM Conn.
5	VGA Conn.	10	KeyB/Mouse	15	Battery	20	ATX Pwr Conn.

Table 32 Baseboard Connectors

5.3.1 Connector Specifications

The following table shows the quantity and manufacturer's part numbers for connectors on the baseboard. Item numbers reference the circled numbers on the mechanical drawing. Refer to manufacturers' documentation for more information on connector mechanical specifications.

ltem	Qty.	Mfr(s). and Part #	Description		
1	1	AMP 176139-2	ISA bus add-in card connector		
2	4	AMP 145154-4	PCI add-in card connector		
3	1	AMP 555153-6	Ethernet connector		
4	1	AMP 111950-1	Second Serial Port Header		
5	1	Fox Conn/Hon Haj DZ11A36-R9	15-pin VGA connector		
6	1	AMP 787650-4	9-pin Serial port D-sub connector		
7	1	Fox Conn/Hon Haj DM11356-R1	25-pin Parallel port connector		
8	2	AMP 145251-1 or -2	Slot 1 Processor Card Connector		
9	4	Molex 71736-0008	Memory DIMM Connector		
10	1	AMP 84376-1	Keyboard and mouse connector		
11	1	AMP 111950-2	14-pin header, Columbus 2 Power Control		
12	1	Molex 39-29-9242	24-pin power connector, Columbus 2 style		
13	1	AMP 111950-3	Front panel connector		
14	1	AMP 104068-3	ITP Connector (not installed)		
15	1	Renata Batteries US HU 2032-1	Battery Holder		
16	1	3M 2534-60V2UG	Floppy connector		
17	2	Fox Conn/Hon Haj HL09207-D2	IDE connector		
18	1	Fox Conn/Hon Haj QA01343-P4	68-pin SCSI connector		
19	1	AMP 111970-6	Server Monitor Module feature connector		
20	1	Molex 39-29-9202	20-pin power connector, ATX style		
21	2	AMP 644486-3	3-pin System Fan Conn.		
22	2	Fox Conn/Hon Haj HF08030-P1	3-pin Fan Sink Connector		

Table 33 Baseboard Connector Specifications

5.3.2 PCI and ISA Connectors

The baseboard PCI and ISA connectors adhere to the requirements in the PCI 2.1 Local Bus Specification and ISA Specification. Refer to these documents for connector specifications.

5.4 Mean Time between Failures (MTBF) Data

5.4.1 R440LX Baseboard MTBF

The R440LX Baseboard Mean Time between Failures (MTBF) data is calculated from predicted Failure in Time (FIT) data. The MTBF of the R440LX baseboard is calculated as 103,594.74 hours.

5.4.2 RC440LX System MTBF

The RC440LX System Mean Time between Failures (MTBF) data is calculated from predicted Failure in Time (FIT) data. The MTBF of the R440LX baseboard is calculated as 43,996.66 hours.

As of 10/10/97, 20 RC440LX DP Server systems have completed a demonstrated MTBF of 856 total hours each (combined total of 17,120 hours for all 20 systems) at 35 degrees C with no failures. This indicates an MTBF 80% confidence limit of 10,637.24 hours.

Appendix A. Supported Environments

The R440LX DP Server has been validated with leading network operating systems.

Validated Operating Systems

- Level 1 Heavy testing done in Intel's Server Validation Lab
- Level 2 Testing done in Intel's Server Compatibility Lab

Table 34 Validated Operating Systems

Level	Operating System	Version	Certified		
1	Windows NT	Versions 4.0	OEM must certify		
			w/Microsoft		
1	Novell NetWare	4.11 SMP	Certified Nov. 1997		
2	MS-DOS	6.22	N/A		
1	SCO UNIX	UnixWare 2.1.1	OEM must certify		
2		OpenServer v5.0 MPX	W/SCO		
2	Solaris	v2.5	OEM must certify w/Sunsoft		

A document is available which describes the add-in cards used and the driver version tested. It is beyond the scope of this document to provide here. Contact your Intel Representative for availability.

Product Codes

Table 35 R440LX Baseboard Codes

Description	Product code
Baseboard, no retention, no termination card	B2RD265X32PP
Base board without retention module, without termination card	BORDOSTD
Baseboard with retention module, termination card, and I/O shield	BOXR440LX

Table 36 R440LX DP Server System Codes

Description	Product code
System with Dual 266MHz ECC Proc, 32MB memory, 16x CD-ROM, with term card, with retention	S2RDCL265X32PP
System with No CPU ,No memory, No CD-ROM, No termination card, with retention module	SORDCL0X0XSD
System with Single 266MHz ECC Processor, No memory, No CD-ROM, with termination card, with retention module	S1RDCL265X0XSD
System with Single 266MHz ECC Processor, No memory, 24x CD-ROM, with termination card, with retention module	S1RDCL265X0CSD
System with Single 233MHz CPU, No memory, No CD-ROM, with termination card, with retention module	S1RDCL235X0XSD

The R440LX project consists of a baseboard product and a system product. The table below characterizes the specifics of the baseboard and system products.

PRODUCT CODE	PROCESSOR	MEMORY	Term. Card	Retention module	EXTERNAL DRIVE	INTERNAL DRIVE
S2RDCL265X32PP	Dual 266MHz 512 ECC Pentium® II processor	1-32MB SDRAM DIMM	YES	NO	1-IDE CDROM (Hitachi 16X)	1GB IDE drive
SORDCL0X0XSD	None	None	YES	YES	None	None
S1RDCL265X0XSD	Single 266MHz 512 ECC Pentium II processor	None	YES	YES	None	None
S1RDCL265X0CSD	Single 266MHz 512 ECC Pentium II processor	None	YES	YES	1-IDE CDROM (Hitachi 16X)	None
S1RDCL235X0XSD	Single 233MHz 512 ECC Pentium II processor	None	YES	YES	None	None

Table 37 System Product Details

Spares

Table 38 Spares List

Description	Code
CPU retention module	FRU660391
Country Kit	FRU684548
Chassis Assy	FRU651331
Fan, 120MM	FRU621116
SLT1 TERM Termination Card	FRU660391 (Same as M440LX baseboard product)
Cable, Floppy	FRU654277
275W Power supply	FRU661386

PCI Connectors

The following table defines the pinout for each PCI expansion connector on the R440LX DP Server. Signals that are unused are labeled as either "Reserved", or by signal mnemonic with the R440LX DP Server implementation shown in parentheses.

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A1	TRST_L (p/d)	A32	AD17	B1	-12V	B32	AD16
A2	TCK (p/d)	A33	C/BE2_L	B2	+12V	B33	+3.3V *
A3	GND	A34	GND	B3	TMS (p/u)	B34	FRAME_L
A4	TDO (n/c)	A35	IRDY_L	B4	TDI (p/u)	B35	GND
A5	+5V	A36	+3.3V *	B5	+5V	B36	TRDY_L
A6	+5V	A37	DEVSEL_L	B6	INTA_L	B37	GND
A7	INTB_L	A38	GND	B7	INTC_L	B38	STOP_L
A8	INTD_L	A39	LOCK_L	B8	+5V	B39	+3.3V *
A9	PRSNT1_L	A40	PERR_L	B9	Reserved	B40	SDONE (p/u)
A10	Reserved	A41	+3.3V *	B10	+5V	B41	SBO_L (p/u)
A11	PRSNT2_L	A42	SERR_L	B11	Reserved	B42	GND
A12	GND	A43	+3.3V *	B12	GND	B43	PAR
A13	GND	A44	C/BE1_L	B13	GND	B44	AD15
A14	Reserved	A45	AD14	B14	Reserved	B45	+3.3V *
A15	GND	A46	GND	B15	RST_L	B46	AD13
A16	CLK	A47	AD12	B16	+5V	B47	AD11
A17	GND	A48	AD10	B17	GNT_L	B48	GND
A18	REQ_L	A49	GND	B18	GND	B49	AD9
A19	+5V	A50	key	B19	Reserved	B50	key
A20	AD31	A51	key	B20	AD30	B51	key
A21	AD29	A52	AD8	B21	+3.3V *	B52	C/BE0_L
A22	GND	A53	AD7	B22	AD28	B53	+3.3V *
A23	AD27	A54	+3.3V *	B23	AD26	B54	AD6
A24	AD25	A55	AD5	B24	GND	B55	AD4
A25	+3.3V *	A56	AD3	B25	AD24	B56	GND
A26	C/BE3_L	A57	GND	B26	IDSEL	B57	AD2
A27	AD23	A58	AD1	B27	+3.3V *	B58	AD0
A28	GND	A59	+5V	B28	AD22	B59	+5V
A29	AD21	A60	ACK64_L (p/u)	B29	AD20	B60	REQ64_L (p/u)
A30	AD19	A61	+5V	B30	GND	B61	+5V
A31	+3.3V *	A62	+5V	B31	AD18	B62	+5V

* 3.3V system power is not present at this pin..

NOTE: The R440LX DP Server does not provide a PCI 3.3V power connector. Only the 5V PCI signaling environment is supported, and no power is available at the 3.3V signal pins in expansion slots.

ISA Connectors

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A01	IOCHK_L	A26	SA5	B01	GND	B26	DACK2_L
A02	SD7	A27	SA4	B02	RESDRV	B27	TC
A03	SD6	A28	SA3	B03	+5V	B28	BALE
A04	SD5	A29	SA2	B04	IRQ9	B29	+5V
A05	SD4	A30	SA1	B05	-5V	B30	OSC
A06	SD3	A31	SA0	B06	DRQ2	B31	GND
A07	SD2	C01	SBHE_L	B07	-12V	D01	MEMCS16_L
A08	SD1	C02	LA23	B08	NOWS_L	D02	IOCS16_L
A09	SD0	C03	LA22	B09	+12V	D03	IRQ10
A10	IOCHRDY	C04	LA21	B10	GND	D04	IRQ11
A11	AEN	C05	LA20	B11	SMWTC_L	D05	IRQ12
A12	SA19	C06	LA19	B12	SMRDC_L	D06	IRQ15
A13	SA18	C07	LA18	B13	IOWC_L	D07	IRQ14
A14	SA17	C08	LA17	B14	IORC_L	D08	DACK0_L
A15	SA16	C09	MRDC_L	B15	DACK3_L	D09	DRQ0
A16	SA15	C10	MWTC_L	B16	DRQ3	D10	DACK5_L
A17	SA14	C11	SD8	B17	DACK1_L	D11	DRQ5
A18	SA13	C12	SD9	B18	DRQ1	D12	DACK6_L
A19	SA12	C13	SD10	B19	REFRESH_L	D13	DRQ6
A20	SA11	C14	SD11	B20	BCLK	D14	DACK7_L
A21	SA10	C15	SD12	B21	IRQ7	D15	DRQ7
A22	SA9	C16	SD13	B22	IRQ6	D16	+5V
A23	SA8	C17	SD14	B23	IRQ5	D17	MASTER16_L
A24	SA7	C18	SD15	B24	IRQ4	D18	GND
A25	SA6			B25	IRQ3		

Table 40 ISA Connector Signal Pinout

Serial Port Connectors

Table 41 Serial Port Connector Pin-out

Pin	Name	Description
1	DCD	Data Carrier Detected
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Return to Send
8	CTS	Clear to Send
9	RIA	Ring Indication Active

Serial Port B

The pinout below shows pinouts from serial port B at a board-level view. Note that the system uses a short cable to connect from the board to the serial port on the chassis and that this cable makes serial port B have the same pinout as serial port A.

Pin	Name	Pin	Name
1	DCD	2	DSR
3	RXD	4	RTS
5	TXD	6	CTS
7	DTR	8	RI
9	GND	10	key

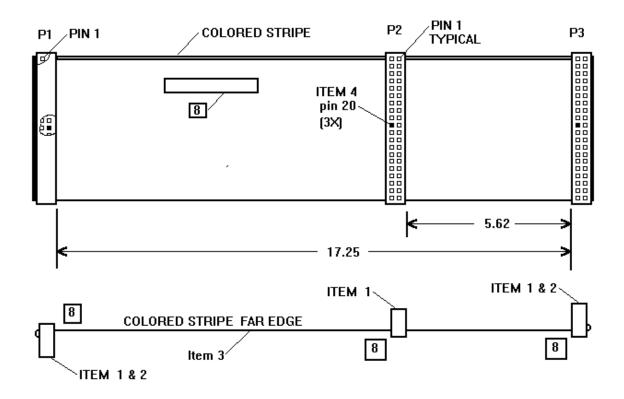
Table 42 Serial Port B

Parallel Port Connector

Pin	Name	Pin	Name
1	STROBE_L	14	AUFDXT_L
2	D0	15	ERROR_L
3	D1	16	INIT_L
4	D2	17	SLCTIN_L
5	D3	18	GND
6	D4	19	GND
7	D5	20	GND
8	D6	21	GND
9	D7	22	GND
10	ACK_L	23	GND
11	BUSY	24	GND
12	PE	25	GND
13	SLCT		

Table 43 Parallel Port Connector Pinout

Keyboard and Mouse Connectors


The keyboard and mouse connectors are mounted within a single housing. Although functionally equivalent, the mouse connector is defined as the one above the keyboard connector.

Pin	Signal	Description
7	MSEDAT	Mouse Data
8	(NC)	
9	GND	
10	FUSED_VCC	
11	MSECLK	Mouse Clock
12	(NC)	

Table 44 Mouse Connector Pinout

Table 45 Keyboard Connector Pinout

Pin	Signal	Description
1	KEYDAT	Keyboard Data
2	(NC)	
3	GND	
4	FUSED_VCC	
5	KEYCLK	Keyboard Clock
6	(NC)	

Figure 23 IDE Cable

Table 46 IDE Cable parts list

ITEM NO.	QUANTITY	DESCRIPTION
1	3 EA.	FOXCONN, SD04201,HDR,IDC,40 or Intel Engineering approved equivalent
2	2 EA.	FOXCONN ,001-009-149,STR RELF, 40 or Intel Engineering approved equivalent
3	18.0 "	FOXCONN ,014-0040-002,CBL,FLT, 40 or Intel Engineering approved equivalent
4	3 EA.	FOXCONN, 001-0101-156 key or Intel Engineering approved equivalent

Floppy Cable

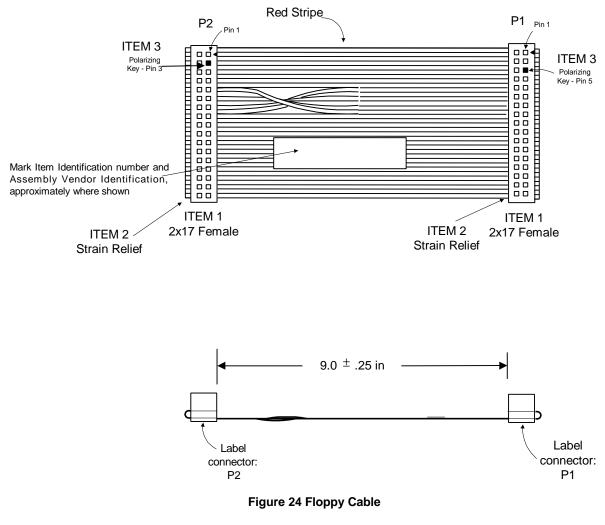


Table 47 Floppy Cable

Item No.	Qty Required	Vendor *	Material Description *
1	2	FOXCONN	SD04171, HDR, IDC, 34
2	2	FOXCONN	001-0008-149, STR RELF
3	2	FOXCONN	001-0101-156

Table 48 Wiring List

P1	P2
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	16
11	15
12	14
13	13
14	12
15	11
16	10
17	17

P1	P2
18	18
19	19
20	20
21	21
22	22
23	23
24	24
25	25
26	26
27	27
28	28
29	29
30	30
31	31
32	32
33	33
34	34

Appendix D. Customer Support

FAXBack

- Product descriptions and technical data sent to any fax machine from a touch-tone phone
- Information on End-of-Life products
- Available worldwide through direct dial

U.S. Toll Free 800-628-2283

Americas: 916-356-3105

Europe: 44-793-496646

Intel Application Support

Contact Your Local Technical Representative

The customer's number one asset is the local representative. For all technical issues, first contact your Field Application Engineer.

Hotline

A direct link to highly qualified and well trained technical personnel.

- Toll-free access to Intel support engineers for problem resolution
- Responses within 24 hours Monday-Friday
- Expert assistance geared to the special needs of OEMs and VARs

1-800-628-8686

Internet

A full service World Wide Web location with product information and more will be available at release time.

 \Rightarrow Available worldwide through:

http://www.intel.com/

ftp.intel.com

http://www.intel.com/procs/ppro/server/compdir/

- FLASH BIOS upgrade files
- Server Configuration Utility (SCU) upgrade files

Year 2000 Compliance

The R440LX DP Server Baseboard is Year 2000 compliant. For more information with regard to the Year 2000 issue, please refer to the Intel web site at http://support.intel.com/sites/support/index.htm.

Reference Documents

The following documents are available to provide further information. Please contact your Intel representative for more information.

Power Supply, 275W, 5 Output, with PFC Columbus II Chassis Technical Product Specification R440LX DP Server Product Guide Adaptec User Guide MTA Testview User's Guide

Supported O/S & Adapters

Appendix E. Configuration Techniques

Setting the Processor Speed

The process for setting the speed for the processor when configured on the R440LX DP Server baseboard is as follows:

- 1. Power on and move the clock enable jumper from the "protect" position to the "enable" position.
- 2. Press F2 to go into the BIOS setup.
- 3. Set the processor speed configuration to the speed of the processors used in configuring the system. This is on the BIOS setup screen.
- 4. Save changes and exit setup. The system will reboot.
- 5. Move the clock enable jumper back to the "protect" position.
- 6. Reboot the system either by hard or soft reset.

Appendix F. ERRATA

The following table indicates the Errata, Specification Changes, Specification Clarifications, and documentation changes which apply to the R440LX DP Server baseboard. Intel intends to fix some of the erratum in the future and to account for the other outstanding issues through documentation or specification changes as noted. This table uses the following notations:

CODES USED	CODES USED IN SUMMARY TABLE			
Doc:	Document change or update that will be implemented.			
Fix:	This erratum is intended to be fixed in a future revision of the hardware or software associated with the R440LX DP Server.			
Fixed:	This erratum has been previously fixed.			
NoFix:	There are no plans to fix this erratum.			

#	Status	Summary
1	NoFix	SCO UnixWare* 2.1.2 fails to see devices on secondary IDE bus.
2	NoFix	Trident TVGA-9000I-1* video (ISA) card adapter does not display.
3	Fixed	Novell NetWare* 4.1 SMP will not install correctly from IDE CD-ROM.
4	Fixed	Shared mouse, keyboard, & monitor switching devices not working correctly.
5	Fixed	DMI memory controller information in the BIOS is incorrect.
6	NoFix	3COM 3C590B* is not recognized by the R440LX DP Server system.
7	Fixed	NetWare 4.11 SFT-III loads but does not synchronize between both systems.
8	Fixed	8.4 GB IDE hard drive translation incorrect.
9	NoFix	SMC 9432* not supported.
10	NoFix	Adaptec ANA6944-TX* not supported.
11	Fixed	IDE CD-ROM is not detected during SCO UnixWare 2.1.1 install.
12	Fixed	NVRAM corruption after running Testview 3.44, 3.45, & 3.46.
13	Fixed	Improper error reporting from Testview 3.44, 3.45, & 3.46.
14	Fixed	Cracked retention module rail.
15	Fixed	Numlock setting in F2 Setup doesn't work.
16	Fixed	DMI processor ID incorrect.
17	Fixed	Stealth 3D 3000* fails when Windows NT* 4.0 driver initialized.
18	Fixed	3COM 3C595* NIC fails after 15-25 minutes of heavy use.
19	NoFix	Plug and Play option in BIOS F2 setup issue with Windows 95*.
20	Fix	Front Panel Connector is missing the chassis intrusion signal.
21	Fix	Processor failed or system only recognizes one processor after quick power
		cycle.
22	Fixed	MS-DOS* 6.2 format command will not work in secure mode.

#	Status	Summary
23	NoFix	UnixWare 2.1 install hang during reboots.
24	Fix	Mylex DAC960PG* hangs system during POST.
25	Fixed	Incorrect baseboard boot order.
26	Fix	Automatic system power off.
27	Fixed	Keyboards does not respond in reset.
28	Fix	Front Panel locked.
29	Fixed	FRB does not allow booting without user interaction.
30	Fix	System using non-Intel power supply fails to operate or come out of reset; HDD LED is blinking slowly.
31	Fix	Windows NT 4.0J Blue Screen.
32	Fix	MS PC 97 7.2 Unreported I/O test failure in Win95 OSR2.
33	Fix	R440LX incorrectly identifies PIO mode 3 IDE hard drives.
34	NoFix	Toshiba XM-6002B CD ROM causes pause during POST.
35	Fix	MS PC 97 7.2 PCI 7.2 (Cards) test failure in Win95 OSR2.
36	Fix	Hard Disk Drive LED is always on when SCSI BIOS is disabled in Setup.
37	Fix	LanDesk reports High CPU voltage reading.
38	Fix	Phoenix Core BIOS errata.
39	Fix	R440LX eventlog.exe utility will not clear the event log.

1. SCO UnixWare 2.1.2 fails to see devices on secondary IDE bus

- **PROBLEM:** In a configuration where there are IDE devices on more than one IDE bus, UnixWare 2.1.2 fails to see any devices on the secondary bus. However, if there is a device only on the secondary IDE, and none on the primary, then UnixWare finds them.
- **IMPLICATION:** It is not possible to have devices on more than 1 IDE bus when running SCO UnixWare 2.1.2, in effect limiting configurations to 2 IDE devices on a single bus.

WORKAROUND: To avoid issues, only use a single IDE bus with SCO UnixWare.

STATUS: Intel is working with SCO to see if a solution can be created.

2. Trident TVGA-9000I-1 video (ISA) card adapter does not display

PROBLEM: The Trident TVGA-9000I-1 ISA video card does not display anything on the monitor.

IMPLICATION: The user sees a blank screen on the monitor.

- **WORKAROUND:** The Trident TVGA-8900CL-3 and the TVGA9000I-3 video card have been tested. Both video adapters pass Intel compatibility tests for various operating systems with no display errors.
- STATUS: Trident will not fix the TVGA-9000-1 ISA video card. Users are required to upgrade to the either the TVGA-8900CL-3 or TVGA9000I-3 video adapter cards.

3. Novell NetWare 4.1 SMP will not install correctly from IDE CD-ROM

PROBLEM: Using a Hitachi CDR-8130 with HIT_IDE.SYS DOS driver (5/20/96), Novell NetWare 4.1 SMP would not install to the SCSI hard drive attached to the onboard Adaptec AIC-7880 controller when using Adaptec Family Manager driver set version 2.0.

IMPLICATION: Novell NetWare cannot be loaded onto a SCSI hard drive.

- **WORKAROUND:** Use the Adaptec 7800 Family Manager driver set version 2.10. Loading NetWare to the following devices will also work; IDE hard drive, AMI MegaRAID* or DPT334UV* add-in card adapter.
- **STATUS:** Fixed. Using the Adaptec 7800 Family Manager driver set version 2.10 that ships on the country kit CD-ROM will correct this issue.

4. Shared mouse, keyboard, & monitor switching devices not working correctly

PROBLEM: Using a ServSwitch SW722A-R3* from Black Box Corp. or a Rose Electronic (Houston, Texas) ServeView Keyboard Controlled Switch Model SVX-16U* to provide access to a shared monitor, PS/2 mouse and PS/2 keyboard. When connecting the master cable from the sharing device to the R440LX DP server system's upper keyboard/mouse port, no shared devices from the ServSwitch would operate. Any PS/2-compatible device attached to the R440LX DP server system's lower port will operate properly.

IMPLICATION: Cannot use sharing device in the upper R440LX baseboard's PS/2 keyboard/mouse port.

- **WORKAROUND:** Attaching the sharing device to the lower R440LX DP server system's lower keyboard/mouse port will operate properly. Any device (mouse/keyboard) directly connected to the upper PS/2 keyboard/mouse port with this configuration will operate properly.
- **STATUS:** Both vendor's engineering groups are confident that upgrading the firmware will correct this issue. For the Black Box ServSwitch SW722A-R3 upgrade from version u23p to version u36p or later. Contact Black Box engineering for further details.

5. DMI memory controller information in the BIOS is incorrect

PROBLEM: The DMI record 81H, sub function 05H reports the memory module information handles are 0023H, 0024H, 0025H, and 0026H.

IMPLICATION: None identified.

WORKAROUND: None identified.

STATUS: Fixed. This issue is corrected in BIOS beta 16 and later revisions.

6. 3COM 3C590B is not recognized by the R440LX DP Server system

PROBLEM: The 3COM 3C590B LAN adapter installs and executes properly, but is not recognized by Microsoft Windows NT 4.0.

IMPLICATION: Confusion of whether the 3COM card is operating properly or not.

- **WORKAROUND:** 3COM acknowledges the issue. In a DOS environment or Novell environment the drivers with the 3COM LAN adapter function properly and the operating systems recognize the LAN adapter.
- **STATUS:** 3COM is aware of the issue. Further details can be obtained from a 3COM representative or through their public web site.

7. NetWare 4.11 SFT-III loads but does not synchronize between both systems

PROBLEM: When installing NetWare 4.11 Service Pack 3 (SP3) and SFT-III capabilities onto two RC440LX DP Server systems the synchronization of the system drives failed.

IMPLICATION: Novell NetWare 4.11 SFT-III will not operate.

WORKAROUND: Service Pack 4 (SP4) must be installed after installing NetWare 4.11 and before installing SFT-III.

STATUS: Fixed. Use Service Pack 4.

8. 8.4 Gigabyte IDE hard drive translation incorrect

PROBLEM: The RC440LX BIOS may not set up the drive parameters correctly for a 8.4 gigabyte hard drive.

IMPLICATION: Some operating systems may report the wrong hard drive size and/or not be able to use the full 8.4 gigabytes.

WORKAROUND: None at this time.

STATUS: Fixed. This issue is corrected in BIOS beta 20 and later revisions.

9. SMC 9432 NIC not supported

PROBLEM: The SMC 9432 NIC has been tested by Intel engineering and multiple issues were found across all operating systems tested.

IMPLICATION: The SMC 9432 does not work in the R440LX DP Server.

WORKAROUND: None identified.

STATUS: This will not be fixed by Intel. New drivers from SMC may be released in the future which may address this issue.

10. Adaptec ANA6944-TX not supported

PROBLEM: The Adaptec ANA6944-TX NIC has been tested by Intel engineering and multiple issues were found across all operating systems tested.

IMPLICATION: The Adaptec ANA6944-TX does not work in the R440LX DP Server.

WORKAROUND: None identified.

STATUS: This will not be fixed by Intel. New drivers from Adaptec may be released in the future which may address this issue.

11. IDE CD-ROM is not detected during SCO UnixWare 2.1.1 install

PROBLEM: The IDE CD-ROM is not detected during SCO UnixWare 2.1.1 installation.

IMPLICATION: If using the IDE CD-ROM, the installation of SCO UnixWare 2.1.1 will not complete.

WORKAROUND: Use SCO UnixWare HBA version 2.1.2

STATUS: Fixed.

12. NVRAM corruption after running Testview 3.44, 3.45, & 3.46

PROBLEM: When running Testview 3.44, 3.45, & 3.46 on R440LX, NVRAM reports losing the time or NVRAM cleared when the system is rebooted.

IMPLICATION: System will have the incorrect time and date, or NVRAM will be reset to the factory default state.

WORKAROUND: For Testview 3.44, 3.45, & 3.46 the only valid pkg file that should be used is the "Dual Pentium II Server".

STATUS: Fixed in Testview 3.47.

13. Improper error reporting from Testview 3.44, 3.45, & 3.46

PROBLEM: Running Testview 3.44, 3.45, & 3.46 may result in errors that are not errors.

IMPLICATION: Running Testview 3.44, 3.45, & 3.46 improperly may report errors that do not exist.

WORKAROUND: The user should create 3 floppies and boot from them to load Testview. This forces the command line Testview /self to be run. Then the user should choose the "Dual Pentium II Server" pkg file. Once this is done, the user needs to disable three tests that will produce errors. These errors are not really errors for R440LX, they are functions that are supported by MB440LX and not R440LX. Instruction on how to disable tests can be found in the Testview.hlp file under the "test module menu" section. The proper tests to disable are the following:

16 SIO308

- 2 Plug-n-Play BIOS
- 5 Verify_ESCD

19 BMC

9 FP_NMI_Pulse

STATUS: Fixed in Testview 3.47. Please note that the proper procedure is to boot Testview off the floppies. To "insure" correct operation run Testview with the /self flag.

14. Cracked retention module rail

PROBLEM: The rail is the portion of the plastic retention module that is clipped onto the backside of the baseboard. Early units of R440LX DP Server baseboard retention module rail occasionally cracked around the metal threaded insert.

IMPLICATION: The potential for visible cracks in the rail may cause concern over viability of rail.

WORKAROUND: This is strictly cosmetic, there is no loss of functionality therefore there is no need for a workaround.

STATUS: Fixed. The rail was slightly modified to prevent cracking from occurring.

15. Numlock setting in F2 setup doesn't work

PROBLEM: Numlock setting in Keyboard Features of BIOS F2 Setup has no effect.

IMPLICATION: Numlock LED is always set.

WORKAROUND: None identified.

STATUS: Fixed. This issue is corrected in BIOS beta 17 and later revisions.

16. DMI Processor ID incorrect

- **PROBLEM:** When retrieving the processor ID information from DMI offset 0x06 it returns that the processor is a Pentium® processor not Pentium® II processor.
- **IMPLICATION:** Confusion for the customer in determining whether system is configured with a Pentium processor or Pentium II processor.

WORKAROUND: None identified.

STATUS: Fixed. This issue is corrected in BIOS beta 17 and later revisions.

17. Stealth 3D 3000 fails when Windows NT 4.0 driver initialized

PROBLEM: When the Microsoft supplied Virge/VX driver is initialized, the display disappears and cannot be restored.

IMPLICATION: The only mode that will work on this card is the standard VGA 640 X 480 \ 16 colors.

WORKAROUND: Set the card to standard VGA mode.

STATUS: Fixed. Using driver version 2.15 fixes problem.

18. 3COM 3C595 NIC fails after 15-25 minutes of heavy use

- **PROBLEM:** The 3COM 3C595 LAN adapter installs and runs on R440LX DP Server but does not pass intense "copy/compare" testing.
- **IMPLICATION:** This card may not be usable in R440LX DP Server.
- WORKAROUND: None identified.
- STATUS: Fixed. Installing driver version 1.18.00 fixes problem.

19. Plug and Play option in BIOS F2 setup issue with Windows 95

- **PROBLEM**: If the Plug and Play option in the BIOS F2 setup is enabled during the installation of Windows 95, the OS misidentifies the NIC.
- **IMPLICATION:** The NIC is not properly installed in Windows 95.
- **WORKAROUND:** The NIC must be configured manually, or leave the Plug and Play option in the BIOS disabled (default).
- **STATUS:** Intel engineering will not fix this issue as it is considered normal operation for Windows 95. The default setting for the Plug and Play option in the BIOS is disabled. Do not change the option to "enabled" before installation of Windows 95.

20. Front Panel Connector is missing the chassis intrusion signal

PROBLEM: The Fab 2.0 R440LX DP Server front panel connector is missing the chassis intrusion signal.

- **IMPLICATION:** Chassis intrusion switches will not work if connected through the front panel connector.
- **WORKAROUND:** Connect chassis intrusion switches to the R440LX DP Server baseboard chassis intrusion header (J5A1), located at the back of the board (near the NIC connector).
- STATUS: The chassis intrusion signal will be added to the R440LX DP Server front panel connector in FAB 3.0.

21. Processor failed or system only recognizes one processor after quick power cycle

- **PROBLEM:** When the power button is rapidly pushed off and on within one to two seconds, the system will not complete POST. If the system is turned off and left off for about 10 seconds, at next poweron it will complete POST recognizing only one of the processors. The HDD LED blinking slowly is a symptom of this problem.
- IMPLICATION: The system will hang on POST or one processor will appear to have failed.
- **WORKAROUND:** The system will recognize both processors again if "processor retest" is enabled in BIOS setup, and the system is rebooted.
- **STATUS:** This problem will be fixed in FAB 3.0.

22. MS-DOS 6.2 format command will not work in secure mode

- **PROBLEM:** The MS-DOS 6.2 format command does not work in secure mode if the "administrator" password is entered instead of the "user" password.
- **IMPLICATION:** When in secure mode, an error message is displayed when the MS-DOS 6.2 format command is used.

WORKAROUND: Enter the "user" password and not the "administrator" password.

STATUS: Fixed. This issue is corrected in BIOS beta 17 and later revisions.

23. UnixWare 2.1 install hangs during reboots

PROBLEM: While installing from IDE CD-ROM to IDE hard drive with SCSI hard drive as secondary drive, the reboot hangs on APIC_enableint function.

IMPLICATION: UnixWare 2.1 will not install successfully.

WORKAROUND: Disable I/O APIC in the BIOS (enabled is the default).

STATUS: Intel engineering will not fix this, as it is standard operation for UnixWare 2.1. Disable the I/ O APIC in BIOS and UnixWare 2.1 will install completely.

24. Mylex DAC960PG hangs system during POST

PROBLEM: The Mylex DAC960PG will hang the R440LX during POST when the Mylex BIOS loads.

IMPLICATION: The Mylex DAC960PG is not usable in R440LX DP Server.

WORKAROUND: None identified.

STATUS: Mylex is aware of this issue and has a new DAC960PG BIOS planned. Please contact Mylex for details.

25. Incorrect Boot Order

PROBLEM: The baseboard boot order is incorrect. Currently the boot order is as follows: Onboard IDE, Onboard SCSI, PCI Slots 1-4. The correct boot order is Onboard IDE, PCI Slot 1, PCI Slot 2, Onboard SCSI, PCI Slot 3, PCI Slot 4.

IMPLICATION: Customer will see onboard SCSI boot before all populated slots.

WORKAROUND: None identified.

STATUS: Fixed. BIOS beta 20 and later revisions provide the correct boot order.

26. Automatic system power off

PROBLEM: Sometimes following power-up, FPC reads from EEPROM during time when it is unavailable. This is only caused when an AC line drop out condition happens.

IMPLICATION: The customer will see the system automatically power off.

WORKAROUND: To clear, cycle the power switch.

STATUS: Will be fixed in the next revision of FPC code, to be included with FAB 3.0.

27. Keyboard does not respond in reset

PROBLEM: Some keyboards will not reset after power cycle and will cause the system to hang while waiting for the keyboard test to complete.

IMPLICATION: The system will pause on the keyboard failure.

WORKAROUND: To clear, cycle the power switch.

STATUS: Fixed in BIOS beta 21 and later revisions. The BIOS will now allow the system to reboot with the keyboard failure (keyboard will be inoperative). To restore proper keyboard operation, the system must be power cycled.

28. Front panel locked

- **PROBLEM:** The front panel power and reset switches do not work after an AC power loss. This is caused by the FPC being forced to handle a power loss event while it is resetting the IMB.
- **IMPLICATION:** The customer will not be able to reset the system or turn off the system by using the front panel switches.

WORKAROUND: To clear, remove power cord and wait 10 seconds before plugging back in.

STATUS: Will be fixed in the next revision of FPC code, to be included with FAB 3.0.

29. FRB does not allow booting without user interaction

PROBLEM: If a system has dual processors and one processor is removed, the processor will be marked as failed; the system will prompt the user to continue by pressing a key.

IMPLICATION: Customer will have to use a keystroke to allow system to boot and the error will be logged.

WORKAROUND: None identified.

STATUS: Fixed in BIOS beta 21 and later revisions. The BIOS will now allow the system to continue booting without user intervention.

30. System using non-Intel power supply fails to operate or come out of reset; HDD LED is blinking slowly

- **PROBLEM:** The power sequencing requirements of the R440LX DP can be violated, causing the onboard VRM for the primary processor to activate it's over-current protection circuitry, forcing the VRM output to zero volts.
- **IMPLICATION:** Customer will have to turn power off and on (via front panel switch or removing and replacing line cord) if this condition was caused by a short AC power loss. If condition is not relieved by power cycling, a different power supply will have to be used.

WORKAROUND: None identified.

STATUS: This problem will be fixed in FAB 3.0.

31. Windows NT 4.0J Blue Screen

- **PROBLEM:** When booting to WinNT 4.0J (Japanese) with Service Pack 3, a blue screen (core dump) appears 30%-40% of the time. This is due to a known defect in the operating system.
- **IMPLICATION:** Customer will observe at blue screen (core dump) when booting WinNT 4.0J/Service Pack 3 30%-40% of the time.

WORKAROUND: A supported fix is available from Microsoft.

STATUS: Microsoft has confirmed this to be a problem in Windows NT 4.0J. A supported fix is now available, but it has not been fully regression tested and should be applied only to systems experiencing this specific problem. This fix is scheduled for inclusion in WinNT 4.0J Service Pack 4, scheduled for release in February 1998. Contact Microsoft Technical Support for more information.

32. MS PC 97 7.2 Unreported I/O Test Failure in Win95 OSR2

PROBLEM: Unreported I/O test failure when running PC 97 7.2 test under Win95 OSR2.

Quote from Microsoft's Home page (http://www.microsoft.com/hwtest/faqs/FAQ_System.stm):

"Unreported I/O fails; OSR2: I/O FFA8+FFAF, ISA PORT 03A8+03AF This problem occurs if the 2nd IDE channel is disabled in BIOS to free up the interrupt for use by other devices. The problem is with the OSR2 BMIDE driver which is only claiming I/O addresses FFA0-FFA7 and should be claiming 16 I/O addresses FFA0-FFAF even though the secondary IDE channel is disabled. This test passes if both master and secondary IDE channels are enabled or both are disabled."

IMPLICATION: Customer will not be able to obtain PC 97 certification without passing this test.

WORKAROUND: The following Win95 OSR2 workaround will allow the Unreported I/O test to pass on R440LX:

- 1. From the START menu, Choose SETTINGS > CONTROL PANEL
- 2. Double Click on the System Icon
- 3. Click the Device Manager Tab

- 4. Double Click on Hard Disk Controllers
- 5. Double Click on Standard Dual PCI IDE Controller
- 6. Click the Settings Tab
- 7. For Dual IDE Channel Settings, Select "Both IDE Channels Enabled"
- 8. The system needs to reboot in order for the settings to take effect
- 9. Repeat steps 1-5 above, Click the Resources Tab, and verify that the both Input-Output Ranges FCB0-FCB7 and FCB8-FCBF are listed as used by the Standard Dual PCI IDE Controller.
- 10. Rerun the Unreported I/O test; it should now pass.
 - NOTE: This procedure may not be necessary if Win95 OSR2 was installed with IDE devices physically connected to both the primary and secondary IDE channels on the R440LX board.
 - **STATUS:** The above workaround should be used in order to pass the PC97 Unreported I/O test until the time that Microsoft's errata for this test is corrected.

33. R440LX incorrectly identifies PIO mode 3 IDE hard drives

- **PROBLEM:** In R440LX BIOS beta 20 and beta 21, auto detection of IDE hard drives assumes any drives attached are PIO mode 4. Subsequently, PIO mode 3 drives are likely not to boot, and even if they do boot, they are likely to fail during any heavy disk activity. Also, if the secondary IDE controller is set to User mode in Setup, and the user changes either the LBA or PIO parameters, the new settings will not save. Therefore, the secondary controller has no work-around for PIO mode 3, however, the primary controller under the User mode will save and properly operate the drive.
- **IMPLICATION:** PIO mode 3 drives are likely not to boot, and even if they do boot, they are likely to fail during any heavy disk activity.

WORKAROUND: Use only the primary IDE controller under the User mode.

STATUS: Will be fixed in BIOS Release 3.

34. Toshiba XM-6002B CD ROM drive causes pause during POST

PROBLEM: The Toshiba XM-6002B internal IDE CD ROM drive causes an approximately 70 second pause during POST after identifying the device. The CD ROM exhibits otherwise normal operation.

IMPLICATION: POST will pause for approximately 70 seconds after identifying this CD ROM.

WORKAROUND: None.

STATUS: This CD ROM was originally on the Supported Hardware and OS document for R440LX. It has now been removed from this document.

35. MS PC 97 7.2 PCI 2.1 (Cards) Test Failure in Win95 OSR2

- PROBLEM: PCI 2.1 (cards) test failure when running PC 97 7.2 under Win95 OSR2. The only subtest that fails is the USB Interrupt Line Register test. USB is not required in a Server system.
- IMPLICATION: Although this test fails, PC97 requirements for Server Class Machines are WAIVED for systems prior to Jan. 1, 1998 regarding USB testing.
- WORKAROUND: CUSTOMERS NEED to specify when sending system into WHQL that the system is using the Intel R440LX baseboard set.
- STATUS: Bottom line: Appendix A of Microsoft's PC97 Hardware Systems Self Test document states: "PC97 requirements for Server Class Machines are WAIVED for systems prior to Jan. 1, 1998 regarding USB testing." We are waiting for written confirmation expected ww10 from Microsoft. We have verbal confirmation at this time for R440LX products. CUSTOMERS NEED to specify when sending system into WHQL that the system is using the Intel R440LX baseboard set. Microsoft as taken the AR to update the FAQ page to specifically address this issue.

Below is Intel's request to Microsoft for reference:

"During PCI cards 2.1 under OSR2, the test fails trying to write to register 3Ch. This register has default BIOS values of FF, and the test is trying to write a value of 00 and fails. It is our understanding of the test is that when it reads a value of FF, it should skip the device. Since the BIOS has this register as a read-only register, it fails. (See log file failfail.log) When the BIOS is changed at register 3Ch to 00 and remain that way, the log file doesn't state that it failed, therefore a pass(?) would be the next logical conclusion, but the summary still reports it as a failure(see passfail.log). (Programming the PIIX4 USB Interrupt Line Register 3Ch with 00 causes a keyboard conflict when Ctrl-Alt-Del is pressed in OSR2 or DOS 6.22.) According to the meeting today, Appendix A states that USB is not necessary for PC97 to pass, so I would like to submit that the following Intel baseboards be exempt from that "failure:" R440LX, M440LX, B440FX, and R440FX."