
IA-32 Intel® Architecture
Software Developer’s Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The IA-32 Intel Architecture Software Developer's Manual consists
of five volumes: Basic Architecture, Order Number 253665; Instruction
Set Reference A-M, Order Number 253666; Instruction Set Reference N-Z,
Order Number 253667; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number
253669. Refer to all five volumes when evaluating your design needs.

Order Number: 253667-020US
June 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RE-
LATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FIT-
NESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium III processors) may contain design defects or errors
known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/techtrends/technologies/hyperthreading.htm for more in-
formation including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary de-
pending on hardware and software configurations and may require a BIOS update. Software applications may not be com-
patible with all operating systems. Please check with your application vendor.

Intel® Extended Memory 64 Technology (Intel® EM64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

http://www.intel.com/techtrends/technologies/hyperthreading.htm
http://www.intel.com

4

Instruction Set
Reference, N-Z

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-Z)
Chapter 4 continues the alphabetical discussion of IA-32 instructions (N-Z). See also: Chapter 3,
“Instruction Set Reference, A-M,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A.
Vol. 2B 4-1

INSTRUCTION SET REFERENCE, N-Z
NEG—Two's Complement Negation

Description
Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
IF DEST = 0

THEN CF ← 0;
ELSE CF ← 1;

FI;
DEST ← [– (DEST)]

Flags Affected
The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and
PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /3 NEG r/m8 Valid Valid Two's complement negate r/m8.
REX + F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.
F7 /3 NEG r/m16 Valid Valid Two's complement negate r/m16.
F7 /3 NEG r/m32 Valid Valid Two's complement negate r/m32.
REX.W + F7 /3 NEG r/m64 Valid N.E. Two's complement negate r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-2 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.
Vol. 2B 4-3NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z
NOP—No Operation

Description
This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up space
in the instruction stream but does not impact machine context, except for the EIP register.

The multi-byte form of NOP is available on processors with model encoding:

• CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not issue a
memory operation. The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

The multi-byte NOP instruction performs no operation on supported processors and generates
undefined opcode exception on processors that do not support the multi-byte NOP instruction.

The memory operand form of the instruction allows software to create a byte sequence of “no
operation” as one instruction. For situations where multiple-byte NOPs are needed, the recom-
mended operations (32-bit mode and 64-bit mode) are:

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

90 NOP Valid Valid One byte no-operation instruction.
0F 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.
0F 1F /0 NOP r/m32 Valid Valid Multi-byte no-operation instruction.

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence
2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H
4-4 Vol. 2B NOP—No Operation

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Exceptions (All Operating Modes)
None.
Vol. 2B 4-5NOP—No Operation

INSTRUCTION SET REFERENCE, N-Z
NOT—One's Complement Negation

Description
Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination
operand and stores the result in the destination operand location. The destination operand can be
a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST ← NOT DEST;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F6 /2 NOT r/m8 Valid Valid Reverse each bit of r/m8.
REX + F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.
F7 /2 NOT r/m16 Valid Valid Reverse each bit of r/m16.
F7 /2 NOT r/m32 Valid Valid Reverse each bit of r/m32.
REX.W + F7 /2 NOT r/m64 Valid N.E. Reverse each bit of r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-6 Vol. 2B NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.
Vol. 2B 4-7NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, N-Z
OR—Logical Inclusive OR

Description
Performs a bitwise inclusive OR operation between the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is set to 0 if both corresponding bits of the first and second
operands are 0; otherwise, each bit is set to 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0C ib OR AL, imm8 Valid Valid AL OR imm8.
0D iw OR AX, imm16 Valid Valid AX OR imm16.
0D id OR EAX, imm32 Valid Valid EAX OR imm32.
REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-

extended).
80 /1 ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.
REX + 80 /1 ib OR r/m8*, imm8 Valid N.E. r/m8 OR imm8.
81 /1 iw OR r/m16, imm16 Valid Valid r/m16 OR imm16.
81 /1 id OR r/m32, imm32 Valid Valid r/m32 OR imm32.
REX.W + 81 /1 id OR r/m64, imm32 Valid N.E. r/m64 OR imm32 (sign-

extended).
83 /1 ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-

extended).
83 /1 ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-

extended).
REX.W + 83 /1 ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-

extended).
08 /r OR r/m8, r8 Valid Valid r/m8 OR r8.
REX + 08 /r OR r/m8*, r8* Valid N.E. r/m8 OR r8.
09 /r OR r/m16, r16 Valid Valid r/m16 OR r16.
09 /r OR r/m32, r32 Valid Valid r/m32 OR r32.
REX.W + 09 /r OR r/m64, r64 Valid N.E. r/m64 OR r64.
0A /r OR r8, r/m8 Valid Valid r8 OR r/m8.
REX + 0A /r OR r8*, r/m8* Valid N.E. r8 OR r/m8.
0B /r OR r16, r/m16 Valid Valid r16 OR r/m16.
0B /r OR r32, r/m32 Valid Valid r32 OR r/m32.
REX.W + 0B /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-8 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z
This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST ← DEST OR SRC;

Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2B 4-9OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-10 Vol. 2B OR—Logical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z
ORPD—Bitwise Logical OR of Double-Precision Floating-Point
Values

Description
Performs a bitwise logical OR of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPD __m128d _mm_or_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 56 /r ORPD xmm1, xmm2/m128 Valid Valid Bitwise OR of xmm2/m128
and xmm1.
Vol. 2B 4-11ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-12 Vol. 2B ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
ORPS—Bitwise Logical OR of Single-Precision Floating-Point
Values

Description
Performs a bitwise logical OR of the four packed single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS __m128 _mm_or_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmm1.
Vol. 2B 4-13ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
4-14 Vol. 2B ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
OUT—Output to Port

Description
Copies the value from the second operand (source operand) to the I/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows I/O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows I/O ports
from 0 to 65,535 to be accessed.

The size of the I/O port being accessed is determined by the opcode for an 8-bit I/O port or by
the operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the machine code level, I/O instructions are shorter when accessing 8-bit I/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. See Chapter 13, “Input/Output,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

E6 ib OUT imm8, AL Valid Valid Output byte in AL to I/O port
address imm8.

E7 ib OUT imm8, AX Valid Valid Output word in AX to I/O port
address imm8.

E7 ib OUT imm8, EAX Valid Valid Output doubleword in EAX to I/O
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/O port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to I/O
port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2B 4-15OUT—Output to Port

INSTRUCTION SET REFERENCE, N-Z
IA-32 Architecture Compatibility
After executing an OUT instruction, the Pentium processor insures that the EWBE# pin has been
sampled active before it begins to execute the next instruction. (Note that the instruction can be
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled
active.) Only the Pentium processor family has the EWBE# pin; the other IA-32 processors do
not.

Operation
IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)
#GP(0);

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Writes to selected I/O port *)

FI;
ELSE (Real Mode or Protected Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Writes to selected I/O port *)
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.
4-16 Vol. 2B OUT—Output to Port

INSTRUCTION SET REFERENCE, N-Z
OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

Description
Copies data from the source operand (second operand) to the I/O port specified with the desti-
nation operand (first operand). The source operand is a memory location, the address of which
is read from either the DS:SI, DS:ESI or the RSI registers (depending on the address-size
attribute of the instruction, 16, 32 or 64, respectively). (The DS segment may be overridden with
a segment override prefix.) The destination operand is an I/O port address (from 0 to 65,535)
that is read from the DX register. The size of the I/O port being accessed (that is, the size of the
source and destination operands) is determined by the opcode for an 8-bit I/O port or by the
operand-size attribute of the instruction for a 16- or 32-bit I/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the OUTS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand should be a symbol that indicates the size of the I/O port and the source address,
and the destination operand must be DX. This explicit-operands form is provided to allow docu-
mentation; however, note that the documentation provided by this form can be misleading. That
is, the source operand symbol must specify the correct type (size) of the operand (byte, word,
or doubleword), but it does not have to specify the correct location. The location is always spec-
ified by the DS:(E)SI or RSI registers, which must be loaded correctly before the OUTS instruc-
tion is executed.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

6E OUTS DX, m8 Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTS DX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTS DX, m32 Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6E OUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTSD Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

NOTES:
* See IA-32 Architecture Compatibility section below.
** In 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit mode,

only 32-bit (ESI) and 16-bit (SI) address sizes are supported.
Vol. 2B 4-17OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z
The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
OUTS instructions. Here also DS:(E)SI is assumed to be the source operand and DX is assumed
to be the destination operand. The size of the I/O port is specified with the choice of mnemonic:
OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the I/O port, the
SI/ESI/RSI register is incremented or decremented automatically according to the setting of the
DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incremented; if the DF
flag is 1, the SI/ESI/RSI register is decremented.) The SI/ESI/RSI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, and by 4 for doubleword oper-
ations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP
prefix. This instruction is only useful for accessing I/O ports located in the processor’s I/O
address space. See Chapter 13, “Input/Output,” in the IA-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 1, for more information on accessing I/O ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by the use of
REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit address is specified using
RSI by default. 32-bit address using ESI is support using the prefix 67H, but 16-bit address is
not supported in 64-bit mode.

IA-32 Architecture Compatibility
After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor
insures that the EWBE# pin has been sampled active before it begins to execute the next instruc-
tion. (Note that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the
EWBE# pin; the other IA-32 processors do not. For the Pentium 4, Intel® Xeon®, and P6
processor family, upon execution of an OUTS, OUTSB, OUTSW, or OUTSD instruction, the
processor will not execute the next instruction until the data phase of the transaction is complete.
4-18 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z
Operation
IF ((PE = 1) and ((CPL > IOPL) or (VM = 1)))

THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)

THEN (* I/O operation is not allowed *)
#GP(0);

ELSE (* I/O operation is allowed *)
DEST ← SRC; (* Writes to I/O port *)

FI;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL ≤ IOPL *)

DEST ← SRC; (* Writes to I/O port *)
FI;

Byte transfer:
IF 64-bit mode

Then
IF 64-Bit Adress Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 1;
ELSE RSI ← RSI or – 1;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 1;
ELSE ESI ← ESI – 1;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 1;
ELSE (E)SI ← (E)SI – 1;

FI;
FI;

Word transfer:
IF 64-bit mode

Then
IF 64-Bit Adress Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 2;
ELSE RSI ← RSI or – 2;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 2;
ELSE ESI ← ESI – 2;
Vol. 2B 4-19OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z
FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 2;
ELSE (E)SI ← (E)SI – 2;

FI;
FI;

Doubleword transfer:
IF 64-bit mode

Then
IF 64-Bit Adress Size

THEN
IF DF = 0

THEN RSI ← RSI RSI + 4;
ELSE RSI ← RSI or – 4;

FI;
ELSE (* 32-Bit Address Size *)

IF DF = 0
THEN ESI ← ESI + 4;
ELSE ESI ← ESI – 4;

FI;
FI;

ELSE
IF DF = 0

THEN (E)SI ← (E)SI + 4;
ELSE (E)SI ← (E)SI – 4;

FI;
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)

and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If a memory operand effective address is outside the limit of the CS, DS,
ES, FS, or GS segment.

If the segment register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-20 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed

is 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the I/O port
being accessed is 1.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-21OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z
PACKSSWB/PACKSSDW—Pack with Signed Saturation

Description
Converts packed signed word integers into packed signed byte integers (PACKSSWB) or
converts packed signed doubleword integers into packed signed word integers (PACKSSDW),
using saturation to handle overflow conditions. See Figure 4-1 for an example of the packing
operation.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 63 /r PACKSSWB mm1,
mm2/m64

Valid Valid Converts 4 packed signed word
integers from mm1 and from
mm2/m64 into 8 packed signed byte
integers in mm1 using signed
saturation.

66 0F 63 /r PACKSSWB xmm1,
xmm2/m128

Valid Valid Converts 8 packed signed word
integers from xmm1 and from
xxm2/m128 into 16 packed signed
byte integers in xxm1 using signed
saturation.

0F 6B /r PACKSSDW mm1,
mm2/m64

Valid Valid Converts 2 packed signed
doubleword integers from mm1 and
from mm2/m64 into 4 packed signed
word integers in mm1 using signed
saturation.

66 0F 6B /r PACKSSDW xmm1,
xmm2/m128

Valid Valid Converts 4 packed signed
doubleword integers from xmm1 and
from xxm2/m128 into 8 packed
signed word integers in xxm1 using
signed saturation.

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

D C

64-Bit SRC

64-Bit DEST

D’ C’ B’ A’

64-Bit DEST

B A
4-22 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z
The PACKSSWB instruction converts 4 or 8 signed word integers from the destination operand
(first operand) and 4 or 8 signed word integers from the source operand (second operand) into
8 or 16 signed byte integers and stores the result in the destination operand. If a signed word
integer value is beyond the range of a signed byte integer (that is, greater than 7FH for a positive
integer or greater than 80H for a negative integer), the saturated signed byte integer value of 7FH
or 80H, respectively, is stored in the destination.
The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination operand
(first operand) and 2 or 4 signed doublewords from the source operand (second operand) into 4
or 8 signed words in the destination operand (see Figure 4-1). If a signed doubleword integer
value is beyond the range of a signed word (that is, greater than 7FFFH for a positive integer or
greater than 8000H for a negative integer), the saturated signed word integer value of 7FFFH or
8000H, respectively, is stored into the destination.
The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit operands.
When operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit memory
location. When operating on 128-bit operands, the destination operand must be an XMM
register and the source operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PACKSSWB instruction with 64-bit operands:

DEST[7:0] ← SaturateSignedWordToSignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToSignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] ← SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] ← SaturateSignedDoublewordToSignedWord DEST[63:32];
DEST[47:32] ← SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] ← SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWB instruction with 128-bit operands:
DEST[7:0] ← SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] ← SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToSignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToSignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToSignedByte (DEST[127:112]);
Vol. 2B 4-23PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z
DEST[71:64] ← SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] ← SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] ← SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] ← SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] ← SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] ← SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] ← SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] ← SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] ← SaturateSignedDwordToSignedWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents
PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2)

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-24 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-25PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z
PACKUSWB—Pack with Unsigned Saturation

Description
Converts 4 or 8 signed word integers from the destination operand (first operand) and 4 or 8
signed word integers from the source operand (second operand) into 8 or 16 unsigned byte inte-
gers and stores the result in the destination operand. (See Figure 4-1 for an example of the
packing operation.) If a signed word integer value is beyond the range of an unsigned byte
integer (that is, greater than FFH or less than 00H), the saturated unsigned byte integer value of
FFH or 00H, respectively, is stored in the destination.
The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When operating on
64-bit operands, the destination operand must be an MMX technology register and the source
operand can be either an MMX technology register or a 64-bit memory location. When oper-
ating on 128-bit operands, the destination operand must be an XMM register and the source
operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PACKUSWB instruction with 64-bit operands:

DEST[7:0] ← SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] ← SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] ← SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] ← SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] ← SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] ← SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] ← SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] ← SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB instruction with 128-bit operands:
DEST[7:0] ← SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] ← SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] ← SaturateSignedWordToUnsignedByte (DEST[47:32]);

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 67 /r PACKUSWB mm,
mm/m64

Valid Valid Converts 4 signed word integers
from mm and 4 signed word integers
from mm/m64 into 8 unsigned byte
integers in mm using unsigned
saturation.

66 0F 67 /r PACKUSWB xmm1,
xmm2/m128

Valid Valid Converts 8 signed word integers
from xmm1 and 8 signed word
integers from xmm2/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.
4-26 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
DEST[31:24] ← SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] ← SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] ← SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] ← SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] ← SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] ← SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] ← SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] ← SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] ← SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] ← SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] ← SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] ← SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] ← SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-27PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-28 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-29PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
PADDB/PADDW/PADDD—Add Packed Integers

Description
Performs an SIMD add of the packed integers from the source operand (second operand) and
the destination operand (first operand), and stores the packed integer results in the destination
operand. See Figure 9-4 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD operation. Overflow is handled with wraparound, as
described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too large to be
represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to
the destination operand (that is, the carry is ignored).
The PADDW instruction adds packed word integers. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written
to the destination operand.
The PADDD instruction adds packed doubleword integers. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits
are written to the destination operand.
Note that the PADDB, PADDW, and PADDD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values operated on.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F FC /r PADDB mm,
mm/m64

Valid Valid Add packed byte integers from mm/m64
and mm.

66 0F FC /r PADDB xmm1,
xmm2/m128

Valid Valid Add packed byte integers from
xmm2/m128 and xmm1.

0F FD /r PADDW mm,
mm/m64

Valid Valid Add packed word integers from
mm/m64 and mm.

66 0F FD /r PADDW xmm1,
xmm2/m128

Valid Valid Add packed word integers from
xmm2/m128 and xmm1.

0F FE /r PADDD mm,
mm/m64

Valid Valid Add packed doubleword integers from
mm/m64 and mm.

66 0F FE /r PADDD xmm1,
xmm2/m128

Valid Valid Add packed doubleword integers from
xmm2/m128 and xmm1.
4-30 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PADDB instruction with 64-bit operands:

DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST[7:0] ← DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] ← DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] ← DEST[31:0] + SRC[31:0];
DEST[63:32] ← DEST[63:32] + SRC[63:32];

PADDD instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] ← DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents
PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2)

PADDB __m128i_mm_add_epi8 (__m128ia,__m128ib)

PADDW __m64 _mm_addw_pi16(__m64 m1, __m64 m2)

PADDW __m128i _mm_add_epi16 (__m128i a, __m128i b)

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2)

PADDD __m128i _mm_add_epi32 (__m128i a, __m128i b)

Flags Affected
None.
Vol. 2B 4-31PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.
4-32 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-33PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
PADDQ—Add Packed Quadword Integers

Description
Adds the first operand (destination operand) to the second operand (source operand) and stores
the result in the destination operand. The source operand can be a quadword integer stored in an
MMX technology register or a 64-bit memory location, or it can be two packed quadword inte-
gers stored in an XMM register or an 128-bit memory location. The destination operand can be
a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD add is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values operated on.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PADDQ instruction with 64-Bit operands:

DEST[63:0] ← DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[63:0] + SRC[63:0];
DEST[127:64] ← DEST[127:64] + SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents
PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)

PADDQ __m128i _mm_add_epi64 (__m128i a, __m128i b)

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D4 /r PADDQ mm1,
mm2/m64

Valid Valid Add quadword integer
mm2/m64 to mm1.

66 0F D4 /r PADDQ xmm1,
xmm2/m128

Valid Valid Add packed quadword integers
xmm2/m128 to xmm1.
4-34 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.
Vol. 2B 4-35PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-36 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

Description
Performs an SIMD add of the packed signed integers from the source operand (second operand)
and the destination operand (first operand), and stores the packed integer results in the destina-
tion operand. See Figure 9-4 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD operation. Overflow is handled with signed saturation,
as described in the following paragraphs.
These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.
The PADDSB instruction adds packed signed byte integers. When an individual byte result is
beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.
The PADDSW instruction adds packed signed word integers. When an individual word result is
beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the
saturated value of 7FFFH or 8000H, respectively, is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F EC /r PADDSB mm,
mm/m64

Valid Valid Add packed signed byte integers
from mm/m64 and mm and
saturate the results.

66 0F EC /r PADDSB xmm1,
xmm2/m128

Valid Valid Add packed signed byte integers
from xmm2/m128 and xmm1
saturate the results.

0F ED /r PADDSW mm,
mm/m64

Valid Valid Add packed signed word integers
from mm/m64 and mm and
saturate the results.

66 0F ED /r PADDSW xmm1,
xmm2/m128

Valid Valid Add packed signed word integers
from xmm2/m128 and xmm1 and
saturate the results.
Vol. 2B 4-37PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
Operation
PADDSB instruction with 64-bit operands:

DEST[7:0] ← SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] ←SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

PADDSW instruction with 64-bit operands
DEST[15:0] ← SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)

PADDSB __m128i _mm_adds_epi8 (__m128i a, __m128i b)

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2)

PADDSW __m128i _mm_adds_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.
4-38 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2B 4-39PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-40 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
PADDUSB/PADDUSW—Add Packed Unsigned Integers with
Unsigned Saturation

Description
Performs an SIMD add of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer results in the
destination operand. See Figure 9-4 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled with unsigned
saturation, as described in the following paragraphs.
These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.
The PADDUSB instruction adds packed unsigned byte integers. When an individual byte result
is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value
of FFH is written to the destination operand.
The PADDUSW instruction adds packed unsigned word integers. When an individual word
result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the satu-
rated value of FFFFH is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F DC /r PADDUSB mm,
mm/m64

Valid Valid Add packed unsigned byte integers
from mm/m64 and mm and saturate
the results.

66 0F DC /r PADDUSB xmm1,
xmm2/m128

Valid Valid Add packed unsigned byte integers
from xmm2/m128 and xmm1
saturate the results.

0F DD /r PADDUSW mm,
mm/m64

Valid Valid Add packed unsigned word integers
from mm/m64 and mm and saturate
the results.

66 0F DD /r PADDUSW xmm1,
xmm2/m128

Valid Valid Add packed unsigned word integers
from xmm2/m128 to xmm1 and
saturate the results.
Vol. 2B 4-41PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z
Operation
PADDUSB instruction with 64-bit operands:

DEST[7:0] ← SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW instruction with 64-bit operands:
DEST[15:0] ← SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2)

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2)

PADDUSB __m128i _mm_adds_epu8 (__m128i a, __m128i b)

PADDUSW __m128i _mm_adds_epu16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
4-42 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
Vol. 2B 4-43PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-44 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z
PAND—Logical AND

Description
Performs a bitwise logical AND operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if the corresponding bits of the first
and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST ← (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)

PAND __m128i _mm_and_si128 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F DB /r PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.

66 0F DB /r PAND xmm1, xmm2/m128 Valid Valid Bitwise AND of xmm2/m128
and xmm1.
Vol. 2B 4-45PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-46 Vol. 2B PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-47PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z
PANDN—Logical AND NOT

Description
Performs a bitwise logical NOT of the destination operand (first operand), then performs a
bitwise logical AND of the source operand (second operand) and the inverted destination
operand. The result is stored in the destination operand. The source operand can be an MMX
technology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an XMM
register. Each bit of the result is set to 1 if the corresponding bit in the first operand is 0 and the
corresponding bit in the second operand is 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST ← ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PANDN __m64 _mm_andnot_si64 (__m64 m1, __m64 m2)

PANDN _m128i _mm_andnot_si128 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F DF /r PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.

66 0F DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmm1.
4-48 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z
#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
Vol. 2B 4-49PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-50 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z
PAUSE—Spin Loop Hint

Description
Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a Pentium 4
or Intel Xeon processor suffers a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to avoid the
memory order violation in most situations, which greatly improves processor performance. For
this reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a
Pentium 4 processor while executing a spin loop. The Pentium 4 processor can execute a spin-
wait loop extremely quickly, causing the processor to consume a lot of power while it waits
for the resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with
all IA-32 processors. In earlier IA-32 processors, the PAUSE instruction operates like a NOP
instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE instruction as a
pre-defined delay. The delay is finite and can be zero for some processors. This instruction does
not change the architectural state of the processor (that is, it performs essentially a delaying
no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.
Vol. 2B 4-51PAUSE—Spin Loop Hint

INSTRUCTION SET REFERENCE, N-Z
PAVGB/PAVGW—Average Packed Integers

Description
Performs an SIMD average of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the results in the destination
operand. For each corresponding pair of data elements in the first and second operands, the
elements are added together, a 1 is added to the temporary sum, and that result is shifted right
one bit position. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates
on packed unsigned words.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PAVGB instruction with 64-bit operands:

SRC[7:0) ← (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
SRC[63:56) ← (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 64-bit operands:
SRC[15:0) ← (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
SRC[63:48) ← (SRC[63:48) + DEST[63:48) + 1) >> 1;

PAVGB instruction with 128-bit operands:
SRC[7:0) ← (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
SRC[63:56) ← (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 128-bit operands:

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E0 /r PAVGB mm1,
mm2/m64

Valid Valid Average packed unsigned byte integers
from mm2/m64 and mm1 with rounding.

66 0F E0, /r PAVGB xmm1,
xmm2/m128

Valid Valid Average packed unsigned byte integers
from xmm2/m128 and xmm1 with
rounding.

0F E3 /r PAVGW mm1,
mm2/m64

Valid Valid Average packed unsigned word integers
from mm2/m64 and mm1 with rounding.

66 0F E3 /r PAVGW xmm1,
xmm2/m128

Valid Valid Average packed unsigned word integers
from xmm2/m128 and xmm1 with
rounding.
4-52 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z
SRC[15:0) ← (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
SRC[127:48) ← (SRC[127:112) + DEST[127:112) + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent
PAVGB __m64_mm_avg_pu8 (__m64 a, __m64 b)

PAVGW __m64_mm_avg_pu16 (__m64 a, __m64 b)

PAVGB __m128i _mm_avg_epu8 (__m128i a, __m128i b)

PAVGW __m128i _mm_avg_epu16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.
Vol. 2B 4-53PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-54 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for
Equal

Description
Performs an SIMD compare for equality of the packed bytes, words, or doublewords in the desti-
nation operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination operand is set to all 1s;
otherwise, it is set to all 0s. The source operand can be an MMX technology register or a 64-bit
memory location, or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register.
The PCMPEQB instruction compares the corresponding bytes in the destination and source
operands; the PCMPEQW instruction compares the corresponding words in the destination and
source operands; and the PCMPEQD instruction compares the corresponding doublewords in
the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PCMPEQB instruction with 64-bit operands:

IF DEST[7:0] = SRC[7:0]
THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 74 /r PCMPEQB mm,
mm/m64

Valid Valid Compare packed bytes in
mm/m64 and mm for equality.

66 0F 74 /r PCMPEQB xmm1,
xmm2/m128

Valid Valid Compare packed bytes in
xmm2/m128 and xmm1 for
equality.

0F 75 /r PCMPEQW mm,
mm/m64

Valid Valid Compare packed words in
mm/m64 and mm for equality.

66 0F 75 /r PCMPEQW xmm1,
xmm2/m128

Valid Valid Compare packed words in
xmm2/m128 and xmm1 for
equality.

0F 76 /r PCMPEQD mm,
mm/m64

Valid Valid Compare packed doublewords
in mm/m64 and mm for equality.

66 0F 76 /r PCMPEQD xmm1,
xmm2/m128

Valid Valid Compare packed doublewords
in xmm2/m128 and xmm1 for
equality.
Vol. 2B 4-55PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z
PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[63:32] = SRC[63:32]

THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

Intel C/C++ Compiler Intrinsic Equivalents
PCMPEQB __m64 _mm_cmpeq_pi8 (__m64 m1, __m64 m2)

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2)

PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 m1, __m64 m2)
4-56 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z
PCMPEQB __m128i _mm_cmpeq_epi8 (__m128i a, __m128i b)

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i a, __m128i b)

PCMPEQD __m128i _mm_cmpeq_epi32 (__m128i a, __m128i b)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
Vol. 2B 4-57PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-58 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed
Integers for Greater Than

Description
Performs an SIMD signed compare for the greater value of the packed byte, word, or double-
word integers in the destination operand (first operand) and the source operand (second
operand). If a data element in the destination operand is greater than the corresponding date
element in the source operand, the corresponding data element in the destination operand is set
to all 1s; otherwise, it is set to all 0s. The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location. The
destination operand can be an MMX technology register or an XMM register.
The PCMPGTB instruction compares the corresponding signed byte integers in the destination
and source operands; the PCMPGTW instruction compares the corresponding signed word inte-
gers in the destination and source operands; and the PCMPGTD instruction compares the corre-
sponding signed doubleword integers in the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 64 /r PCMPGTB mm,
mm/m64

Valid Valid Compare packed signed byte
integers in mm and mm/m64 for
greater than.

66 0F 64 /r PCMPGTB xmm1,
xmm2/m128

Valid Valid Compare packed signed byte
integers in xmm1 and
xmm2/m128 for greater than.

0F 65 /r PCMPGTW mm,
mm/m64

Valid Valid Compare packed signed word
integers in mm and mm/m64 for
greater than.

66 0F 65 /r PCMPGTW xmm1,
xmm2/m128

Valid Valid Compare packed signed word
integers in xmm1 and
xmm2/m128 for greater than.

0F 66 /r PCMPGTD mm,
mm/m64

Valid Valid Compare packed signed
doubleword integers in mm and
mm/m64 for greater than.

66 0F 66 /r PCMPGTD xmm1,
xmm2/m128

Valid Valid Compare packed signed
doubleword integers in xmm1 and
xmm2/m128 for greater than.
Vol. 2B 4-59PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z
Operation
PCMPGTB instruction with 64-bit operands:

IF DEST[7:0] > SRC[7:0]
THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]

THEN DEST[63:56] ← FFH;
ELSE DEST[63:56] ← 0; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]

THEN DEST[63:48] ← FFFFH;
ELSE DEST[63:48] ← 0; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
4-60 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] ← FFFFFFFFH;
ELSE DEST[63:32] ← 0; FI;

Intel C/C++ Compiler Intrinsic Equivalents
PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2)

PCMPGTW __m64 _mm_pcmpgt_pi16 (__m64 m1, __m64 m2)

DCMPGTD __m64 _mm_pcmpgt_pi32 (__m64 m1, __m64 m2)

PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i a, __m128i b

PCMPGTW __m128i _mm_cmpgt_epi16 (__m128i a, __m128i b

DCMPGTD __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-61PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-62 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-63PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z
PEXTRW—Extract Word

Description
Copies the word in the source operand (second operand) specified by the count operand (third
operand) to the destination operand (first operand). The source operand can be an MMX tech-
nology register or an XMM register. The destination operand is the low word of a general-
purpose register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify the loca-
tion; for an XMM register, the 3 least-significant bits specify the location. The high word of the
destination operand is cleared (set to all 0s).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64-bit general
purpose registers.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C5 /r ib PEXTRW r32,
mm, imm8

Valid Valid Extract the word specified by
imm8 from mm and move it to
r32, bits 15-0. Zero-extend the
result.

REX.W + 0F C5 /r ib PEXTRW r64,
mm, imm8

Valid N.E. Extract the word specified by
imm8 from mm and move it to
r64, bits 15-0. Zero-extend the
result.

66 0F C5 /r ib PEXTRW r32,
xmm, imm8

Valid Valid Extract the word specified by
imm8 from xmm and move it to
r32, bits 15-0. Zero-extend the
result.

REX.W + 66 0F C5
/r ib

PEXTRW r64,
xmm, imm8

Valid N.E. Extract the word specified by
imm8 from xmm and move it to
r64, bits 15-0. Zero-extend the
result.
4-64 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z
Operation
IF (64-Bit Mode and REX.W used and 64-bit register selected)
THEN

FOR (PEXTRW instruction with 64-bit source operand)
{ SEL ← COUNT AND 3H;

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
 { SEL ← COUNT AND 7H;

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r64[15:0] ← TEMP[15:0];
r64[63:16] ← ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL ← COUNT AND 3H;
TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)
{ SEL ← COUNT AND 7H;

TEMP ← (SRC >> (SEL ∗ 16)) AND FFFFH;
r32[15:0] ← TEMP[15:0];
r32[31:16] ← ZERO_FILL; };

FI;

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRW int_mm_extract_pi16 (__m64 a, int n)

PEXTRW int _mm_extract_epi16 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment
limit.
Vol. 2B 4-65PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-66 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z
PINSRW—Insert Word

Description
Copies a word from the source operand (second operand) and inserts it in the destination
operand (first operand) at the location specified with the count operand (third operand). (The
other words in the destination register are left untouched.) The source operand can be a general-
purpose register or a 16-bit memory location. (When the source operand is a general-purpose
register, the low word of the register is copied.) The destination operand can be an MMX tech-
nology register or an XMM register. The count operand is an 8-bit immediate. When specifying
a word location in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general
purpose registers.

Operation
PINSRW instruction with 64-bit source operand:

SEL ← COUNT AND 3H;
CASE (Determine word position) OF

SEL ← 0: MASK ← 000000000000FFFFH;
SEL ← 1: MASK ← 00000000FFFF0000H;
SEL ← 2: MASK ← 0000FFFF00000000H;
SEL ← 3: MASK ← FFFF000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL ← COUNT AND 7H;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C4 /r ib PINSRW mm,
r32/m16, imm8

Valid Valid Insert the low word from
r32 or from m16 into mm at
the word position specified
by imm8

REX.W + 0F C4 /r ib PINSRW mm,
r64/m16, imm8

Valid N.E. Insert the low word from
r64 or from m16 into mm at
the word position specified
by imm8

66 0F C4 /r ib PINSRW xmm,
r32/m16, imm8

Valid Valid Move the low word of r32 or
from m16 into xmm at the
word position specified by
imm8.

REX.W + 66 0F C4 /r ib PINSRW xmm,
r64/m16, imm8

Valid N.E. Move the low word of r64 or
from m16 into xmm at the
word position specified by
imm8.
Vol. 2B 4-67PINSRW—Insert Word

INSTRUCTION SET REFERENCE, N-Z
CASE (Determine word position) OF
SEL ← 0: MASK ← 0000000000000000000000000000FFFFH;
SEL ← 1: MASK ← 000000000000000000000000FFFF0000H;
SEL ← 2: MASK ← 00000000000000000000FFFF00000000H;
SEL ← 3: MASK ← 0000000000000000FFFF000000000000H;
SEL ← 4: MASK ← 000000000000FFFF0000000000000000H;
SEL ← 5: MASK ← 00000000FFFF00000000000000000000H;
SEL ← 6: MASK ← 0000FFFF000000000000000000000000H;
SEL ← 7: MASK ← FFFF0000000000000000000000000000H;

DEST ← (DEST AND NOT MASK) OR (((SRC << (SEL ∗ 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent
PINSRW __m64 _mm_insert_pi16 (__m64 a, int d, int n)

PINSRW __m128i _mm_insert_epi16 (__m128i a, int b, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.
4-68 Vol. 2B PINSRW—Insert Word

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-69PINSRW—Insert Word

INSTRUCTION SET REFERENCE, N-Z
PMADDWD—Multiply and Add Packed Integers

Description
Multiplies the individual signed words of the destination operand (first operand) by the corre-
sponding signed words of the source operand (second operand), producing temporary signed,
doubleword results. The adjacent doubleword results are then summed and stored in the desti-
nation operand. For example, the corresponding low-order words (15-0) and (31-16) in the
source and destination operands are multiplied by one another and the doubleword results are
added together and stored in the low doubleword of the destination register (31-0). The same
operation is performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of words
being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F5 /r PMADDWD mm,
mm/m64

Valid Valid Multiply the packed words in mm by
the packed words in mm/m64, add
adjacent doubleword results, and
store in mm.

66 0F F5 /r PMADDWD xmm1,
xmm2/m128

Valid Valid Multiply the packed word integers in
xmm1 by the packed word integers
in xmm2/m128, add adjacent
doubleword results, and store in
xmm1.
4-70 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Operation
PMADDWD instruction with 64-bit operands:

DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] ← (DEST[15:0] ∗ SRC[15:0]) + (DEST[31:16] ∗ SRC[31:16]);
DEST[63:32] ← (DEST[47:32] ∗ SRC[47:32]) + (DEST[63:48] ∗ SRC[63:48]);
DEST[95:64] ← (DEST[79:64] ∗ SRC[79:64]) + (DEST[95:80] ∗ SRC[95:80]);
DEST[127:96] ← (DEST[111:96] ∗ SRC[111:96]) + (DEST[127:112] ∗ SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent
PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2)

PMADDWD __m128i _mm_madd_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

X3 X2 X1 X0

X3 ∗ Y3 X2 ∗ Y2 X1 ∗ Y1 X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

(X1∗Y1) + (X0∗Y0)(X3∗Y3) + (X2∗Y2)

TEMP
Vol. 2B 4-71PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-72 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-73PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z
PMAXSW—Maximum of Packed Signed Word Integers

Description
Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PMAXSW instruction for 64-bit operands:

IF DEST[15:0] > SRC[15:0]) THEN
DEST[15:0] ← DEST[15:0];

ELSE
DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRC[15:0]) THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F EE /r PMAXSW mm1,
mm2/m64

Valid Valid Compare signed word integers in
mm2/m64 and mm1 and return
maximum values.

66 0F EE /r PMAXSW xmm1,
xmm2/m128

Valid Valid Compare signed word integers in
xmm2/m128 and xmm1 and return
maximum values.
4-74 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b)

PMAXSW __m128i _mm_max_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
Vol. 2B 4-75PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-76 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
PMAXUB—Maximum of Packed Unsigned Byte Integers

Description
Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the maximum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PMAXUB instruction for 64-bit operands:

IF DEST[7:0] > SRC[17:0]) THEN
DEST[7:0] ← DEST[7:0];

ELSE
DEST[7:0] ← SRC[7:0]; FI;

(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DEST[7:0] > SRC[17:0]) THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F DE /r PMAXUB mm1,
mm2/m64

Valid Valid Compare unsigned byte integers
in mm2/m64 and mm1 and
returns maximum values.

66 0F DE /r PMAXUB xmm1,
xmm2/m128

Valid Valid Compare unsigned byte integers
in xmm2/m128 and xmm1 and
returns maximum values.
Vol. 2B 4-77PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b)

PMAXUB __m128i _mm_max_epu8 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-78 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-79PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
PMINSW—Minimum of Packed Signed Word Integers

Description
Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PMINSW instruction for 64-bit operands:

IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] ← DEST[15:0];

ELSE
DEST[15:0] ← SRC[15:0]; FI;

(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN

DEST[63:48] ← DEST[63:48];
ELSE

DEST[63:48] ← SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN

DEST[15:0] ← DEST[15:0];
ELSE

DEST[15:0] ← SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN

DEST[127:112] ← DEST[127:112];
ELSE

DEST[127:112] ← SRC[127:112]; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F EA /r PMINSW mm1,
mm2/m64

Valid Valid Compare signed word integers in
mm2/m64 and mm1 and return minimum
values.

66 0F EA /r PMINSW xmm1,
xmm2/m128

Valid Valid Compare signed word integers in
xmm2/m128 and xmm1 and return
minimum values.
4-80 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
PMINSW __m64 _mm_min_pi16 (__m64 a, __m64 b)

PMINSW __m128i _mm_min_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
Vol. 2B 4-81PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-82 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z
PMINUB—Minimum of Packed Unsigned Byte Integers

Description
Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the minimum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PMINUB instruction for 64-bit operands:

IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] ← DEST[7:0];

ELSE
DEST[7:0] ← SRC[7:0]; FI;

(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN

DEST[63:56] ← DEST[63:56];
ELSE

DEST[63:56] ← SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN

DEST[7:0] ← DEST[7:0];
ELSE

DEST[7:0] ← SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN

DEST[127:120] ← DEST[127:120];
ELSE

DEST[127:120] ← SRC[127:120]; FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F DA /r PMINUB mm1,
mm2/m64

Valid Valid Compare unsigned byte integers in
mm2/m64 and mm1 and returns
minimum values.

66 0F DA /r PMINUB xmm1,
xmm2/m128

Valid Valid Compare unsigned byte integers in
xmm2/m128 and xmm1 and returns
minimum values.
Vol. 2B 4-83PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)

PMINUB __m128i _mm_min_epu8 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-84 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-85PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z
PMOVMSKB—Move Byte Mask

Description
Creates a mask made up of the most significant bit of each byte of the source operand (second
operand) and stores the result in the low byte or word of the destination operand (first operand).
The source operand is an MMX technology register or an XMM register; the destination
operand is a general-purpose register. When operating on 64-bit operands, the byte mask is
8 bits; when operating on 128-bit operands, the byte mask is 16-bits.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general
purpose registers.

Operation
PMOVMSKB instruction with 64-bit source operand and r32:

r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] ← SRC[63];
r32[31:8] ← ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] ← SRC[7];
r32[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] ← SRC[127];
r32[31:16] ← ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r64[7] ← SRC[63];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D7 /r PMOVMSKB
r32, mm

Valid Valid Move a byte mask of mm to
r32.

REX.W + 0F D7 /r PMOVMSKB
r64, mm

Valid N.E. Move a byte mask of mm to
the lower 32-bits of r64 and
zero-fill the upper 32-bits.

66 0F D7 /r PMOVMSKB
r32, xmm

Valid Valid Move a byte mask of xmm to
r32.

REX.W + 66 0F D7 /r PMOVMSKB
r64, xmm

Valid N.E. Move a byte mask of xmm to
the lower 32-bits of r64 and
zero-fill the upper 32-bits.
4-86 Vol. 2B PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, N-Z
r64[63:8] ← ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] ← SRC[7];
r64[1] ← SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] ← SRC[127];
r64[63:16] ← ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent
PMOVMSKB int_mm_movemask_pi8(__m64 a)

PMOVMSKB int _mm_movemask_epi8 (__m128i a)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-87PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, N-Z
PMULHUW—Multiply Packed Unsigned Integers and Store High
Result

Description
Performs an SIMD unsigned multiply of the packed unsigned word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each 32-bit intermediate results in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation
PMULHUW instruction with 64-bit operands:

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E4 /r PMULHUW mm1,
mm2/m64

Valid Valid Multiply the packed unsigned word
integers in mm1 register and
mm2/m64, and store the high 16
bits of the results in mm1.

66 0F E4 /r PMULHUW xmm1,
xmm2/m128

Valid Valid Multiply the packed unsigned word
integers in xmm1 and
xmm2/m128, and store the high
16 bits of the results in xmm1.

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[31:16] Z2[31:16] Z1[31:16] Z0[31:16]
4-88 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHUW instruction with 128-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b)

PMULHUW __m128i _mm_mulhi_epu16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2B 4-89PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-90 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-91PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
PMULHW—Multiply Packed Signed Integers and Store High Result

Description
Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation
PMULHW instruction with 64-bit operands:

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];

PMULHW instruction with 128-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[31:16];
DEST[31:16] ← TEMP1[31:16];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E5 /r PMULHW mm,
mm/m64

Valid Valid Multiply the packed signed word
integers in mm1 register and
mm2/m64, and store the high 16 bits
of the results in mm1.

66 0F E5 /r PMULHW xmm1,
xmm2/m128

Valid Valid Multiply the packed signed word
integers in xmm1 and xmm2/m128,
and store the high 16 bits of the
results in xmm1.
4-92 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
DEST[47:32] ← TEMP2[31:16];
DEST[63:48] ← TEMP3[31:16];
DEST[79:64] ← TEMP4[31:16];
DEST[95:80] ← TEMP5[31:16];
DEST[111:96] ← TEMP6[31:16];
DEST[127:112] ← TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHW __m64 _mm_mulhi_pi16 (__m64 m1, __m64 m2)

PMULHW __m128i _mm_mulhi_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-93PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-94 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-95PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z
PMULLW—Multiply Packed Signed Integers and Store Low Result

Description
Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the low 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation
PMULLW instruction with 64-bit operands:

TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
DEST[15:0] ← TEMP0[15:0];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D5 /r PMULLW mm,
mm/m64

Valid Valid Multiply the packed signed word
integers in mm1 register and
mm2/m64, and store the low 16 bits
of the results in mm1.

66 0F D5 /r PMULLW xmm1,
xmm2/m128

Valid Valid Multiply the packed signed word
integers in xmm1 and xmm2/m128,
and store the low 16 bits of the
results in xmm1.

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

X3 X2 X1 X0

Z3 = X3 ∗ Y3 Z2 = X2 ∗ Y2 Z1 = X1 ∗ Y1 Z0 = X0 ∗ Y0

SRC

DEST

DEST

Y3 Y2 Y1 Y0

TEMP

Z3[15:0] Z2[15:0] Z1[15:0] Z0[15:0]
4-96 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];

PMULLW instruction with 64-bit operands:
TEMP0[31:0] ← DEST[15:0] ∗ SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] ← DEST[31:16] ∗ SRC[31:16];
TEMP2[31:0] ← DEST[47:32] ∗ SRC[47:32];
TEMP3[31:0] ← DEST[63:48] ∗ SRC[63:48];
TEMP4[31:0] ← DEST[79:64] ∗ SRC[79:64];
TEMP5[31:0] ← DEST[95:80] ∗ SRC[95:80];
TEMP6[31:0] ← DEST[111:96] ∗ SRC[111:96];
TEMP7[31:0] ← DEST[127:112] ∗ SRC[127:112];
DEST[15:0] ← TEMP0[15:0];
DEST[31:16] ← TEMP1[15:0];
DEST[47:32] ← TEMP2[15:0];
DEST[63:48] ← TEMP3[15:0];
DEST[79:64] ← TEMP4[15:0];
DEST[95:80] ← TEMP5[15:0];
DEST[111:96] ← TEMP6[15:0];
DEST[127:112] ← TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2)

PMULLW __m128i _mm_mullo_epi16 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
Vol. 2B 4-97PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-98 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-99PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z
PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Description
Multiplies the first operand (destination operand) by the second operand (source operand) and
stores the result in the destination operand. The source operand can be an unsigned doubleword
integer stored in the low doubleword of an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed unsigned doubleword integers stored in the first (low) and third
doublewords of an XMM register or an 128-bit memory location. The destination operand can
be an unsigned doubleword integer stored in the low doubleword an MMX technology register
or two packed doubleword integers stored in the first and third doublewords of an XMM
register. The result is an unsigned quadword integer stored in the destination an MMX tech-
nology register or two packed unsigned quadword integers stored in an XMM register. When a
quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around
and the low 64 bits are written to the destination element (that is, the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low doubleword is
used in the computation; for 128-bit memory operands, 128 bits are fetched from memory, but
only the first and third doublewords are used in the computation.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation
PMULUDQ instruction with 64-Bit operands:

DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[31:0] ∗ SRC[31:0];
DEST[127:64] ← DEST[95:64] ∗ SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent
PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)

PMULUDQ __m128i _mm_mul_epu32 (__m128i a, __m128i b)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F4 /r PMULUDQ mm1,
mm2/m64

Valid Valid Multiply unsigned doubleword integer
in mm1 by unsigned doubleword
integer in mm2/m64, and store the
quadword result in mm1.

66 OF F4 /r PMULUDQ xmm1,
xmm2/m128

Valid Valid Multiply packed unsigned
doubleword integers in xmm1 by
packed unsigned doubleword
integers in xmm2/m128, and store
the quadword results in xmm1.
4-100 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.
Vol. 2B 4-101PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is
4-102 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z
POP—Pop a Value from the Stack

Description
Loads the value from the top of the stack to the location specified with the destination operand
(or explicit opcode) and then increments the stack pointer. The destination operand can be a
general-purpose register, memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16, 32, 64 bits)
and the operand-size attribute of the current code segment determines the amount the stack
pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP register (stack
pointer) is incremented by 4; if they are 16, the 16-bit SP register is incremented by 2. (The
B flag in the stack segment’s segment descriptor determines the stack’s address-size attribute,

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

8F /0 POP r/m16 Valid Valid Pop top of stack into m16; increment stack
pointer.

8F /0 POP r/m32 N.E. Valid Pop top of stack into m32; increment stack
pointer.

8F /0 POP r/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

0F A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

0F A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

0F A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

0F A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

0F A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

0F A9 POP GS Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.
Vol. 2B 4-103POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
and the D flag in the current code segment’s segment descriptor, along with prefixes, determines
the operand-size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing
a general protection fault. However, any subsequent attempt to reference a segment whose
corresponding segment register is loaded with a NULL value causes a general protection excep-
tion (#GP). In this situation, no memory reference occurs and the saved value of the segment
register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to 0H as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt1. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS,
ES, SS are not valid. See the summary chart at the beginning of this section for encoding data
and limits.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP
SS instruction, the breakpoint may not be triggered. However, in a sequence of instructions that POP the
SS register, only the first instruction in the sequence is guaranteed to delay an interrupt.
In the following sequence, interrupts may be recognized before POP ESP executes:
POP SS
POP SS
POP ESP
4-104 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
Operation
IF StackAddrSize = 32

THEN
IF OperandSize = 32

THEN
DEST ← SS:ESP; (* Copy a doubleword *)
ESP ← ESP + 4;

ELSE (* OperandSize = 16*)
DEST ← SS:ESP; (* Copy a word *)
ESP ← ESP + 2;

FI;
ELSE IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
DEST ← SS:RSP; (* Copy quadword *)
RSP ← RSP + 8;

ELSE (* OperandSize = 16*)
DEST ← SS:RSP; (* Copy a word *)
RSP ← RSP + 2;

FI;
FI;

ELSE StackAddrSize = 16
THEN

IF OperandSize = 16
THEN

DEST ← SS:SP; (* Copy a word *)
SP ← SP + 2;

ELSE (* OperandSize = 32 *)
DEST ← SS:SP; (* Copy a doubleword *)
SP ← SP + 4;

FI;

FI;

Loading a segment register while in protected mode results in special actions, as described in
the following listing. These checks are performed on the segment selector and the segment
descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;

THEN
IF segment selector index is outside descriptor table limits

OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)

AND (both RPL and CPL > DPL))
THEN #GP(selector);
Vol. 2B 4-105POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
IF segment not marked present
THEN #NP(selector);

ELSE
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;
FI;
IF FS, or GS is loaded with a NULL selector;

THEN
SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN

IF segment selector is NULL
THEN #GP(0);

FI;
IF segment selector index is outside descriptor table limits

or segment selector's RPL ≠ CPL
or segment is not a writable data segment
or DPL ≠ CPL

THEN #GP(selector);
FI;
IF segment not marked present

THEN #SS(selector);
ELSE

SS ← segment selector;
SS ← segment descriptor;

FI;
FI;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
FI;
IF segment not marked present

THEN #NP(selector);
ELSE

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;
4-106 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
 FI;
FI;

IF DS, ES, FS, or GS is loaded with a NULL selector
THEN

SegmentRegister ← segment selector;
SegmentRegister ← segment descriptor;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

#SS(0) If the current top of stack is not within the stack segment.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If the SS register is being loaded and the segment pointed to is marked not
present.

#NP If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.
Vol. 2B 4-107POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#GP(selector) If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not
a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed to is a data
or nonconforming code segment, but both the RPL and the CPL are greater
than the DPL.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

#PF(fault-code) If a page fault occurs.

#NP If the FS or GS register is being loaded and the segment pointed to is
marked not present.
4-108 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z
POPA/POPAD—Pop All General-Purpose Registers

Description
Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers.
The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if
the operand-size attribute is 32) and DI, SI, BP, BX, DX, CX, and AX (if the operand-size
attribute is 16). (These instructions reverse the operation of the PUSHA/PUSHAD instructions.)
The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP register is
incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPA is used and to 32 when POPAD is used (using the operand-size override
prefix [66H] if necessary). Others may treat these mnemonics as synonyms (POPA/POPAD) and
use the current setting of the operand-size attribute to determine the size of values to be popped
from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit mode.

Operation
IF 64-Bit Mode

THEN
#UD;

ELSE
IF OperandSize = 32 (* Instruction = POPAD *)
THEN

EDI ← Pop();
ESI ← Pop();
EBP ← Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX ← Pop();
EDX ← Pop();
ECX ← Pop();
EAX ← Pop();

ELSE (* OperandSize = 16, instruction = POPA *)
DI ← Pop();
SI ← Pop();

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX,

and EAX.
Vol. 2B 4-109POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z
BP ← Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX ← Pop();
DX ← Pop();
CX ← Pop();
AX ← Pop();

FI;
FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack segment.

Virtual-8086 Mode Exceptions
#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.
4-110 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

Description
Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is
32) and stores the value in the EFLAGS register, or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is,
the FLAGS register). These instructions reverse the operation of the PUSHF/PUSHFD instruc-
tions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode.
The POPF instruction is intended for use when the operand-size attribute is 16; the POPFD
instruction is intended for use when the operand-size attribute is 32. Some assemblers may force
the operand size to 16 for POPF and to 32 for POPFD. Others may treat the mnemonics as
synonyms (POPF/POPFD) and use the setting of the operand-size attribute to determine the size
of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of oper-
ation. When the processor is operating in protected mode at privilege level 0 (or in real-address
mode, the equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except
VIP, VIF, and VM may be modified. VIP, VIF and VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than or equal to
IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM. Here, the IOPL
flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaffected. The inter-
rupt flag (IF) is altered only when executing at a level at least as privileged as the IOPL. If a
POPF/POPFD instruction is executed with insufficient privilege, an exception does not occur
but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use POPF/POPFD instruc-
tions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is less than 3, POPF/POPFD
causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned is
POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 bits from the stack,
loads the lower 32 bits into RFLAGS, and zero extends the upper bits of RFLAGS.

See Chapter 3 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
more information about the EFLAGS registers.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.

9D POPFD N.E. Valid Pop top of stack into EFLAGS.
REX.W + 9D POPFQ Valid N.E. Pop top of stack and zero-extend into

RFLAGS.
Vol. 2B 4-111POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z
Operation

IF VM = 0 (* Not in Virtual-8086 Mode *)
THEN IF CPL = 0

THEN
IF OperandSize = 32;

THEN
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified;
VIP and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified; VIP
and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified *)

FI;
ELSE (* CPL > 0 *)

IF OperandSize = 32
THEN

IF CPL > IOPL
THEN

EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can be
modified; IF, IOPL, and VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)

ELSE
EFLAGS ← Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)

FI;
ELSE IF (Operandsize = 64)

IF CPL > IOPL
THEN

RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can
be modified; IF, IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)

ELSE
RFLAGS ← Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)

FI;
ELSE (* OperandSize = 16 *)

EFLAGS[15:0] ← Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected *)

FI;
FI;

ELSE (* In Virtual-8086 Mode *)
IF IOPL = 3

THEN IF OperandSize = 32
4-112 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z
THEN
EFLAGS ← Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected *)

ELSE
EFLAGS[15:0] ← Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected *)

ELSE (* IOPL < 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;
FI;

FI;

Flags Affected
All flags except the reserved bits and the VM bit.

Protected Mode Exceptions
#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an
operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
Vol. 2B 4-113POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is
4-114 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z
POR—Bitwise Logical OR

Description
Performs a bitwise logical OR operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if either or both of the corresponding
bits of the first and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST ← DEST OR SRC;

Intel C/C++ Compiler Intrinsic Equivalent
POR __m64 _mm_or_si64(__m64 m1, __m64 m2)

POR __m128i _mm_or_si128(__m128i m1, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F EB /r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 0F EB /r POR xmm1,

xmm2/m128
Valid Valid Bitwise OR of xmm2/m128 and

xmm1.
Vol. 2B 4-115POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.OSFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-116 Vol. 2B POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-117POR—Bitwise Logical OR

INSTRUCTION SET REFERENCE, N-Z
PREFETCHh—Prefetch Data Into Caches

Description
Fetches the line of data from memory that contains the byte specified with the source operand
to a location in the cache hierarchy specified by a locality hint:

• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.

— Pentium III processor—1st- or 2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and
higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and
higher.

— Pentium III processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

— Pentium III processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine
level instruction using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other
than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no
data movement occurs. Prefetches from uncacheable or WC memory are ignored.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 18 /1 PREFETCHT0 m8 Valid Valid Move data from m8 closer to the
processor using T0 hint.

0F 18 /2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.

0F 18 /3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.

0F 18 /0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the
processor using NTA hint.
4-118 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, N-Z
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed,
this instruction moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be over-
loaded or ignored by a processor implementation. The amount of data prefetched is also
processor implementation-dependent. It will, however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). A PREFETCHh instruction is considered a hint to this speculative
behavior. Because this speculative fetching can occur at any time and is not tied to instruction
execution, a PREFETCHh instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction
is also unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as
CPUID, WRMSR, OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched.
The value “i” gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or
_MM_HINT_NTA) that specifies the type of prefetch operation to be performed.

Numeric Exceptions
None.

Exceptions (All Operating Modes)
None.
Vol. 2B 4-119PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, N-Z
PSADBW—Compute Sum of Absolute Differences

Description
Computes the absolute value of the difference of 8 unsigned byte integers from the source
operand (second operand) and from the destination operand (first operand). These 8 differences
are then summed to produce an unsigned word integer result that is stored in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Figure 4-5 shows the operation of the PSADBW
instruction when using 64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word of the desti-
nation operand, and the remaining bytes in the destination operand are cleared to all 0s.

When operating on 128-bit operands, two packed results are computed. Here, the 8 low-order
bytes of the source and destination operands are operated on to produce a word result that is
stored in the low word of the destination operand, and the 8 high-order bytes are operated on to
produce a word result that is stored in bits 64 through 79 of the destination operand. The
remaining bytes of the destination operand are cleared.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F6 /r PSADBW mm1,
mm2/m64

Valid Valid Computes the absolute differences of the
packed unsigned byte integers from mm2
/m64 and mm1; differences are then summed
to produce an unsigned word integer result.

66 0F
F6 /r

PSADBW xmm1,
xmm2/m128

Valid Valid Computes the absolute differences of the
packed unsigned byte integers from xmm2
/m128 and xmm1; the 8 low differences and 8
high differences are then summed separately
to produce two unsigned word integer results.
4-120 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z
Operation
PSADBW instructions when using 64-bit operands:

TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 ← ABS(DEST[63:56] − SRC[63:56]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:16] ← 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMP0 ← ABS(DEST[7:0] − SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 ← ABS(DEST[127:120] − SRC[127:120]);
DEST[15:0] ← SUM(TEMP0:TEMP7);
DEST[63:6] ← 000000000000H;
DEST[79:64] ← SUM(TEMP8:TEMP15);
DEST[127:80] ← 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
PSADBW __m64_mm_sad_pu8(__m64 a,__m64 b)

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

X3 X2 X1 X0SRC

DEST

TEMP

X4X5X6X7

Y3 Y2 Y1 Y0Y4Y5Y6Y7

ABS(X0:Y0)ABS(X7:Y7) ABS(X6:Y6) ABS(X5:Y5) ABS(X4:Y4) ABS(X3:Y3) ABS(X2:Y2) ABS(X1:Y1)

DEST 00H 00H00H00H00H00H SUM(TEMP7...TEMP0)
Vol. 2B 4-121PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-122 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-123PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z
PSHUFD—Shuffle Packed Doublewords

Description
Copies doublewords from source operand (second operand) and inserts them in the destination
operand (first operand) at the locations selected with the order operand (third operand). Figure 4-6
shows the operation of the PSHUFD instruction and the encoding of the order operand. Each
2-bit field in the order operand selects the contents of one doubleword location in the destination
operand. For example, bits 0 and 1 of the order operand select the contents of doubleword 0 of
the destination operand. The encoding of bits 0 and 1 of the order operand (see the field encoding
in Figure 4-6) determines which doubleword from the source operand will be copied to double-
word 0 of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a doubleword in the source operand to be copied to more than one doubleword location
in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 70 /r ib PSHUFD xmm1,
xmm2/m128, imm8

Valid Valid Shuffle the doublewords in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.

Figure 4-6. PSHUFD Instruction Operation

X3 X2 X1 X0SRC

DEST Y3 Y2 Y1 Y0

ORDER
00B - X0
01B - X1
10B - X2
11B - X3

Encoding
of Fields in

ORDER01234567
Operand
4-124 Vol. 2B PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z
Operation
DEST[31:0] ← (SRC >> (ORDER[1:0] ∗ 32))[31:0];
DEST[63:32] ← (SRC >> (ORDER[3:2] ∗ 32))[31:0];
DEST[95:64] ← (SRC >> (ORDER[5:4] ∗ 32))[31:0];
DEST[127:96] ← (SRC >> (ORDER[7:6] ∗ 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CR0.TS[bit 3] = 1.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CR0.TS[bit 3] = 1.
Vol. 2B 4-125PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.
4-126 Vol. 2B PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z
PSHUFHW—Shuffle Packed High Words

Description
Copies words from the high quadword of the source operand (second operand) and inserts them
in the high quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFHW instruction, each
2-bit field in the order operand selects the contents of one word location in the high quadword
of the destination operand. The binary encodings of the order operand fields select words (0, 1,
2 or 3, 4) from the high quadword of the source operand to be copied to the destination operand.
The low quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the high quadword of the source operand to be copied to more than one word
location in the high quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← SRC[63:0];
DEST[79:64] ← (SRC >> (ORDER[1:0] ∗ 16))[79:64];
DEST[95:80] ← (SRC >> (ORDER[3:2] ∗ 16))[79:64];
DEST[111:96] ← (SRC >> (ORDER[5:4] ∗ 16))[79:64];
DEST[127:112] ← (SRC >> (ORDER[7:6] ∗ 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 70 /r ib PSHUFHW xmm1, xmm2/
m128, imm8

Valid Valid Shuffle the high words in
xmm2/m128 based on the
encoding in imm8 and store
the result in xmm1.
Vol. 2B 4-127PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-128 Vol. 2B PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.
Vol. 2B 4-129PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z
PSHUFLW—Shuffle Packed Low Words

Description
Copies words from the low quadword of the source operand (second operand) and inserts them
in the low quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFLW instruction, each
2-bit field in the order operand selects the contents of one word location in the low quadword of
the destination operand. The binary encodings of the order operand fields select words (0, 1, 2,
or 3) from the low quadword of the source operand to be copied to the destination operand. The
high quadword of the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the low quadword of the source operand to be copied to more than one word
location in the low quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[15:0] ← (SRC >> (ORDER[1:0] ∗ 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] ∗ 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] ∗ 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] ∗ 16))[15:0];
DEST[127:64] ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 70 /r ib PSHUFLW xmm1,
xmm2/m128, imm8

Valid Valid Shuffle the low words in
xmm2/m128 based on the
encoding in imm8 and store the
result in xmm1.
4-130 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
Vol. 2B 4-131PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.
4-132 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z
PSHUFW—Shuffle Packed Words

Description
Copies words from the source operand (second operand) and inserts them in the destination
operand (first operand) at word locations selected with the order operand (third operand). This
operation is similar to the operation used by the PSHUFD instruction, which is illustrated in
Figure 4-6. For the PSHUFW instruction, each 2-bit field in the order operand selects the
contents of one word location in the destination operand. The encodings of the order operand
fields select words from the source operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. The desti-
nation operand is an MMX technology register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the source operand to be copied to more than one word
location in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[15:0] ← (SRC >> (ORDER[1:0] ∗ 16))[15:0];
DEST[31:16] ← (SRC >> (ORDER[3:2] ∗ 16))[15:0];
DEST[47:32] ← (SRC >> (ORDER[5:4] ∗ 16))[15:0];
DEST[63:48] ← (SRC >> (ORDER[7:6] ∗ 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n)

Flags Affected
None.

Numeric Exceptions

None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 70 /r ib PSHUFW mm1,
mm2/m64, imm8

Valid Valid Shuffle the words in mm2/m64 based
on the encoding in imm8 and store the
result in mm1.
Vol. 2B 4-133PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.
4-134 Vol. 2B PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-135PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z
PSLLDQ—Shift Double Quadword Left Logical

Description
Shifts the destination operand (first operand) to the left by the number of bytes specified in the
count operand (second operand). The empty low-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all 0s.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

Operation
TEMP ← COUNT;
IF (TEMP > 15) THEN TEMP ← 16; FI;
DEST ← DEST << (TEMP ∗ 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ __m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 73 /7 ib PSLLDQ xmm1,
imm8

Valid Valid Shift xmm1 left by imm8 bytes
while shifting in 0s.
4-136 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-137PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the left by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted left, the empty low-order bits are
cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s.
Figure 4-7 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F1 /r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in 0s.

66 0F F1 /r PSLLW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in 0s.

66 0F 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by imm8
while shifting in 0s.

0F F2 /r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in 0s.

66 0F F2 /r PSLLD xmm1,
xmm2/m128

Valid Valid Shift doublewords in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 72 /6 ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in 0s.

66 0F 72 /6 ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left by
imm8 while shifting in 0s.

0F F3 /r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in 0s.

66 0F F3 /r PSLLQ xmm1,
xmm2/m128

Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 while shifting in 0s.

0F 73 /6 ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in 0s.

66 0F 73 /6 ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by
imm8 while shifting in 0s.
4-138 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z
The PSLLW instruction shifts each of the words in the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the double-
words in the destination operand; and the PSLLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSLLW instruction with 64-bit operand:

IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] << COUNT);

FI;

PSLLD instruction with 64-bit operand:
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H;
ELSE

DEST ← ZeroExtend(DEST << COUNT);
FI;

Figure 4-7. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Left

X0

X0 << COUNT

X3 X2 X1

X1 << COUNTX2 << COUNTX3 << COUNT

with Zero
Extension
Vol. 2B 4-139PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z
PSLLW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] << COUNT);

FI;

PSLLD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] << COUNT);

FI;

PSLLQ instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN

DEST[128:0] ← 00000000000000000000000000000000H;
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] << COUNT);

FI;

Intel C/C++ Compiler Intrinsic Equivalents
PSLLW __m64 _mm_slli_pi16 (__m64 m, int count)

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count)

PSLLW __m128i _mm_slli_pi16(__m64 m, int count)

PSLLW __m128i _mm_slli_pi16(__m128i m, __m128i count)

PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD __m64 _mm_sll_pi32(__m64 m, __m64 count)

PSLLD __m128i _mm_slli_epi32(__m128i m, int count)

PSLLD __m128i _mm_sll_epi32(__m128i m, __m128i count)

PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)

PSLLQ __m128i _mm_slli_si64(__m128i m, int count)
4-140 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z
PSLLQ __m128i _mm_sll_si64(__m128i m, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
Vol. 2B 4-141PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-142 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z
PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Description
Shifts the bits in the individual data elements (words or doublewords) in the destination operand
(first operand) to the right by the number of bits specified in the count operand (second operand).
As the bits in the data elements are shifted right, the empty high-order bits are filled with the
initial value of the sign bit of the data element. If the value specified by the count operand is
greater than 15 (for words) or 31 (for doublewords), each destination data element is filled with
the initial value of the sign bit of the element. (Figure 4-8 gives an example of shifting words in
a 64-bit operand.)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E1 /r PSRAW mm,
mm/m64

Valid Valid Shift words in mm right by mm/m64
while shifting in sign bits.

66 0F E1 /r PSRAW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 right by
xmm2/m128 while shifting in sign
bits.

0F 71 /4 ib PSRAW mm,
imm8

Valid Valid Shift words in mm right by imm8
while shifting in sign bits

66 0F 71 /4 ib PSRAW xmm1,
imm8

Valid Valid Shift words in xmm1 right by imm8
while shifting in sign bits

0F E2 /r PSRAD mm,
mm/m64

Valid Valid Shift doublewords in mm right by
mm/m64 while shifting in sign bits.

66 0F E2 /r PSRAD xmm1,
xmm2/m128

Valid Valid Shift doubleword in xmm1 right by
xmm2 /m128 while shifting in sign
bits.

0F 72 /4 ib PSRAD mm,
imm8

Valid Valid Shift doublewords in mm right by
imm8 while shifting in sign bits.

66 0F 72 /4 ib PSRAD xmm1,
imm8

Valid Valid Shift doublewords in xmm1 right by
imm8 while shifting in sign bits.

Figure 4-8. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Sign
Extension
Vol. 2B 4-143PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z
The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.
The PSRAW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand, and the PSRAD instruction shifts each of the
doublewords in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSRAW instruction with 64-bit operand:

IF (COUNT > 15)
THEN COUNT ← 16;

FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)

THEN COUNT ← 16;
FI;
DEST[15:0] ← SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)

THEN COUNT ← 32;
FI;
DEST[31:0] ← SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← SignExtend(DEST[127:96] >>COUNT);
4-144 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalents
PSRAW __m64 _mm_srai_pi16 (__m64 m, int count)

PSRAW __m64 _mm_sraw_pi16 (__m64 m, __m64 count)

PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)

PSRAW __m128i _mm_srai_epi16(__m128i m, int count)

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i count))

PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.
Vol. 2B 4-145PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-146 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z
PSRLDQ—Shift Double Quadword Right Logical

Description
Shifts the destination operand (first operand) to the right by the number of bytes specified in the
count operand (second operand). The empty high-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all 0s.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
TEMP ← COUNT;
IF (TEMP > 15) THEN TEMP ← 16; FI;
DEST ← DEST >> (temp ∗ 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ __m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 73 /3 ib PSRLDQ
xmm1, imm8

Valid Valid Shift xmm1 right by imm8 while
shifting in 0s.
Vol. 2B 4-147PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

Numeric Exceptions

None.
4-148 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

Description
Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the right by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted right, the empty high-order bits
are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all 0s.
Figure 4-9 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D1 /r PSRLW mm,
mm/m64

Valid Valid Shift words in mm right by amount
specified in mm/m64 while shifting in 0s.

66 0F D1 /r PSRLW xmm1,
xmm2/m128

Valid Valid Shift words in xmm1 right by amount
specified in xmm2/m128 while shifting
in 0s.

0F 71 /2 ib PSRLW mm,
imm8

Valid Valid Shift words in mm right by imm8 while
shifting in 0s.

66 0F 71 /2 ib PSRLW xmm1,
imm8

Valid Valid Shift words in xmm1 right by imm8 while
shifting in 0s.

0F D2 /r PSRLD mm,
mm/m64

Valid Valid Shift doublewords in mm right by
amount specified in mm/m64 while
shifting in 0s.

66 0F D2 /r PSRLD xmm1,
xmm2/m128

Valid Valid Shift doublewords in xmm1 right by
amount specified in xmm2 /m128 while
shifting in 0s.

0F 72 /2 ib PSRLD mm,
imm8

Valid Valid Shift doublewords in mm right by imm8
while shifting in 0s.

66 0F 72 /2 ib PSRLD xmm1,
imm8

Valid Valid Shift doublewords in xmm1 right by
imm8 while shifting in 0s.

0F D3 /r PSRLQ mm,
mm/m64

Valid Valid Shift mm right by amount specified in
mm/m64 while shifting in 0s.

66 0F D3 /r PSRLQ xmm1,
xmm2/m128

Valid Valid Shift quadwords in xmm1 right by
amount specified in xmm2/m128 while
shifting in 0s.

0F 73 /2 ib PSRLQ mm,
imm8

Valid Valid Shift mm right by imm8 while shifting
in 0s.

66 0F 73 /2 ib PSRLQ xmm1,
imm8

Valid Valid Shift quadwords in xmm1 right by imm8
while shifting in 0s.
Vol. 2B 4-149PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
The PSRLW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand; the PSRLD instruction shifts each of the double-
words in the destination operand; and the PSRLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSRLW instruction with 64-bit operand:

IF (COUNT > 15)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] ← ZeroExtend(DEST[63:48] >> COUNT);

FI;

PSRLD instruction with 64-bit operand:
IF (COUNT > 31)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] ← ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN

DEST[64:0] ← 0000000000000000H
ELSE

DEST ← ZeroExtend(DEST >> COUNT);
FI;

Figure 4-9. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

DEST

DEST
Pre-Shift

Post-Shift

Shift Right

X0

X0 >> COUNT

X3 X2 X1

X1 >> COUNTX2 >> COUNTX3 >> COUNT

with Zero
Extension
4-150 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
PSRLW instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[15:0] ← ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] ← ZeroExtend(DEST[127:112] >> COUNT);

FI;

PSRLD instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[31:0] ← ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] ← ZeroExtend(DEST[127:96] >> COUNT);

FI;

PSRLQ instruction with 128-bit operand:
COUNT ← COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN

DEST[128:0] ← 00000000000000000000000000000000H
ELSE

DEST[63:0] ← ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] ← ZeroExtend(DEST[127:64] >> COUNT);

FI;

Intel C/C++ Compiler Intrinsic Equivalents
PSRLW __m64 _mm_srli_pi16(__m64 m, int count)

PSRLW __m64 _mm_srl_pi16 (__m64 m, __m64 count)

PSRLW __m128i _mm_srli_epi16 (__m128i m, int count)

PSRLW __m128i _mm_srl_epi16 (__m128i m, __m128i count)

PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count)

PSRLD __m128i _mm_srli_epi32 (__m128i m, int count)

PSRLD __m128i _mm_srl_epi32 (__m128i m, __m128i count)

PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)

PSRLQ __m128i _mm_srli_epi64 (__m128i m, int count)
Vol. 2B 4-151PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
PSRLQ __m128i _mm_srl_epi64 (__m128i m, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-152 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-153PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z
PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Description
Performs an SIMD subtract of the packed integers of the source operand (second operand) from
the packed integers of the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled
with wraparound, as described in the following paragraphs.
These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is too large or
too small to be represented in a byte, the result is wrapped around and the low 8 bits are written
to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is too large
or too small to be represented in a word, the result is wrapped around and the low 16 bits are
written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual result is too
large or too small to be represented in a doubleword, the result is wrapped around and the low
32 bits are written to the destination element.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F F8 /r PSUBB mm,
mm/m64

Valid Valid Subtract packed byte integers in
mm/m64 from packed byte integers in
mm.

66 0F F8 /r PSUBB xmm1,
xmm2/m128

Valid Valid Subtract packed byte integers in
xmm2/m128 from packed byte integers
in xmm1.

0F F9 /r PSUBW mm,
mm/m64

Valid Valid Subtract packed word integers in
mm/m64 from packed word integers in
mm.

66 0F F9 /r PSUBW xmm1,
xmm2/m128

Valid Valid Subtract packed word integers in
xmm2/m128 from packed word integers
in xmm1.

0F FA /r PSUBD mm,
mm/m64

Valid Valid Subtract packed doubleword integers in
mm/m64 from packed doubleword
integers in mm.

66 0F FA /r PSUBD xmm1,
xmm2/m128

Valid Valid Subtract packed doubleword integers in
xmm2/mem128 from packed
doubleword integers in xmm1.
4-154 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSUBB instruction with 64-bit operands:

DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] ← DEST[63:56] − SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] ← DEST[7:0] − SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] ← DEST[111:120] − SRC[127:120];

PSUBW instruction with 64-bit operands:
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] ← DEST[63:48] − SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0] − SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] ← DEST[127:112] − SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];

PSUBD instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] ← DEST[127:96] − SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2)

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2)

PSUBB __m128i _mm_sub_epi8 (__m128i a, __m128i b)

PSUBW __m128i _mm_sub_epi16 (__m128i a, __m128i b)

PSUBD __m128i _mm_sub_epi32 (__m128i a, __m128i b)
Vol. 2B 4-155PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-156 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-157PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z
PSUBQ—Subtract Packed Quadword Integers

Description
Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The source operand can be a quadword integer stored
in an MMX technology register or a 64-bit memory location, or it can be two packed quadword
integers stored in an XMM register or an 128-bit memory location. The destination operand can
be a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD subtract is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PSUBQ instruction with 64-Bit operands:

DEST[63:0] ← DEST[63:0] − SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2)

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2)

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mm2 /m64.

66 0F FB /r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm1 from
xmm2 /m128.
4-158 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.
Vol. 2B 4-159PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-160 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z
PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

Description
Performs an SIMD subtract of the packed signed integers of the source operand (second
operand) from the packed signed integers of the destination operand (first operand), and stores
the packed integer results in the destination operand. See Figure 9-4 in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Over-
flow is handled with signed saturation, as described in the following paragraphs.
These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.
The PSUBSB instruction subtracts packed signed byte integers. When an individual byte result
is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.
The PSUBSW instruction subtracts packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than
8000H), the saturated value of 7FFFH or 8000H, respectively, is written to the destination
operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F E8 /r PSUBSB mm,
mm/m64

Valid Valid Subtract signed packed bytes in
mm/m64 from signed packed bytes
in mm and saturate results.

66 0F E8 /r PSUBSB xmm1,
xmm2/m128

Valid Valid Subtract packed signed byte integers
in xmm2/m128 from packed signed
byte integers in xmm1 and saturate
results.

0F E9 /r PSUBSW mm,
mm/m64

Valid Valid Subtract signed packed words in
mm/m64 from signed packed words
in mm and saturate results.

66 0F E9 /r PSUBSW xmm1,
xmm2/m128

Valid Valid Subtract packed signed word
integers in xmm2/m128 from packed
signed word integers in xmm1 and
saturate results.
Vol. 2B 4-161PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
Operation
PSUBSB instruction with 64-bit operands:

DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToSignedByte (DEST[63:56] − SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToSignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToSignedByte (DEST[111:120] − SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] ← SaturateToSignedWord (DEST[63:48] − SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] ← SaturateToSignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToSignedWord (DEST[127:112] − SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2)

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2)

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2)

PSUBSW __m128i _mm_subs_epi16(__m128i m1, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.
4-162 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-163PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-164 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

Description
Performs an SIMD subtract of the packed unsigned integers of the source operand (second
operand) from the packed unsigned integers of the destination operand (first operand), and stores
the packed unsigned integer results in the destination operand. See Figure 9-4 in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation.
Overflow is handled with unsigned saturation, as described in the following paragraphs.
These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.
The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte
result is less than zero, the saturated value of 00H is written to the destination operand.
The PSUBUSW instruction subtracts packed unsigned word integers. When an individual word
result is less than zero, the saturated value of 0000H is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F D8 /r PSUBUSB mm,
mm/m64

Valid Valid Subtract unsigned packed bytes in
mm/m64 from unsigned packed bytes
in mm and saturate result.

66 0F D8 /r PSUBUSB xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned byte
integers in xmm2/m128 from packed
unsigned byte integers in xmm1 and
saturate result.

0F D9 /r PSUBUSW mm,
mm/m64

Valid Valid Subtract unsigned packed words in
mm/m64 from unsigned packed words
in mm and saturate result.

66 0F D9 /r PSUBUSW xmm1,
xmm2/m128

Valid Valid Subtract packed unsigned word
integers in xmm2/m128 from packed
unsigned word integers in xmm1 and
saturate result.
Vol. 2B 4-165PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
Operation
PSUBUSB instruction with 64-bit operands:

DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] ← SaturateToUnsignedByte (DEST[63:56] − SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] ← SaturateToUnsignedByte (DEST[7:0] − SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] ← SaturateToUnSignedByte (DEST[127:120] − SRC[127:120]);

PSUBUSW instruction with 64-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] ← SaturateToUnsignedWord (DEST[63:48] − SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] ← SaturateToUnsignedWord (DEST[15:0] − SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] ← SaturateToUnSignedWord (DEST[127:112] − SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents
PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2)

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i m2)

PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2)

PSUBUSW __m128i _mm_subs_epu16(__m128i m1, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-166 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2B 4-167PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-168 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

Description
Unpacks and interleaves the high-order data elements (bytes, words, doublewords, or quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. Figure 4-10 shows the unpack operation for bytes in 64-bit operands. The
low-order data elements are ignored.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 68 /r PUNPCKHBW mm,
mm/m64

Valid Valid Unpack and interleave high-order
bytes from mm and mm/m64 into
mm.

66 0F 68 /r PUNPCKHBW xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
bytes from xmm1 and
xmm2/m128 into xmm1.

0F 69 /r PUNPCKHWD mm,
mm/m64

Valid Valid Unpack and interleave high-order
words from mm and mm/m64 into
mm.

66 0F 69 /r PUNPCKHWD xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
words from xmm1 and
xmm2/m128 into xmm1.

0F 6A /r PUNPCKHDQ mm,
mm/m64

Valid Valid Unpack and interleave high-order
doublewords from mm and
mm/m64 into mm.

66 0F 6A /r PUNPCKHDQ xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
doublewords from xmm1 and
xmm2/m128 into xmm1.

66 0F 6D /r PUNPCKHQDQ xmm1,
xmm2/m128

Valid Valid Unpack and interleave high-order
quadwords from xmm1 and
xmm2/m128 into xmm1.

Figure 4-10. PUNPCKHBW Instruction Operation Using 64-bit Operands

X4X7 X6 X5 Y4Y7 Y6 Y5

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
Vol. 2B 4-169PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z
The source operand can be an MMX technology register or a 64-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 64-bit memory
operand, the full 64-bit operand is accessed from memory, but the instruction uses only the high-
order 32 bits. When the source data comes from a 128-bit memory operand, an implementation
may fetch only the appropriate 64 bits; however, alignment to a 16-byte boundary and normal
segment checking will still be enforced.
The PUNPCKHBW instruction interleaves the high-order bytes of the source and destination
operands, the PUNPCKHWD instruction interleaves the high-order words of the source and
destination operands, the PUNPCKHDQ instruction interleaves the high-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKHQDQ instruction inter-
leaves the high-order quadwords of the source and destination operands.
These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all 0s in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKHBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKHWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PUNPCKHBW instruction with 64-bit operands:

DEST[7:0] ← DEST[39:32];
DEST[15:8] ← SRC[39:32];
DEST[23:16] ← DEST[47:40];
DEST[31:24] ← SRC[47:40];
DEST[39:32] ← DEST[55:48];
DEST[47:40] ← SRC[55:48];
DEST[55:48] ← DEST[63:56];
DEST[63:56] ← SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] ← DEST[47:32];
DEST[31:16] ← SRC[47:32];
DEST[47:32] ← DEST[63:48];
DEST[63:48] ← SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] ← DEST[63:32];
DEST[63:32] ← SRC[63:32];
4-170 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z
PUNPCKHBW instruction with 128-bit operands:
DEST[7:0] ← DEST[71:64];
DEST[15:8] ← SRC[71:64];
DEST[23:16] ← DEST[79:72];
DEST[31:24] ← SRC[79:72];
DEST[39:32] ← DEST[87:80];
DEST[47:40] ← SRC[87:80];
DEST[55:48] ← DEST[95:88];
DEST[63:56] ← SRC[95:88];
DEST[71:64] ← DEST[103:96];
DEST[79:72] ← SRC[103:96];
DEST[87:80] ← DEST[111:104];
DEST[95:88] ← SRC[111:104];
DEST[103:96] ← DEST[119:112];
DEST[111:104] ← SRC[119:112];
DEST[119:112] ← DEST[127:120];
DEST[127:120] ← SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] ← DEST[79:64];
DEST[31:16] ← SRC[79:64];
DEST[47:32] ← DEST[95:80];
DEST[63:48] ← SRC[95:80];
DEST[79:64] ← DEST[111:96];
DEST[95:80] ← SRC[111:96];
DEST[111:96] ← DEST[127:112];
DEST[127:112] ← SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];
DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];
Vol. 2B 4-171PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalents
PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2)

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1, __m128i m2)

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2)

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,__m128i m2)

PUNPCKHDQ __m64 _mm_unpackhi_pi32(__m64 m1, __m64 m2)

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1, __m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to FFFFH.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.
4-172 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
Vol. 2B 4-173PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

Description
Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. (Figure 4-11 shows the unpack operation for bytes in 64-bit operands.). The
high-order data elements are ignored.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 60 /r PUNPCKLBW mm,
mm/m32

Valid Valid Interleave low-order bytes from mm
and mm/m32 into mm.

66 0F 60 /r PUNPCKLBW xmm1,
xmm2/m128

Valid Valid Interleave low-order bytes from
xmm1 and xmm2/m128 into xmm1.

0F 61 /r PUNPCKLWD mm,
mm/m32

Valid Valid Interleave low-order words from mm
and mm/m32 into mm.

66 0F 61 /r PUNPCKLWD xmm1,
xmm2/m128

Valid Valid Interleave low-order words from
xmm1 and xmm2/m128 into xmm1.

0F 62 /r PUNPCKLDQ mm,
mm/m32

Valid Valid Interleave low-order doublewords
from mm and mm/m32 into mm.

66 0F 62 /r PUNPCKLDQ xmm1,
xmm2/m128

Valid Valid Interleave low-order doublewords
from xmm1 and xmm2/m128 into
xmm1.

66 0F 6C /r PUNPCKLQDQ
xmm1, xmm2/m128

Valid Valid Interleave low-order quadword from
xmm1 and xmm2/m128 into xmm1
register.

Figure 4-11. PUNPCKLBW Instruction Operation Using 64-bit Operands

X0X3 X2 X1 Y0Y3 Y2 Y1

X0X3 X2 X1Y0Y3 Y2 Y1 X4X7 X6 X5Y4Y7 Y6 Y5SRC DEST

DEST
4-174 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z
The source operand can be an MMX technology register or a 32-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 128-bit memory
operand, an implementation may fetch only the appropriate 64 bits; however, alignment to a
16-byte boundary and normal segment checking will still be enforced.
The PUNPCKLBW instruction interleaves the low-order bytes of the source and destination
operands, the PUNPCKLWD instruction interleaves the low-order words of the source and
destination operands, the PUNPCKLDQ instruction interleaves the low-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKLQDQ instruction inter-
leaves the low-order quadwords of the source and destination operands.
These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all 0s in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKLBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKLWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
PUNPCKLBW instruction with 64-bit operands:

DEST[63:56] ← SRC[31:24];
DEST[55:48] ← DEST[31:24];
DEST[47:40] ← SRC[23:16];
DEST[39:32] ← DEST[23:16];
DEST[31:24] ← SRC[15:8];
DEST[23:16] ← DEST[15:8];
DEST[15:8] ← SRC[7:0];
DEST[7:0] ← DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] ← SRC[31:16];
DEST[47:32] ← DEST[31:16];
DEST[31:16] ← SRC[15:0];
DEST[15:0] ← DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] ← SRC[31:0];
DEST[31:0] ← DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0] ← DEST[7:0];
DEST[15:8] ← SRC[7:0];
DEST[23:16] ← DEST[15:8];
DEST[31:24] ← SRC[15:8];
DEST[39:32] ← DEST[23:16];
Vol. 2B 4-175PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z
DEST[47:40] ← SRC[23:16];
DEST[55:48] ← DEST[31:24];
DEST[63:56] ← SRC[31:24];
DEST[71:64] ← DEST[39:32];
DEST[79:72] ← SRC[39:32];
DEST[87:80] ← DEST[47:40];
DEST[95:88] ← SRC[47:40];
DEST[103:96] ← DEST[55:48];
DEST[111:104] ← SRC[55:48];
DEST[119:112] ← DEST[63:56];
DEST[127:120] ← SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:
DEST[15:0] ← DEST[15:0];
DEST[31:16] ← SRC[15:0];
DEST[47:32] ← DEST[31:16];
DEST[63:48] ← SRC[31:16];
DEST[79:64] ← DEST[47:32];
DEST[95:80] ← SRC[47:32];
DEST[111:96] ← DEST[63:48];
DEST[127:112] ← SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:
DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

PUNPCKLQDQ
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents
PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2)

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1, __m128i m2)

PUNPCKLWD __m64 _mm_unpacklo_pi16 (__m64 m1, __m64 m2)

PUNPCKLWD __m128i _mm_unpacklo_epi16 (__m128i m1, __m128i m2)

PUNPCKLDQ __m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)

PUNPCKLDQ __m128i _mm_unpacklo_epi32 (__m128i m1, __m128i m2)

PUNPCKLQDQ __m128i _mm_unpacklo_epi64 (__m128i m1, __m128i m2)

Flags Affected
None.
4-176 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z
Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) If any part of the operand lies outside of the effective address space from

0 to 0FFFFH.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
Vol. 2B 4-177PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-178 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z
PUSH—Push Word, Doubleword or Quadword Onto the Stack

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FF /6 PUSH r/m16 Valid Valid Push r/m16.
FF /6 PUSH r/m32 N.E. Valid Push r/m32.
FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size

64-bits.
50+rw PUSH r16 Valid Valid Push r16.
50+rd PUSH r32 N.E. Valid Push r32.
50+rd PUSH r64 Valid N.E. Push r64. Default operand size

64-bits.
6A PUSH imm8 Valid Valid Push sign-extended imm8. Stack

pointer is incremented by the size of
stack pointer.

68 PUSH imm16 Valid Valid Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

68 PUSH imm32 Valid Valid Push sign-extended imm32. Stack
pointer is incremented by the size of
stack pointer.

0E PUSH CS Invalid Valid Push CS.
16 PUSH SS Invalid Valid Push SS.
1E PUSH DS Invalid Valid Push DS.
06 PUSH ES Invalid Valid Push ES.
0F A0 PUSH FS Valid Valid Push FS and decrement stack

pointer by 16 bits.
0F A0 PUSH FS N.E. Valid Push FS and decrement stack

pointer by 32 bits.
0F A0 PUSH FS Valid N.E. Push FS. Default operand size

64-bits. (66H override causes 16-bit
operation).

0F A8 PUSH GS Valid Valid Push GS and decrement stack
pointer by 16 bits.

0F A8 PUSH GS N.E. Valid Push GS and decrement stack
pointer by 32 bits.

0F A8 PUSH GS Valid N.E. Push GS, default operand size
64-bits. (66H override causes 16-bit
operation).

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2B 4-179PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z
Description
Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16, 32 or 64 bits).
The operand-size attribute of the current code segment determines the amount the stack pointer
is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is decremented by 4. If both attributes are 16, the 16-bit SP register (stack
pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the stack, a sign-
extended value is pushed on the stack. If the source operand is the FS or GS and its size is less
than the address size of the stack, the zero-extended value is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-size
attribute. The D flag in the current code segment’s segment descriptor (with prefixes), deter-
mines the operand-size attribute and the address-size attribute of the source operand. Pushing a
16-bit operand when the stack address-size attribute is 32 can result in a misaligned stack pointer
(a stack pointer that is not be aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus if a PUSH instruction uses a memory operand in which the ESP register
is used for computing the operand address, the address of the operand is computed before the
ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the 64-bit RSP
register (stack pointer) is decremented by 8. A 66H override causes 16-bit operation. Note that
pushing a 16-bit operand can result in the stack pointer misaligned to 8-byte boundary.

IA-32 Architecture Compatibility
For IA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the
ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes
the new value of the SP register (that is the value after it has been decremented by 2).
4-180 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z
Operation
IF StackAddrSize = 64

THEN
IF OperandSize = 64

THEN
RSP ← (RSP − 8);
IF (SRC is FS or GS)

THEN
TEMP = ZeroExtend64(SRC);

ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;

ELSE
TEMP = SRC;

FI
RSP ← TEMP; (* Push quadword *)

ELSE (* OperandSize = 16; 66H used *)
RSP ← (RSP − 2);
RSP ← SRC; (* Push word *)

FI;
ELSE IF StackAddrSize = 32

THEN
IF OperandSize = 32

THEN
ESP ← (ESP − 4);
IF (SRC is FS or GS)

THEN
TEMP = ZeroExtend32(SRC);

ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); FI;

ELSE
TEMP = SRC;

FI;
SS:ESP ← TEMP; (* Push doubleword *)

ELSE (* OperandSize = 16*)
ESP ← (ESP − 2);
SS:ESP ← SRC; (* Push word *)

FI;
ELSE StackAddrSize = 16

IF OperandSize = 16
THEN

SP ← (SP − 2);
 SS:SP ← SRC; (* Push word *)

ELSE (* OperandSize = 32 *)
SP ← (SP − 4);
SS:SP ← SRC; (* Push doubleword *)

FI;
FI;

FI;
Vol. 2B 4-181PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-182 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z
PUSHA/PUSHAD—Push All General-Purpose Registers

Description
Pushes the contents of the general-purpose registers onto the stack. The registers are stored on
the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), EBP, ESI,
and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (original value),
BP, SI, and DI (if the operand-size attribute is 16). These instructions perform the reverse oper-
ation of the POPA/POPAD instructions. The value pushed for the ESP or SP register is its value
before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat
these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-
size attribute to determine the size of values to be pushed from the stack, regardless of the
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation
IF 64-bit Mode

THEN #UD

FI;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp ← (ESP);
Push(EAX);
Push(ECX);
Push(EDX);
Push(EBX);
Push(Temp);

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.

60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP,
EBP, ESI, and EDI.
Vol. 2B 4-183PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z
Push(EBP);
Push(ESI);
Push(EDI);

ELSE (* OperandSize = 16, PUSHA instruction *)
Temp ← (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(SI);
Push(DI);

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the starting or ending stack address is outside the stack segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions
#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#UD If in 64-bit mode.
4-184 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z
PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

Description
Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the
entire contents of the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if
the operand-size attribute is 16) and pushes the lower 16 bits of the EFLAGS register (that is,
the FLAGS register) onto the stack. These instructions reverse the operation of the
POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 and 17)
are not copied; instead, the values for these flags are cleared in the EFLAGS image stored on
the stack. See Chapter 3 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume
1, for more information about the EFLAGS register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer (RSP) by 8
and pushs RFLAGS on the stack. 16-bit operation is supported using the operand size override
prefix 66H. 32-bit operand size cannot be encoded in this mode. When copying RFLAGS to the
stack, the VM and RF flags (bits 16 and 17) are not copied; instead, values for these flags are
cleared in the RFLAGS image stored on the stack.

When in virtual-8086 mode and the I/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.
9C PUSHFD N.E. Valid Push EFLAGS.
9C PUSHFQ Valid N.E. Push RFLAGS.
Vol. 2B 4-185PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z
Operation
IF (PE = 0) or (PE = 1 and ((VM = 0) or (VM = 1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)

THEN
IF OperandSize = 32

THEN
push (EFLAGS AND 00FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64

THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)

ELSE
push (EFLAGS); (* Lower 16 bits only *)

FI;

ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)

FI;

Flags Affected
None.

Protected Mode Exceptions
#SS(0) If the new value of the ESP register is outside the stack segment boundary.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the I/O privilege level is less than 3.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.
4-186 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.
Vol. 2B 4-187PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z
PXOR—Logical Exclusive OR

Description
Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second
operand) and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Each bit of the result is 1 if the corresponding
bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are
the same.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST ← DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent
PXOR __m64 _mm_xor_si64 (__m64 m1, __m64 m2)

PXOR __m128i _mm_xor_si128 (__m128i a, __m128i b)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F EF /r PXOR mm, mm/m64 Valid Valid Bitwise XOR of mm/m64
and mm.

66 0F EF /r PXOR xmm1, xmm2/m128 Valid Valid Bitwise XOR of
xmm2/m128 and xmm1.
4-188 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte

boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-189PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

UD If CR0.EM[bit 2] = 1.

(128-bit operations only) If CR4.OSFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CR0.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.
4-190 Vol. 2B PXOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
RCL/RCR/ROL/ROR-—Rotate

Opcode** Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D0 /2 RCL r/m8, 1 Valid Valid Rotate 9 bits (CF, r/m8) left once.
REX + D0 /2 RCL r/m8*, 1 Valid N.E. Rotate 9 bits (CF, r/m8) left once.
D2 /2 RCL r/m8, CL Valid Valid Rotate 9 bits (CF, r/m8) left CL times.
REX + D2 /2 RCL r/m8*, CL Valid N.E. Rotate 9 bits (CF, r/m8) left CL

times.
C0 /2 ib RCL r/m8,

imm8
Valid Valid Rotate 9 bits (CF, r/m8) left imm8

times.
REX + C0 /2 ib RCL r/m8*,

imm8
Valid N.E. Rotate 9 bits (CF, r/m8) left imm8

times.
D1 /2 RCL r/m16, 1 Valid Valid Rotate 17 bits (CF, r/m16) left once.
D3 /2 RCL r/m16, CL Valid Valid Rotate 17 bits (CF, r/m16) left CL

times.
C1 /2 ib RCL r/m16,

imm8
Valid Valid Rotate 17 bits (CF, r/m16) left imm8

times.
D1 /2 RCL r/m32, 1 Valid Valid Rotate 33 bits (CF, r/m32) left once.
REX.W + D1 /2 RCL r/m64, 1 Valid N.E. Rotate 65 bits (CF, r/m64) left once.

Uses a 6 bit count.
D3 /2 RCL r/m32, CL Valid Valid Rotate 33 bits (CF, r/m32) left CL

times.
REX.W + D3 /2 RCL r/m64, CL Valid N.E. Rotate 65 bits (CF, r/m64) left CL

times. Uses a 6 bit count.
C1 /2 ib RCL r/m32,

imm8
Valid Valid Rotate 33 bits (CF, r/m32) left imm8

times.
REX.W + C1 /2
ib

RCL r/m64,
imm8

Valid N.E. Rotate 65 bits (CF, r/m64) left imm8
times. Uses a 6 bit count.

D0 /3 RCR r/m8, 1 Valid Valid Rotate 9 bits (CF, r/m8) right once.
REX + D0 /3 RCR r/m8*, 1 Valid N.E. Rotate 9 bits (CF, r/m8) right once.
D2 /3 RCR r/m8, CL Valid Valid Rotate 9 bits (CF, r/m8) right CL

times.
REX + D2 /3 RCR r/m8*, CL Valid N.E. Rotate 9 bits (CF, r/m8) right CL

times.
C0 /3 ib RCR r/m8,

imm8
Valid Valid Rotate 9 bits (CF, r/m8) right imm8

times.
REX + C0 /3 ib RCR r/m8*,

imm8
Valid N.E. Rotate 9 bits (CF, r/m8) right imm8

times.
D1 /3 RCR r/m16, 1 Valid Valid Rotate 17 bits (CF, r/m16) right

once.
D3 /3 RCR r/m16, CL Valid Valid Rotate 17 bits (CF, r/m16) right CL

times.
C1 /3 ib RCR r/m16,

imm8
Valid Valid Rotate 17 bits (CF, r/m16) right

imm8 times.
D1 /3 RCR r/m32, 1 Valid Valid Rotate 33 bits (CF, r/m32) right

once. Uses a 6 bit count.
Vol. 2B 4-191RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

REX.W + D1 /3 RCR r/m64, 1 Valid N.E. Rotate 65 bits (CF, r/m64) right
once. Uses a 6 bit count.

D3 /3 RCR r/m32, CL Valid Valid Rotate 33 bits (CF, r/m32) right CL
times.

REX.W + D3 /3 RCR r/m64, CL Valid N.E. Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

C1 /3 ib RCR r/m32,
imm8

Valid Valid Rotate 33 bits (CF, r/m32) right
imm8 times.

REX.W + C1 /3
ib

RCR r/m64,
imm8

Valid N.E. Rotate 65 bits (CF, r/m64) right
imm8 times. Uses a 6 bit count.

D0 /0 ROL r/m8, 1 Valid Valid Rotate 8 bits r/m8 left once.
REX + D0 /0 ROL r/m8*, 1 Valid N.E. Rotate 8 bits r/m8 left once
D2 /0 ROL r/m8, CL Valid Valid Rotate 8 bits r/m8 left CL times.
REX + D2 /0 ROL r/m8*, CL Valid N.E. Rotate 8 bits r/m8 left CL times.
C0 /0 ib ROL r/m8,

imm8
Valid Valid Rotate 8 bits r/m8 left imm8 times.

REX + C0 /0 ib ROL r/m8*,
imm8

Valid N.E. Rotate 8 bits r/m8 left imm8 times.

D1 /0 ROL r/m16, 1 Valid Valid Rotate 16 bits r/m16 left once.
D3 /0 ROL r/m16, CL Valid Valid Rotate 16 bits r/m16 left CL times.
C1 /0 ib ROL r/m16,

imm8
Valid Valid Rotate 16 bits r/m16 left imm8 times.

D1 /0 ROL r/m32, 1 Valid Valid Rotate 32 bits r/m32 left once.
REX.W + D1 /0 ROL r/m64, 1 Valid N.E. Rotate 64 bits r/m64 left once. Uses

a 6 bit count.
D3 /0 ROL r/m32, CL Valid Valid Rotate 32 bits r/m32 left CL times.
REX.W + D3 /0 ROL r/m64, CL Valid N.E. Rotate 64 bits r/m64 left CL times.

Uses a 6 bit count.
C1 /0 ib ROL r/m32,

imm8
Valid Valid Rotate 32 bits r/m32 left imm8 times.

C1 /0 ib ROL r/m64,
imm8

Valid N.E. Rotate 64 bits r/m64 left imm8 times.
Uses a 6 bit count.

D0 /1 ROR r/m8, 1 Valid Valid Rotate 8 bits r/m8 right once.
REX + D0 /1 ROR r/m8*, 1 Valid N.E. Rotate 8 bits r/m8 right once.
D2 /1 ROR r/m8, CL Valid Valid Rotate 8 bits r/m8 right CL times.
REX + D2 /1 ROR r/m8*, CL Valid N.E. Rotate 8 bits r/m8 right CL times.
C0 /1 ib ROR r/m8,

imm8
Valid Valid Rotate 8 bits r/m16 right imm8

times.
REX + C0 /1 ib ROR r/m8*,

imm8
Valid N.E. Rotate 8 bits r/m16 right imm8

times.
D1 /1 ROR r/m16, 1 Valid Valid Rotate 16 bits r/m16 right once.
D3 /1 ROR r/m16, CL Valid Valid Rotate 16 bits r/m16 right CL times.
C1 /1 ib ROR r/m16,

imm8
Valid Valid Rotate 16 bits r/m16 right imm8

times.
D1 /1 ROR r/m32, 1 Valid Valid Rotate 32 bits r/m32 right once.
4-192 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
Description
Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination operand.
The destination operand can be a register or a memory location; the count operand is an unsigned
integer that can be an immediate or a value in the CL register. In legacy and compatibility mode,
the processor restricts the count to a number between 0 and 31 by masking all the bits in the
count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward
more-significant bit positions, except for the most-significant bit, which is rotated to the least-
significant bit location. The rotate right (ROR) and rotate through carry right (RCR) instructions
shift all the bits toward less significant bit positions, except for the least-significant bit, which
is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag. The
RCR instruction shifts the CF flag into the most-significant bit and shifts the least-significant bit
into the CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a
part of the result, but the CF flag receives a copy of the bit that was shifted from one end to the
other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except that a
zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the
exclusive OR of the CF bit (after the rotate) and the most-significant bit of the result. For right
rotates, the OF flag is set to the exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Use of REX.W promotes the first operand to 64 bits and causes the count operand to
become a 6-bit counter.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

REX.W + D1 /1 ROR r/m64, 1 Valid N.E. Rotate 64 bits r/m64 right once.
Uses a 6 bit count.

D3 /1 ROR r/m32, CL Valid Valid Rotate 32 bits r/m32 right CL times.
REX.W + D3 /1 ROR r/m64, CL Valid N.E. Rotate 64 bits r/m64 right CL times.

Uses a 6 bit count.
C1 /1 ib ROR r/m32,

imm8
Valid Valid Rotate 32 bits r/m32 right imm8

times.
REX.W + C1 /1
ib

ROR r/m64,
imm8

Valid N.E. Rotate 64 bits r/m64 right imm8
times. Uses a 6 bit count.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
** See IA-32 Architecture Compatibility section below.
Vol. 2B 4-193RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
IA-32 Architecture Compatibility
The 8086 does not mask the rotation count. However, all other IA-32 processors (starting with
the Intel 286 processor) do mask the rotation count to 5 bits, resulting in a maximum count of
31. This masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF

SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 9;
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 17;
SIZE ← 32: tempCOUNT ← COUNT AND 1FH;
SIZE ← 64: tempCOUNT ← COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + CF;
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;

(* RCR instruction operation *)
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
WHILE (tempCOUNT ≠ 0)

DO
tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (CF * 2SIZE);
CF ← tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;

(* ROL and ROR instructions *)
SIZE ← OperandSize;
CASE (determine count) OF
4-194 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
SIZE ← 8: tempCOUNT ← (COUNT AND 1FH) MOD 8; (* Mask count before MOD *)
SIZE ← 16: tempCOUNT ← (COUNT AND 1FH) MOD 16;
SIZE ← 32: tempCOUNT ← (COUNT AND 1FH) MOD 32;
SIZE ← 64: tempCOUNT ← (COUNT AND 1FH) MOD 64;

ESAC;

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← MSB(DEST);
DEST ← (DEST ∗ 2) + tempCF;
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← LSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR CF;
ELSE OF is undefined;

FI;
FI;

(* ROR instruction operation *)
IF tempCOUNT > 0) (* Prevent updates to CF *)

WHILE (tempCOUNT ≠ 0)
DO

tempCF ← LSB(SRC);
DEST ← (DEST / 2) + (tempCF ∗ 2SIZE);
tempCOUNT ← tempCOUNT – 1;

OD;
ELIHW;
CF ← MSB(DEST);
IF COUNT = 1

THEN OF ← MSB(DEST) XOR MSB − 1(DEST);
ELSE OF is undefined;

FI;
FI;

Flags Affected
The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-
bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and
PF flags are not affected.
Vol. 2B 4-195RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the source operand is located in a nonwritable segment.

If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-196 Vol. 2B RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z
RCPPS—Compute Reciprocals of Packed Single-Precision
Floating-Point Values

Description
Performs an SIMD computation of the approximate reciprocals of the four packed single-
precision floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand can be
an XMM register or a 128-bit memory location. The destination operand is an XMM register.
See Figure 10-5 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
an illustration of an SIMD single-precision floating-point operation.

The relative error for this approximation is:

|Relative Error| ≤ 1.5 ∗ 2−12

The RCPPS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an ∞ of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). Tiny results are always flushed to 0.0, with the sign
of the operand. (Input values greater than or equal to |1.11111111110100000000000B∗2125| are
guaranteed to not produce tiny results; input values less than or equal to
|1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in turn
flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is
converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] ← APPROXIMATE(1.0/(SRC[63:32]));
DEST[95:64] ← APPROXIMATE(1.0/(SRC[95:64]));
DEST[127:96] ← APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RCCPS __m128 _mm_rcp_ps(__m128 a)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 53 /r RCPPS xmm1,
xmm2/m128

Valid Valid Computes the approximate reciprocals of
the packed single-precision floating-point
values in xmm2/m128 and stores the
results in xmm1.
Vol. 2B 4-197RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, N-Z
SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-198 Vol. 2B RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-199RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, N-Z
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-
Point Values

Description
Computes of an approximate reciprocal of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Figure 10-6 in the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-point
operation.

The relative error for this approximation is:
|Relative Error| ≤ 1.5 ∗ 2−12

The RCPSS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an ∞ of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). Tiny results are always flushed to 0.0, with the sign
of the operand. (Input values greater than or equal to |1.11111111110100000000000B∗2125| are
guaranteed to not produce tiny results; input values less than or equal to
|1.00000000000110000000001B*2126| are guaranteed to produce tiny results, which are in turn
flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is
converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← APPROX (1.0/(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RCPSS __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F
53 /r

RCPSS xmm1,
xmm2/m32

Valid Valid Computes the approximate reciprocal of
the scalar single-precision floating-point
value in xmm2/m32 and stores the result
in xmm1.
4-200 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-201RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-202 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
RDMSR—Read from Model Specific Register

Description
Loads the contents of a 64-bit model specific register (MSR) specified in an index register into
registers EDX:EAX. The input value loaded into the index register is the address of the MSR to
be read. The EDX register is loaded with the high-order 32 bits of the MSR and the EAX register
is loaded with the low-order 32 bits. If fewer than 64 bits are implemented in the MSR being
read, the values returned to EDX:EAX in unimplemented bit locations are undefined. In non-
64-bit mode, the index register is specified in ECX. In 64-bit mode, the index register is speci-
fied in RCX and the higher 32-bits of RDX and RAX are cleared.
This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.
The MSRs control functions for testability, execution tracing, performance-monitoring, and
machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3B, lists all the MSRs that can be read with
this instruction and their addresses. Note that each processor family has its own set of MSRs.
The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

IA-32 Architecture Compatibility
The MSRs and the ability to read them with the RDMSR instruction were introduced into the
IA-32 Architecture with the Pentium processor. Execution of this instruction by an IA-32
processor earlier than the Pentium processor results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 32 RDMSR Valid Valid Load MSR specified by ECX into
EDX:EAX.

REX.W + 0F 32 RDMSR Valid N.E. Load MSR specified by RCX into
RDX:RAX.

NOTES:
* See IA-32 Architecture Compatibility section below.
Vol. 2B 4-203RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, N-Z
Operation

IF 64-Bit Mode and REX.W used
THEN

RAX[31:0] ← MSR(RCX)[31:0];
RAX[63:32] ← 0];
RDX[31:0] ← MSR(RCX)[63:32];
RDX[63:32] ← 0];

ELSE
(* Non-64-bit modes, 64-bit mode default *)
EDX-EAX ← MSR[ECX];

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimplemented MSR
address.
4-204 Vol. 2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, N-Z
RDPMC—Read Performance-Monitoring Counters

Description
Loads the 40-bit performance-monitoring counter specified in the ECX register into registers
EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter and the EAX
register is loaded with the low-order 32 bits. The counter to be read is specified with an unsigned
integer placed in the ECX register.

The indices used to specify performance counters are model-specific and may vary by processor
implementations. See Table 4-2 for valid indices for each processor family.

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow” (40-bit) reads
on the first 18 performance counters. Selected this option using ECX[bit 31]. If bit 31 is set,
RDPMC reads only the low 32 bits of the selected performance counter. If bit 31 is clear, all 40
bits are read. A 32-bit result is returned in EAX and EDX is set to 0. A 32-bit read executes faster
on Pentium 4 processors and Intel Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 are 32-bit
counters. EDX is cleared after executing RDPMC for these counters.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.

Table 4-2. Valid Performance Counter Index Range for RDPMC

Processor Family
CPUID Family/Model/
Other Signatures

Valid PMC
Index Range 40-bit Counters

P6 Family 06H 0, 1 0, 1
Pentium 4, Intel Xeon processors Family 0FH; Model 00H,

01H, 02H
≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon processors (Family 0FH; Model 03H,
04H, 06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors Family 06H, Model 09H,
0DH

0, 1 0, 1

64-bit Intel Xeon processors with
L3 (see Chapter 18 of IA-32
Intel® Architecture Software
Developer’s Manual, Volume 3B)

(Family 0FH; Model 03H,
04H) and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel®
Core™ Duo processors

Family 06H, Model 0EH 0, 1 0, 1
Vol. 2B 4-205RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z
When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE)
flag in register CR4 restricts the use of the RDPMC instruction as follows. When the PCE flag
is set, the RDPMC instruction can be executed at any privilege level; when the flag is clear, the
instruction can only be executed at privilege level 0. (When in real-address mode, the RDPMC
instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when
executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to count
events such as the number of instructions decoded, number of interrupts received, or number of
cache loads. Appendix A, “Performance Monitoring Events,” in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, lists the events that can be counted for the Pentium 4,
Intel Xeon, and earlier IA-32 processors.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the
events caused by the preceding instructions have been completed or that events caused by subse-
quent instructions have not begun. If an exact event count is desired, software must insert a seri-
alizing instruction (such as the CPUID instruction) before and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are not guaran-
teed to be monotonic. To guarantee monotonicity on back-to-back reads, a serializing instruction
must be placed between the tow RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however,
the full contents of the ECX register are used to select the counter, and the event count is stored
in the full EAX and EDX registers. The RDPMC instruction was introduced into the IA-32
Architecture in the Pentium Pro processor and the Pentium processor with MMX technology.
The earlier Pentium processors have performance-monitoring counters, but they must be read
with the RDMSR instruction.

In 64-bit mode, RDPMC behavior is unchanged from 32-bit mode. The upper 32 bits of RAX
and RDX are cleared.

Operation
(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN

EAX ← PMC(ECX)[31:0];

EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)

#GP(0);

FI;

(* Processors with CPUID family 15 *)

IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)
4-206 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z
THEN IF ECX[31] = 0

THEN IF 64-Bit Mode

THEN

RAX[31:0] ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)

RAX[63:32] ← 0;

RDX[31:0] ← PMC(ECX[30:0])[39:32];

RDX[63:32] ← 0;

ELSE

EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)

EDX ← PMC(ECX[30:0])[39:32];

FI;

ELSE IF ECX[31] = 1

THEN IF 64-Bit Mode

THEN

RAX[31:0] ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

RAX[63:32] ← 0;

RDX ← 0;

ELSE

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

FI;

ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)

EDX ← 0;

FI;

ELSE (* Invalid PMC index in ECX[30:0], see Table 4-4. *)
GP(0);

FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);

FI;
Vol. 2B 4-207RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register

is clear.

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Real-Address Mode Exceptions
#GP If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Virtual-8086 Mode Exceptions
#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4 register

is clear.

If an invalid performance counter index is specified in ECX[30:0] (see
Table 4-2).
4-208 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z
RDTSC—Read Time-Stamp Counter

Description
In legacy, compatibility and default 64-bit mode; loads the current value of the processor’s time-
stamp counter into the EDX:EAX registers. The time-stamp counter is contained in a 64-bit
MSR. The high-order 32 bits of the MSR are loaded into the EDX register, and the low-order 32
bits are loaded into the EAX register.

The processor monotonically increments the time-stamp counter MSR every clock cycle and
resets it to 0 whenever the processor is reset. See “Time Stamp Counter” in Chapter 18 of the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B, for specific details of the
time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register CR4
restricts the use of the RDTSC instruction as follows. When the TSD flag is clear, the RDTSC
instruction can be executed at any privilege level; when the flag is set, the instruction can only
be executed at privilege level 0. (When in real-address mode, the RDTSC instruction is always
enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when executing at priv-
ilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent
instructions may begin execution before the read operation is performed.

This instruction was introduced by the Pentium processor.

In 64-bit mode, RDTSC behavior is unchanged from 32-bit mode. The upper 32 bits of RAX
and RDX are cleared.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.
Vol. 2B 4-209RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, N-Z
Operation
IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)

THEN
IF 64-Bit Mode

THEN
RAX[31:0] ← TimeStampCounter[31:0];
RAX[63:32] ← 0;
RDX[31:0] ← TimeStampCounter[63:32];
RDX[63:32] ← 0;

ELSE
EDX:EAX ← TimeStampCounter;

FI;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-210 Vol. 2B RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, N-Z
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 6C REP INS m8, DX Valid Valid Input (E)CX bytes from port DX
into ES:[(E)DI].

F3 6C REP INS m8, DX Valid N.E. Input RCX bytes from port DX
into [RDI].

F3 6D REP INS m16, DX Valid Valid Input (E)CX words from port DX
into ES:[(E)DI.]

F3 6D REP INS m32, DX Valid Valid Input (E)CX doublewords from
port DX into ES:[(E)DI].

F3 6D REP INS r/m32, DX Valid N.E. Input RCX default size from port
DX into [RDI].

F3 A4 REP MOVS m8, m8 Valid Valid Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

REX.W + F3 A4 REP MOVS m8, m8 Valid N.E. Move RCX bytes from [RSI] to
[RDI].

F3 A5 REP MOVS m16,
m16

Valid Valid Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

F3 A5 REP MOVS m32,
m32

Valid Valid Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

REX.W + F3 A5 REP MOVS m64,
m64

Valid N.E. Move RCX quadwords from
[RSI] to [RDI].

F3 6E REP OUTS DX,
r/m8

Valid Valid Output (E)CX bytes from
DS:[(E)SI] to port DX.

REX.W + F3 6E REP OUTS DX,
r/m8*

Valid N.E. Output RCX bytes from [RSI] to
port DX.

F3 6F REP OUTS DX,
r/m16

Valid Valid Output (E)CX words from
DS:[(E)SI] to port DX.

F3 6F REP OUTS DX,
r/m32

Valid Valid Output (E)CX doublewords from
DS:[(E)SI] to port DX.

REX.W + F3 6F REP OUTS DX,
r/m32

Valid N.E. Output RCX default size from
[RSI] to port DX.

F3 AC REP LODS AL Valid Valid Load (E)CX bytes from
DS:[(E)SI] to AL.

REX.W + F3 AC REP LODS AL Valid N.E. Load RCX bytes from [RSI] to
AL.

F3 AD REP LODS AX Valid Valid Load (E)CX words from
DS:[(E)SI] to AX.

F3 AD REP LODS EAX Valid Valid Load (E)CX doublewords from
DS:[(E)SI] to EAX.

REX.W + F3 AD REP LODS RAX Valid N.E. Load RCX quadwords from [RSI]
to RAX.
Vol. 2B 4-211REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z
F3 AA REP STOS m8 Valid Valid Fill (E)CX bytes at ES:[(E)DI]
with AL.

REX.W + F3 AA REP STOS m8 Valid N.E. Fill RCX bytes at [RDI] with AL.
F3 AB REP STOS m16 Valid Valid Fill (E)CX words at ES:[(E)DI]

with AX.
F3 AB REP STOS m32 Valid Valid Fill (E)CX doublewords at

ES:[(E)DI] with EAX.
REX.W + F3 AB REP STOS m64 Valid N.E. Fill RCX quadwords at [RDI] with

RAX.
F3 A6 REPE CMPS m8,

m8
Valid Valid Find nonmatching bytes in

ES:[(E)DI] and DS:[(E)SI].
REX.W + F3 A6 REPE CMPS m8,

m8
Valid N.E. Find non-matching bytes in [RDI]

and [RSI].
F3 A7 REPE CMPS m16,

m16
Valid Valid Find nonmatching words in

ES:[(E)DI] and DS:[(E)SI].
F3 A7 REPE CMPS m32,

m32
Valid Valid Find nonmatching doublewords

in ES:[(E)DI] and DS:[(E)SI].
REX.W + F3 A7 REPE CMPS m64,

m64
Valid N.E. Find non-matching quadwords in

[RDI] and [RSI].
F3 AE REPE SCAS m8 Valid Valid Find non-AL byte starting at

ES:[(E)DI].
REX.W + F3 AE REPE SCAS m8 Valid N.E. Find non-AL byte starting at

[RDI].
F3 AF REPE SCAS m16 Valid Valid Find non-AX word starting at

ES:[(E)DI].
F3 AF REPE SCAS m32 Valid Valid Find non-EAX doubleword

starting at ES:[(E)DI].
REX.W + F3 AF REPE SCAS m64 Valid N.E. Find non-RAX quadword starting

at [RDI].
F2 A6 REPNE CMPS m8,

m8
Valid Valid Find matching bytes in

ES:[(E)DI] and DS:[(E)SI].
REX.W + F2 A6 REPNE CMPS m8,

m8
Valid N.E. Find matching bytes in [RDI] and

[RSI].
F2 A7 REPNE CMPS

m16, m16
Valid Valid Find matching words in

ES:[(E)DI] and DS:[(E)SI].
F2 A7 REPNE CMPS

m32, m32
Valid Valid Find matching doublewords in

ES:[(E)DI] and DS:[(E)SI].
REX.W + F2 A7 REPNE CMPS

m64, m64
Valid N.E. Find matching doublewords in

[RDI] and [RSI].

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
4-212 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z
Description
Repeats a string instruction the number of times specified in the count register or until the indi-
cated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal),
REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while not zero)
mnemonics are prefixes that can be added to one of the string instructions. The REP prefix can
be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE, REPNE,
REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and
REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respectively.) The
behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instruc-
tions, use the LOOP instruction or another looping construct. All of these repeat prefixes cause
the associated instruction to be repeated until the count in register is decremented to 0. See
Table 4-3.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after each
iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the count register with a JECXZ instruction or by testing the ZF flag (with a JZ, JNZ, or
JNE instruction).

F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
REX.W + F2 AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].
F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].
REX.W + F2 AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.

Table 4-3. Repeat Prefixes
Repeat Prefix Termination Condition 1* Termination Condition 2

REP RCX or (E)CX = 0 None

REPE/REPZ RCX or (E)CX = 0 ZF = 0

REPNE/REPNZ RCX or (E)CX = 0 ZF = 1

NOTES:
* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In 64-bit

mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W prefix is
used.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
Vol. 2B 4-213REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z
When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute. Note that a REP STOS instruction is the fastest way to
initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for REP INS
and REP OUTS; it is ECX for other instructions. REX.W does not promote operation to 64-bit
for REP INS and REP OUTS. However, using an REX prefix in the form of REX.W does
promote operation to 64-bit operands for other REP/REPNE/REPZ/REPNZ instructions. See
the summary chart at the beginning of this section for encoding data and limits.

Operation
IF AddressSize = 16

THEN
Use CX for CountReg;

ELSE IF AddressSize = 64 and REX.W used
THEN Use RCX for CountReg; FI;

ELSE
Use ECX for CountReg;

FI;
WHILE CountReg ≠ 0

DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg ← (CountReg – 1);
IF CountReg = 0

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;
4-214 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Exceptions (All Operating Modes)
None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.
Vol. 2B 4-215REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z
RET—Return from Procedure

Description
Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

• Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

• Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

• Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section
titled “Calling Procedures Using Call and RET” in Chapter 6 of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for detailed information on near, far, and inter-privi-
lege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

C3 RET Valid Valid Near return to calling procedure.
CB RET Valid Valid Far return to calling procedure.
C2 iw RET imm16 Valid Valid Near return to calling procedure and pop

imm16 bytes from stack.
CA iw RET imm16 Valid Valid Far return to calling procedure and pop

imm16 bytes from stack.
4-216 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64 bits.

Operation
(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32

THEN
IF top 4 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();

ELSE
IF OperandSize = 64

THEN
IF top 8 bytes of stack not within stack limits

THEN #SS(0); FI;
RIP ← Pop();

ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

FI;
FI;

IF instruction has immediate operand
THEN IF StackAddressSize = 32

THEN
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE
IF StackAddressSize = 64

THEN
Vol. 2B 4-217RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
RSP ← RSP + SRC; (* Release parameters from stack *)
ELSE (* StackAddressSize = 16 *)

SP ← SP + SRC; (* Release parameters from stack *)
FI;

FI;
FI;

FI;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return

THEN
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempEIP ← tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;
CS ← Pop(); (* 16-bit pop *)

FI;
IF instruction has immediate operand

THEN
SP ← SP + (SRC AND FFFFH); (* Release parameters from stack *)

FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far RET

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
4-218 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming and return code
segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;

FI;
FI;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
ESP ← ESP + SRC; (* Release parameters from stack *)

FI;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector
Vol. 2B 4-219RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 16 *)
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP ← tempESP;
SS ← tempSS;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* Segment selector invalid *)
FI;

OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’s DPL < CPL or RPL of code segment’s
segment selector

THEN SegmentSelector ← 0; (* Segment selector invalid *)
OD;
4-220 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
ESP ← ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* IA-32e Mode *)
IF (PE = 1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far RET

THEN
IF OperandSize = 32

THEN
IF second doubleword on stack is not within stack limits

THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space

THEN #SS(0); FI;
ELSE

IF OperandSize = 16
THEN

IF second word on stack is not within stack limits
THEN #SS(0); FI;

IF first or second word on stack is not in canonical space
THEN #SS(0); FI;

ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space

THEN #SS(0); FI;
FI

FI;
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space

THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL ≠ return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;
Vol. 2B 4-221RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
FI;
FI;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
ESP ← ESP + SRC; (* Release parameters from stack *)

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP ← ESP + SRC; (* Release parameters from stack *)

FI;
FI;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;
IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL

THEN
IF new CS descriptor L-bit = 0

THEN #GP(selector);
IF stack segment selector RPL = 3

THEN #GP(selector);
FI;
IF return stack segment descriptor is not within descriptor table limits

THEN #GP(selector); FI;
IF return stack segment descriptor is in non-canonical address space

THEN #GP(selector); FI;
4-222 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL ≠ RPL of the return code segment selector

THEN #GP(selector); FI;
IF stack segment not present

THEN #SS(StackSegmentSelector); FI;
IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space

THEN #GP(0); FI;
CPL ← ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32

THEN
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE
IF OperandSize = 16

THEN
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* release parameters from called
procedure’s stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP ← tempESP;
SS ← tempSS;

ELSE (* OperandSize = 64 *)
RIP ← Pop();
CS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)
CS(RPL) ← CPL;
ESP ← ESP + SRC; (* Release parameters from called procedure’s
stack *)
tempESP ← Pop();
tempSS ← Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)
ESP ← tempESP;
Vol. 2B 4-223RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
SS ← tempSS;
FI;

FI;

FOR each of segment register (ES, FS, GS, and DS)
DO

IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
FI;

OD;

For each of ES, FS, GS, and DS
DO

IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor’s DPL < CPL or RPL of code segment’s segment selector

THEN SegmentSelector ← 0; (* SegmentSelector invalid *)
OD;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code segment limit

#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

If the return code segment descriptor does not indicate a code segment.

If the return code segment is non-conforming and the segment selector’s
DPL is not equal to the RPL of the code segment’s segment selector

If the return code segment is conforming and the segment selector’s DPL
greater than the RPL of the code segment’s segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.
4-224 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

#SS(0) If the top bytes of stack are not within stack limits.

If the return stack segment is not present.

#NP(selector) If the return code segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions
#GP(0) If the return instruction pointer is not within the return code segment limit

#SS(0) If the top bytes of stack are not within stack limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory access occurs when alignment checking is
enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.

If the stack segment selector is NULL going back to compatibility mode.

If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to
non-CPL3 64-bit mode.

If the return code segment selector is NULL.

#GP(selector) If the proposed segment descriptor for a code segment does not indicate it
is a code segment.

If the proposed new code segment descriptor has both the D-bit and L-bit
set.
Vol. 2B 4-225RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical address
to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-226 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z
RSM—Resume from System Management Mode

Description
Returns program control from system management mode (SMM) to the application program or
operating-system procedure that was interrupted when the processor received an SMM inter-
rupt. The processor’s state is restored from the dump created upon entering SMM. If the
processor detects invalid state information during state restoration, it enters the shutdown state.
The following invalid information can cause a shutdown:

• Any reserved bit of CR4 is set to 1.

• Any illegal combination of bits in CR0, such as (PG=1 and PE=0) or (NW=1 and CD=0).

• (Intel Pentium and Intel486 processors only.) The value stored in the state dump base field
is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-64-bit modes
and 64-bit mode.

See Chapter 24, “System Management,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3B, for more information about SMM and the behavior of the RSM instruction.

Operation
ReturnFromSMM;
IF (IA-32e mode supported)

THEN
ProcessorState ← Restore(SMMDump(IA-32e SMM STATE MAP));

Else
ProcessorState ← Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));

FI

Flags Affected
All.

Protected Mode Exceptions
#UD If an attempt is made to execute this instruction when the processor is not

in SMM.

Opcode Instruction

Non-
SMM
Mode SMM Mode Description

0F AA RSM Invalid Valid Resume operation of interrupted
program.
Vol. 2B 4-227RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-228 Vol. 2B RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, N-Z
RSQRTPS—Compute Reciprocals of Square Roots of Packed
Single-Precision Floating-Point Values

Description
Performs an SIMD computation of the approximate reciprocals of the square roots of the four
packed single-precision floating-point values in the source operand (second operand) and stores
the packed single-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD single-precision floating-point operation.

The relative error for this approximation is:
|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an ∞ of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). When a source value is a negative value (other than
−0.0), a floating-point indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] ← APPROXIMATE(1.0/SQRT(SRC[63:32]));
DEST[95:64] ← APPROXIMATE(1.0/SQRT(SRC[95:64]));
DEST[127:96] ← APPROXIMATE(1.0/SQRT(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 52 /r RSQRTPS xmm1,
xmm2/m128

Valid Valid Computes the approximate reciprocals
of the square roots of the packed
single-precision floating-point values in
xmm2/m128 and stores the results in
xmm1.
Vol. 2B 4-229RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-230 Vol. 2B RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-231RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

Description
Computes an approximate reciprocal of the square root of the low single-precision floating-
point value in the source operand (second operand) stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the IA-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision
floating-point operation.

The relative error for this approximation is:
|Relative Error| ≤ 1.5 ∗ 2−12

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an ∞ of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). When a source value is a negative value (other than
−0.0), a floating-point indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← APPROXIMATE(1.0/SQRT(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTSS __m128 _mm_rsqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 52 /r RSQRTSS xmm1,
xmm2/m32

Valid Valid Computes the approximate reciprocal of
the square root of the low single-precision
floating-point value in xmm2/m32 and
stores the results in xmm1.
4-232 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-233RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-234 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z
SAHF—Store AH into Flags

Description
Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corre-
sponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register
AH are ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS register remain as
shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid
in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation
IF IA-64 Mode

THEN
IF CPUID.80000001.ECX[0] = 1;

THEN
RFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;

ELSE
#UD;

FI
ELSE

EFLAGS(SF:ZF:0:AF:0:PF:1:CF) ← AH;
FI;

Flags Affected
The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5
of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH
into EFLAGS register.

* Valid in specific steppings. See Description section.
Vol. 2B 4-235SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0] = 0.
4-236 Vol. 2B SAHF—Store AH into Flags

INSTRUCTION SET REFERENCE, N-Z
SAL/SAR/SHL/SHR—Shift

Opcode*** Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D0 /4 SAL r/m8, 1 Valid Valid Multiply r/m8 by 2, once.
REX + D0 /4 SAL r/m8**, 1 Valid N.E. Multiply r/m8 by 2, once.
D2 /4 SAL r/m8, CL Valid Valid Multiply r/m8 by 2, CL times.
REX + D2 /4 SAL r/m8**, CL Valid N.E. Multiply r/m8 by 2, CL times.
C0 /4 ib SAL r/m8, imm8 Valid Valid Multiply r/m8 by 2, imm8

times.
REX + C0 /4 ib SAL r/m8**, imm8 Valid N.E. Multiply r/m8 by 2, imm8

times.
D1 /4 SAL r/m16, 1 Valid Valid Multiply r/m16 by 2, once.
D3 /4 SAL r/m16, CL Valid Valid Multiply r/m16 by 2, CL times.
C1 /4 ib SAL r/m16, imm8 Valid Valid Multiply r/m16 by 2, imm8

times.
D1 /4 SAL r/m32, 1 Valid Valid Multiply r/m32 by 2, once.
REX.W + D1 /4 SAL r/m64, 1 Valid N.E. Multiply r/m64 by 2, once.
D3 /4 SAL r/m32, CL Valid Valid Multiply r/m32 by 2, CL times.
REX.W + D3 /4 SAL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.
C1 /4 ib SAL r/m32, imm8 Valid Valid Multiply r/m32 by 2, imm8

times.
REX.W + C1 /4 ib SAL r/m64, imm8 Valid N.E. Multiply r/m64 by 2, imm8

times.
D0 /7 SAR r/m8, 1 Valid Valid Signed divide* r/m8 by 2,

once.
REX + D0 /7 SAR r/m8**, 1 Valid N.E. Signed divide* r/m8 by 2,

once.
D2 /7 SAR r/m8, CL Valid Valid Signed divide* r/m8 by 2, CL

times.
REX + D2 /7 SAR r/m8**, CL Valid N.E. Signed divide* r/m8 by 2, CL

times.
C0 /7 ib SAR r/m8, imm8 Valid Valid Signed divide* r/m8 by 2,

imm8 time.
REX + C0 /7 ib SAR r/m8**, imm8 Valid N.E. Signed divide* r/m8 by 2,

imm8 times.
D1 /7 SAR r/m16,1 Valid Valid Signed divide* r/m16 by 2,

once.
D3 /7 SAR r/m16, CL Valid Valid Signed divide* r/m16 by 2, CL

times.
C1 /7 ib SAR r/m16, imm8 Valid Valid Signed divide* r/m16 by 2,

imm8 times.
D1 /7 SAR r/m32, 1 Valid Valid Signed divide* r/m32 by 2,

once.
REX.W + D1 /7 SAR r/m64, 1 Valid N.E. Signed divide* r/m64 by 2,

once.
Vol. 2B 4-237SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D3 /7 SAR r/m32, CL Valid Valid Signed divide* r/m32 by 2, CL
times.

REX.W + D3 /7 SAR r/m64, CL Valid N.E. Signed divide* r/m64 by 2, CL
times.

C1 /7 ib SAR r/m32, imm8 Valid Valid Signed divide* r/m32 by 2,
imm8 times.

REX.W + C1 /7 ib SAR r/m64, imm8 Valid N.E. Signed divide* r/m64 by 2,
imm8 times

D0 /4 SHL r/m8, 1 Valid Valid Multiply r/m8 by 2, once.
REX + D0 /4 SHL r/m8**, 1 Valid N.E. Multiply r/m8 by 2, once.
D2 /4 SHL r/m8, CL Valid Valid Multiply r/m8 by 2, CL times.
REX + D2 /4 SHL r/m8**, CL Valid N.E. Multiply r/m8 by 2, CL times.
C0 /4 ib SHL r/m8, imm8 Valid Valid Multiply r/m8 by 2, imm8

times.
REX + C0 /4 ib SHL r/m8**, imm8 Valid N.E. Multiply r/m8 by 2, imm8

times.
D1 /4 SHL r/m16,1 Valid Valid Multiply r/m16 by 2, once.
D3 /4 SHL r/m16, CL Valid Valid Multiply r/m16 by 2, CL times.
C1 /4 ib SHL r/m16, imm8 Valid Valid Multiply r/m16 by 2, imm8

times.
D1 /4 SHL r/m32,1 Valid Valid Multiply r/m32 by 2, once.
REX.W + D1 /4 SHL r/m64,1 Valid N.E. Multiply r/m64 by 2, once.
D3 /4 SHL r/m32, CL Valid Valid Multiply r/m32 by 2, CL times.
REX.W + D3 /4 SHL r/m64, CL Valid N.E. Multiply r/m64 by 2, CL times.
C1 /4 ib SHL r/m32, imm8 Valid Valid Multiply r/m32 by 2, imm8

times.
REX.W + C1 /4 ib SHL r/m64, imm8 Valid N.E. Multiply r/m64 by 2, imm8

times.
D0 /5 SHR r/m8,1 Valid Valid Unsigned divide r/m8 by 2,

once.
REX + D0 /5 SHR r/m8**, 1 Valid N.E. Unsigned divide r/m8 by 2,

once.
D2 /5 SHR r/m8, CL Valid Valid Unsigned divide r/m8 by 2, CL

times.
REX + D2 /5 SHR r/m8**, CL Valid N.E. Unsigned divide r/m8 by 2, CL

times.
C0 /5 ib SHR r/m8, imm8 Valid Valid Unsigned divide r/m8 by 2,

imm8 times.
REX + C0 /5 ib SHR r/m8**, imm8 Valid N.E. Unsigned divide r/m8 by 2,

imm8 times.
D1 /5 SHR r/m16, 1 Valid Valid Unsigned divide r/m16 by 2,

once.
D3 /5 SHR r/m16, CL Valid Valid Unsigned divide r/m16 by 2,

CL times
C1 /5 ib SHR r/m16, imm8 Valid Valid Unsigned divide r/m16 by 2,

imm8 times.
4-238 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
Description
Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or the CL register. The count is masked to 5 bits (or 6 bits if in 64-bit mode and
REX.W is used). The count range is limited to 0 to 31 (or 63 if 64-bit mode and REX.W is used).
A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 7-7 in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most signifi-
cant bit is either set or cleared depending on the instruction type. The SHR instruction clears
the most significant bit (see Figure 7-8 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1); the SAR instruction sets or clears the most significant bit to correspond to
the sign (most significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted value (see
Figure 7-9 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D1 /5 SHR r/m32, 1 Valid Valid Unsigned divide r/m32 by 2,
once.

REX.W + D1 /5 SHR r/m64, 1 Valid N.E. Unsigned divide r/m64 by 2,
once.

D3 /5 SHR r/m32, CL Valid Valid Unsigned divide r/m32 by 2,
CL times.

REX.W + D3 /5 SHR r/m64, CL Valid N.E. Unsigned divide r/m64 by 2,
CL times.

C1 /5 ib SHR r/m32, imm8 Valid Valid Unsigned divide r/m32 by 2,
imm8 times.

REX.W + C1 /5 ib SHR r/m64, imm8 Valid N.E. Unsigned divide r/m64 by 2,
imm8 times.

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.
** In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
*** See IA-32 Architecture Compatibility section below.
Vol. 2B 4-239SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction to shift a
signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width for CL is 5
bits. Using an REX prefix in the form of REX.R permits access to additional registers (R8-R15).
Using an REX prefix in the form of REX.W promotes operation to 64-bits and sets the mask
width for CL to 6 bits. See the summary chart at the beginning of this section for encoding data
and limits.

IA-32 Architecture Compatibility
The 8086 does not mask the shift count. However, all other IA-32 processors (starting with the
Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum count of 31. This
masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation
IF 64-Bit Mode and using REX.W

THEN
countMASK ← 3FH;

ELSE
countMASK ← 1FH;

FI

tempCOUNT ← (COUNT AND countMASK);
tempDEST ← DEST;
WHILE (tempCOUNT ≠ 0)
DO

IF instruction is SAL or SHL
THEN

CF ← MSB(DEST);
ELSE (* Instruction is SAR or SHR *)

CF ← LSB(DEST);
FI;
IF instruction is SAL or SHL
4-240 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
THEN
DEST ← DEST ∗ 2;

ELSE
IF instruction is SAR

THEN
DEST ← DEST / 2; (* Signed divide, rounding toward negative infinity *)

ELSE (* Instruction is SHR *)
DEST ← DEST / 2 ; (* Unsigned divide *)

FI;
FI;
tempCOUNT ← tempCOUNT – 1;

OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL

THEN
OF ← MSB(DEST) XOR CF;

ELSE
IF instruction is SAR

THEN
OF ← 0;

ELSE (* Instruction is SHR *)
OF ← MSB(tempDEST);

FI;
FI;

ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)

OF ← undefined;
FI;

FI;

Flags Affected
The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions where the count is greater than or equal to the size (in bits)
of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the
count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.
Vol. 2B 4-241SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-242 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z
SBB—Integer Subtraction with Borrow

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

1C ib SBB AL, imm8 Valid Valid Subtract with borrow imm8
from AL.

1D iw SBB AX, imm16 Valid Valid Subtract with borrow imm16
from AX.

1D id SBB EAX, imm32 Valid Valid Subtract with borrow imm32
from EAX.

REX.W + 1D id SBB RAX, imm32 Valid N.E. Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

80 /3 ib SBB r/m8, imm8 Valid Valid Subtract with borrow imm8
from r/m8.

REX + 80 /3 ib SBB r/m8*, imm8 Valid N.E. Subtract with borrow imm8
from r/m8.

81 /3 iw SBB r/m16, imm16 Valid Valid Subtract with borrow imm16
from r/m16.

81 /3 id SBB r/m32, imm32 Valid Valid Subtract with borrow imm32
from r/m32.

REX.W + 81 /3 id SBB r/m64, imm32 Valid N.E. Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

83 /3 ib SBB r/m16, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m16.

83 /3 ib SBB r/m32, imm8 Valid Valid Subtract with borrow sign-
extended imm8 from r/m32.

REX.W + 83 /3 ib SBB r/m64, imm8 Valid N.E. Subtract with borrow sign-
extended imm8 from r/m64.

18 /r SBB r/m8, r8 Valid Valid Subtract with borrow r8 from
r/m8.

REX + 18 /r SBB r/m8*, r8 Valid N.E. Subtract with borrow r8 from
r/m8.

19 /r SBB r/m16, r16 Valid Valid Subtract with borrow r16
from r/m16.

19 /r SBB r/m32, r32 Valid Valid Subtract with borrow r32
from r/m32.

REX.W + 19 /r SBB r/m64, r64 Valid N.E. Subtract with borrow r64
from r/m64.

1A /r SBB r8, r/m8 Valid Valid Subtract with borrow r/m8
from r8.

REX + 1A /r SBB r8*, r/m8* Valid N.E. Subtract with borrow r/m8
from r8.

1B /r SBB r16, r/m16 Valid Valid Subtract with borrow r/m16
from r16.
Vol. 2B 4-243SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z
Description
Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from
the destination operand (first operand). The result of the subtraction is stored in the destination
operand. The destination operand can be a register or a memory location; the source operand can
be an immediate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which
a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST ← (DEST – (SRC + CF));

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

1B /r SBB r32, r/m32 Valid Valid Subtract with borrow r/m32
from r32.

REX.W + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-244 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.+
Vol. 2B 4-245SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z
SCAS/SCASB/SCASW/SCASD—Scan String

Description
In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, word, double-
word or quadword specified using a memory operand with the value in AL, AX, or EAX. It then
sets status flags in EFLAGS recording the results. The memory operand address is read from
ES:(E)DI register (depending on the address-size attribute of the instruction and the current
operational mode). Note that ES cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-operand form
and the no-operands form. The explicit-operand form (specified using the SCAS mnemonic)
allows a memory operand to be specified explicitly. The memory operand must be a symbol that
indicates the size and location of the operand value. The register operand is then automatically
selected to match the size of the memory operand (AL register for byte comparisons, AX for
word comparisons, EAX for doubleword comparisons). The explicit-operand form is provided
to allow documentation. Note that the documentation provided by this form can be misleading.
That is, the memory operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword) but it does not have to specify the correct location. The location is always
specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI is assumed
to be the memory operand and AL, AX, or EAX is assumed to be the register operand. The size
of operands is selected by the mnemonic: SCASB (byte comparison), SCASW (word compar-
ison), or SCASD (doubleword comparison).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

AE SCAS m8 Valid Valid Compare AL with byte at ES:(E)DI or RDI,
then set status flagsa.

NOTES:
a. In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only

32-bit (EDI) and 16-bit (DI) address sizes are supported.

AF SCAS m16 Valid Valid Compare AX with word at ES:(E)DI or
RDI, then set status flags.a

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.a

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

AE SCASB Valid Valid Compare AL with byte at ES:(E)DI or RDI
then set status flags.a

AF SCASW Valid Valid Compare AX with word at ES:(E)DI or
RDI then set status flags.a

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.a

REX.W + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.
4-246 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z
After the comparison, the (E)DI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented. The register is incremented
or decremented by 1 for byte operations, by 2 for word operations, and by 4 for doubleword
operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block
comparisons of ECX bytes, words, doublewords, or quadwords. Often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of status flags.
See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a
description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is supported
using the prefix 67H. Using an REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The 64-bit no-operand mnemonic is SCASQ. Address of the
memory operand is specified in either RDI or EDI, and AL/AX/EAX/RAX may be used as the
register operand. After a comparison, the destination register is incremented or decremented by
the current operand size (depending on the value of the DF flag). See the summary chart at the
beginning of this section for encoding data and limits.

Operation
Non-64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4; FI;

FI;
FI;
Vol. 2B 4-247SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z
64-bit Mode:

IF (Byte cmparison)
THEN

temp ← AL − SRC;
SetStatusFlags(temp);

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1; FI;

ELSE IF (Word comparison)
THEN

temp ← AX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2; FI;

FI;
ELSE IF (Doubleword comparison)

THEN
temp ← EAX – SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4; FI;

FI;
ELSE IF (Quadword comparison using REX.W)

THEN
temp ← RAX − SRC;
SetStatusFlags(temp);
IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

F

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the limit of the ES

segment.

If the ES register contains a NULL segment selector.

If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.
4-248 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS If a memory operand effective address is outside the SS segment limit.
Vol. 2B 4-249SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-250 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z
SETcc—Set Byte on Condition

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 97 SETA r/m8 Valid Valid Set byte if above (CF=0 and
ZF=0).

REX + 0F 97 SETA r/m8* Valid N.E. Set byte if above (CF=0 and
ZF=0).

0F 93 SETAE r/m8 Valid Valid Set byte if above or equal (CF=0).
REX + 0F 93 SETAE r/m8* Valid N.E. Set byte if above or equal (CF=0).
0F 92 SETB r/m8 Valid Valid Set byte if below (CF=1).
REX + 0F 92 SETB r/m8* Valid N.E. Set byte if below (CF=1).
0F 96 SETBE r/m8 Valid Valid Set byte if below or equal (CF=1 or

ZF=1).
REX + 0F 96 SETBE r/m8* Valid N.E. Set byte if below or equal (CF=1 or

ZF=1).
0F 92 SETC r/m8 Valid Valid Set byte if carry (CF=1).
REX + 0F 92 SETC r/m8* Valid N.E. Set byte if carry (CF=1).
0F 94 SETE r/m8 Valid Valid Set byte if equal (ZF=1).
REX + 0F 94 SETE r/m8* Valid N.E. Set byte if equal (ZF=1).
0F 9F SETG r/m8 Valid Valid Set byte if greater (ZF=0 and

SF=OF).
REX + 0F 9F SETG r/m8* Valid N.E. Set byte if greater (ZF=0 and

SF=OF).
0F 9D SETGE r/m8 Valid Valid Set byte if greater or equal

(SF=OF).
REX + 0F 9D SETGE r/m8* Valid N.E. Set byte if greater or equal

(SF=OF).
0F 9C SETL r/m8 Valid Valid Set byte if less (SF≠ OF).
REX + 0F 9C SETL r/m8* Valid N.E. Set byte if less (SF≠ OF).
0F 9E SETLE r/m8 Valid Valid Set byte if less or equal (ZF=1 or

SF≠ OF).
REX + 0F 9E SETLE r/m8* Valid N.E. Set byte if less or equal (ZF=1 or

SF≠ OF).
0F 96 SETNA r/m8 Valid Valid Set byte if not above (CF=1 or

ZF=1).
REX + 0F 96 SETNA r/m8* Valid N.E. Set byte if not above (CF=1 or

ZF=1).
0F 92 SETNAE r/m8 Valid Valid Set byte if not above or equal

(CF=1).
REX + 0F 92 SETNAE r/m8* Valid N.E. Set byte if not above or equal

(CF=1).
0F 93 SETNB r/m8 Valid Valid Set byte if not below (CF=0).
REX + 0F 93 SETNB r/m8* Valid N.E. Set byte if not below (CF=0).
0F 97 SETNBE r/m8 Valid Valid Set byte if not below or equal

(CF=0 and ZF=0).
Vol. 2B 4-251SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z
REX + 0F 97 SETNBE r/m8* Valid N.E. Set byte if not below or equal
(CF=0 and ZF=0).

0F 93 SETNC r/m8 Valid Valid Set byte if not carry (CF=0).
REX + 0F 93 SETNC r/m8* Valid N.E. Set byte if not carry (CF=0).
0F 95 SETNE r/m8 Valid Valid Set byte if not equal (ZF=0).
REX + 0F 95 SETNE r/m8* Valid N.E. Set byte if not equal (ZF=0).
0F 9E SETNG r/m8 Valid Valid Set byte if not greater (ZF=1 or

SF≠ OF)
REX + 0F 9E SETNG r/m8* Valid N.E. Set byte if not greater (ZF=1 or

SF≠ OF).
0F 9C SETNGE r/m8 Valid Valid Set byte if not greater or equal

(SF≠ OF).
REX + 0F 9C SETNGE r/m8* Valid N.E. Set byte if not greater or equal

(SF≠ OF).
0F 9D SETNL r/m8 Valid Valid Set byte if not less (SF=OF).
REX + 0F 9D SETNL r/m8* Valid N.E. Set byte if not less (SF=OF).
0F 9F SETNLE r/m8 Valid Valid Set byte if not less or equal (ZF=0

and SF=OF).
REX + 0F 9F SETNLE r/m8* Valid N.E. Set byte if not less or equal (ZF=0

and SF=OF).
0F 91 SETNO r/m8 Valid Valid Set byte if not overflow (OF=0).
REX + 0F 91 SETNO r/m8* Valid N.E. Set byte if not overflow (OF=0).
0F 9B SETNP r/m8 Valid Valid Set byte if not parity (PF=0).
REX + 0F 9B SETNP r/m8* Valid N.E. Set byte if not parity (PF=0).
0F 99 SETNS r/m8 Valid Valid Set byte if not sign (SF=0).
REX + 0F 99 SETNS r/m8* Valid N.E. Set byte if not sign (SF=0).
0F 95 SETNZ r/m8 Valid Valid Set byte if not zero (ZF=0).
REX + 0F 95 SETNZ r/m8* Valid N.E. Set byte if not zero (ZF=0).
0F 90 SETO r/m8 Valid Valid Set byte if overflow (OF=1)
REX + 0F 90 SETO r/m8* Valid N.E. Set byte if overflow (OF=1).
0F 9A SETP r/m8 Valid Valid Set byte if parity (PF=1).
REX + 0F 9A SETP r/m8* Valid N.E. Set byte if parity (PF=1).
0F 9A SETPE r/m8 Valid Valid Set byte if parity even (PF=1).
REX + 0F 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).
0F 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).
REX + 0F 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).
0F 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).
REX + 0F 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).
0F 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).
REX + 0F 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description
4-252 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z
Description
Sets the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF,
ZF, and PF) in the EFLAGS register. The destination operand points to a byte register or a byte
in memory. The condition code suffix (cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship
between two unsigned integer values. The terms “greater” and “less” are associated with the SF
and OF flags and refer to the relationship between two signed integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, SETG (set byte
if greater) and SETNLE (set if not less or equal) have the same opcode and test for the same
condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make code
more intelligible. Appendix B, “EFLAGS Condition Codes,” in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, shows the alternate mnemonics for various test condi-
tions.

Some languages represent a logical one as an integer with all bits set. This representation can be
obtained by choosing the logically opposite condition for the SETcc instruction, then decre-
menting the result. For example, to test for overflow, use the SETNO instruction, then decre-
ment the result.

In IA-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform addressing
to additional byte registers. Otherwise, this instruction’s operation is the same as in legacy mode
and compatibility mode.

Operation
IF condition

THEN DEST ← 1;
ELSE DEST ← 0;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
Vol. 2B 4-253SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
4-254 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z
SFENCE—Store Fence

Description
Performs a serializing operation on all store-to-memory instructions that were issued prior the
SFENCE instruction. This serializing operation guarantees that every store instruction that
precedes in program order the SFENCE instruction is globally visible before any store instruc-
tion that follows the SFENCE instruction is globally visible. The SFENCE instruction is ordered
with respect store instructions, other SFENCE instructions, any MFENCE instructions, and any
serializing instructions (such as the CPUID instruction). It is not ordered with respect to load
instructions or the LFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, write-combining, and write-collapsing. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies among
applications and may be unknown to the producer of this data. The SFENCE instruction
provides a performance-efficient way of insuring store ordering between routines that produce
weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_sfence(void)

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat
/Leg Mode Description

0F AE /7 SFENCE Valid Valid Serializes store operations.
Vol. 2B 4-255SFENCE—Store Fence

INSTRUCTION SET REFERENCE, N-Z
SGDT—Store Global Descriptor Table Register

Description
Stores the content of the global descriptor table register (GDTR) in the destination operand. The
destination operand specifies a memory location:

In legacy or compatibility mode, the destination operand is a 6-byte memory location. If the
operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address
is stored in bytes 3-5, and byte 6 is zero-filled. If the operand-size attribute is 32 bits, the 16-bit
limit field of the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes.

In IA-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-byte base and
a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in application
programs without causing an exception to be generated. See “LGDT/LIDT—Load Global/Inter-
rupt Descriptor Table Register” in Chapter 3, IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for information on loading the GDTR and IDTR.

IA-32 Architecture Compatibility
The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are
not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6
processor family, Pentium, Intel486, and Intel386™ processors fill these bits with 0s.

Operation
IF instruction is SGDT

IF OperandSize = 16
THEN

DEST[0:15] ← GDTR(Limit);
DEST[16:39] ← GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← GDTR(Limit);
DEST[16:47] ← GDTR(Base); (* Full 32-bit base address stored *)
FI;

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← GDTR(Limit);

Opcode* Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /0 SGDT m Valid Valid Store GDTR to m.

NOTES:
* See IA-32 Architecture Compatibility section below.
4-256 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
DEST[16:79] ← GDTR(Base); (* Full 64-bit base address stored *)
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#UD If the destination operand is a register.

#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-257SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#UD If the destination operand is a register.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-258 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
SHLD—Double Precision Shift Left

Description
The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number of bits spec-
ified by the third operand (count operand). The second operand (source operand) provides bits
to shift in from the right (starting with bit 0 of the destination operand).

The destination operand can be a register or a memory location; the source operand is a register.
The count operand is an unsigned integer that can be stored in an immediate byte or in the CL
register. If the count operand is CL, the shift count is the logical AND of CL and a count mask.
In non-64-bit modes and default 64-bit mode; only bits 0 through 4 of the count are used. This
masks the count to a value between 0 and 31. If a count is greater than the operand size, the result
is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits (upgrading the count mask to 6 bits). See the
summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F A4 SHLD r/m16, r16,
imm8

Valid Valid Shift r/m16 to left imm8
places while shifting bits from
r16 in from the right.

0F A5 SHLD r/m16, r16,
CL

Valid Valid Shift r/m16 to left CL places
while shifting bits from r16 in
from the right.

0F A4 SHLD r/m32, r32,
imm8

Valid Valid Shift r/m32 to left imm8
places while shifting bits from
r32 in from the right.

REX.W + 0F A4 SHLD r/m64, r64,
imm8

Valid N.E. Shift r/m64 to left imm8
places while shifting bits from
r64 in from the right.

0F A5 SHLD r/m32, r32,
CL

Valid Valid Shift r/m32 to left CL places
while shifting bits from r32 in
from the right.

REX.W + 0F A5 SHLD r/m64, r64,
CL

Valid N.E. Shift r/m64 to left CL places
while shifting bits from r64 in
from the right.
Vol. 2B 4-259SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z
Operation
IF (In 64-Bit Mode and REX.W = 1)

THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, SIZE – COUNT];
(* Last bit shifted out on exit *)
FOR i ← SIZE – 1 DOWN TO COUNT

DO
Bit(DEST, i) ← Bit(DEST, i – COUNT);

OD;
FOR i ← COUNT – 1 DOWN TO 0

DO
BIT[DEST, i] ← BIT[SRC, i – COUNT + SIZE];

OD;
FI;

FI;

Flags Affected
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.
4-260 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-261SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z
SHRD—Double Precision Shift Right

Description
The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number of bits spec-
ified by the third operand (count operand). The second operand (source operand) provides bits
to shift in from the left (starting with the most significant bit of the destination operand).

The destination operand can be a register or a memory location; the source operand is a register.
The count operand is an unsigned integer that can be stored in an immediate byte or the CL
register. If the count operand is CL, the shift count is the logical AND of CL and a count mask.
In non-64-bit modes and default 64-bit mode, the width of the count mask is 5 bits. Only bits 0
through 4 of the count register are used (masking the count to a value between 0 and 31). If the
count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits (upgrading the count mask to 6 bits). See the
summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AC SHRD r/m16,
r16, imm8

Valid Valid Shift r/m16 to right imm8 places
while shifting bits from r16 in from
the left.

0F AD SHRD r/m16,
r16, CL

Valid Valid Shift r/m16 to right CL places
while shifting bits from r16 in from
the left.

0F AC SHRD r/m32,
r32, mm8

Valid Valid Shift r/m32 to right imm8 places
while shifting bits from r32 in from
the left.

REX.W + 0F AC SHRD r/m64,
r64, imm8

Valid N.E. Shift r/m64 to right imm8 places
while shifting bits from r64 in from
the left.

0F AD SHRD r/m32,
r32, CL

Valid Valid Shift r/m32 to right CL places
while shifting bits from r32 in from
the left.

REX.W + 0F AD SHRD r/m64,
r64, CL

Valid N.E. Shift r/m64 to right CL places
while shifting bits from r64 in from
the left.
4-262 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z
Operation
IF (In 64-Bit Mode and REX.W = 1)

THEN COUNT ← COUNT MOD 64;
ELSE COUNT ← COUNT MOD 32;

FI
SIZE ← OperandSize;
IF COUNT = 0

THEN
No operation;

ELSE
IF COUNT > SIZE

THEN (* Bad parameters *)
DEST is undefined;
CF, OF, SF, ZF, AF, PF are undefined;

ELSE (* Perform the shift *)
CF ← BIT[DEST, COUNT – 1]; (* Last bit shifted out on exit *)
FOR i ← 0 TO SIZE – 1 – COUNT

DO
BIT[DEST, i] ← BIT[DEST, i + COUNT];

OD;
FOR i ← SIZE – COUNT TO SIZE – 1

DO
BIT[DEST,i] ← BIT[SRC, i + COUNT – SIZE];

OD;
FI;

FI;

Flags Affected
If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-263SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-264 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

Description
Moves either of the two packed double-precision floating-point values from destination operand
(first operand) into the low quadword of the destination operand; moves either of the two packed
double-precision floating-point values from the source operand into to the high quadword of the
destination operand (see Figure 4-12). The select operand (third operand) determines which
values are moved to the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The select operand is an 8-bit immediate: bit 0 selects which value
is moved from the destination operand to the result (where 0 selects the low quadword and 1
selects the high quadword) and bit 1 selects which value is moved from the source operand to
the result. Bits 2 through 7 of the select operand are reserved and must be set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F C6 /r
ib

SHUFPD xmm1,
xmm2/m128, imm8

Valid Valid Shuffle packed double-precision
floating-point values selected by
imm8 from xmm1 and
xmm2/m128 to xmm1.

Figure 4-12. SHUFPD Shuffle Operation

X1 X0

Y1 Y0

Y1 or Y0 X1 or X0

SRC

DEST

DEST
Vol. 2B 4-265SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Operation
IF SELECT[0] = 0

THEN DEST[63:0] ← DEST[63:0];
ELSE DEST[63:0] ← DEST[127:64]; FI;

IF SELECT[1] = 0
THEN DEST[127:64] ← SRC[63:0];
ELSE DEST[127:64] ← SRC[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-266 Vol. 2B SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
Vol. 2B 4-267SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Description
Moves two of the four packed single-precision floating-point values from the destination
operand (first operand) into the low quadword of the destination operand; moves two of the four
packed single-precision floating-point values from the source operand (second operand) into to
the high quadword of the destination operand (see Figure 4-13). The select operand (third
operand) determines which values are moved to the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The select operand is an 8-bit immediate: bits 0 and 1 select the
value to be moved from the destination operand to the low doubleword of the result, bits 2 and
3 select the value to be moved from the destination operand to the second doubleword of the
result, bits 4 and 5 select the value to be moved from the source operand to the third doubleword
of the result, and bits 6 and 7 select the value to be moved from the source operand to the high
doubleword of the result.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C6 /r ib SHUFPS xmm1,
xmm2/m128, imm8

Valid Valid Shuffle packed single-precision
floating-point values selected by
imm8 from xmm1 and xmm1/m128
to xmm1.

Figure 4-13. SHUFPS Shuffle Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 ... Y0 Y3 ... Y0 X3 ... X0 X3 ... X0

DEST

SRC

DEST
4-268 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Operation
CASE (SELECT[1:0]) OF

0: DEST[31:0] ← DEST[31:0];
1: DEST[31:0] ← DEST[63:32];
2: DEST[31:0] ← DEST[95:64];
3: DEST[31:0] ← DEST[127:96];

ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] ← DEST[31:0];
1: DEST[63:32] ← DEST[63:32];
2: DEST[63:32] ← DEST[95:64];
3: DEST[63:32] ← DEST[127:96];

ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] ← SRC[31:0];
1: DEST[95:64] ← SRC[63:32];
2: DEST[95:64] ← SRC[95:64];
3: DEST[95:64] ← SRC[127:96];

ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] ← SRC[31:0];
1: DEST[127:96] ← SRC[63:32];
2: DEST[127:96] ← SRC[95:64];
3: DEST[127:96] ← SRC[127:96];

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b, unsigned int imm8)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.
Vol. 2B 4-269SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
4-270 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SIDT—Store Interrupt Descriptor Table Register

Description
Stores the content the interrupt descriptor table register (IDTR) in the destination operand. The
destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of the register
is stored in the low 2 bytes of the memory location and the 32-bit base address is stored in the
high 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and the
24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte filled with 0s.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte base and 2-byte
limit values.

SIDT is only useful in operating-system software; however, it can be used in application
programs without causing an exception to be generated. See “LGDT/LIDT—Load Global/Inter-
rupt Descriptor Table Register” in Chapter 3, IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for information on loading the GDTR and IDTR.

IA-32 Architecture Compatibility
The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits are not
referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6
processor family, Pentium, Intel486, and Intel386 processors fill these bits with 0s.

Operation
IF instruction is SIDT

THEN
IF OperandSize = 16

THEN
DEST[0:15] ← IDTR(Limit);
DEST[16:39] ← IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] ← 0;

ELSE IF (32-bit Operand Size)
DEST[0:15] ← IDTR(Limit);
DEST[16:47] ← IDTR(Base); FI; (* Full 32-bit base address stored *)

ELSE (* 64-bit Operand Size *)
DEST[0:15] ← IDTR(Limit);
DEST[16:79] ← IDTR(Base); (* Full 64-bit base address stored *)

FI;
FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /1 SIDT m Valid Valid Store IDTR to m.
Vol. 2B 4-271SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-272 Vol. 2B SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#UD If the destination operand is a register.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-273SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
SLDT—Store Local Descriptor Table Register

Description
Stores the segment selector from the local descriptor table register (LDTR) in the destination
operand. The destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the segment descriptor (located in the
GDT) for the current LDT. This instruction can only be executed in protected mode.

Outside IA-32e mode, when the destination operand is a 32-bit register, the 16-bit segment
selector is copied into the low-order 16 bits of the register. The high-order 16 bits of the register
are cleared for the Pentium 4, Intel Xeon, and P6 family processors. They are undefined for
Pentium, Intel486, and Intel386 processors. When the destination operand is a memory location,
the segment selector is written to memory as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment
selector is copied into the low-order 16 bits of the register. The high-order 16 bits of the register
are cleared. When the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of the operand size.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and
store it in the register. If the destination is memory and operand size is 64, SLDT will write the
16-bit selector to memory as a 16-bit quantity, regardless of the operand size

Operation
DEST ← LDTR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR in
r/m16.

REX.W + 0F
00 /0

SLDT r64/m16 Valid Valid Stores segment selector from LDTR in
r64/m16.
4-274 Vol. 2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-275SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z
SMSW—Store Machine Status Word

Description
Stores the machine status word (bits 0 through 15 of control register CR0) into the destination
operand. The destination operand can be a general-purpose register or a memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 16 bits of
register CR0 are copied into the low-order 16 bits of the register and the high-order 16 bits are
undefined. When the destination operand is a memory location, the low-order 16 bits of register
CR0 are written to memory as a 16-bit quantity, regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following examples:

• SMSW r16 operand size 16, store CR0[15:0] in r16

• SMSW r32 operand size 32, zero-extend CR0[31:0], and store in r32

• SMSW r64 operand size 64, zero-extend CR0[63:0], and store in r64

• SMSW m16 operand size 16, store CR0[15:0] in m16

• SMSW m16 operand size 32, store CR0[15:0] in m16 (not m32)

• SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged instruction
and can be used in application programs. The is provided for compatibility with the Intel 286
processor. Programs and procedures intended to run on the Pentium 4, Intel Xeon, P6 family,
Pentium, Intel486, and Intel386 processors should use the MOV (control registers) instruction
to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Operation
DEST ← CR0[15:0];
(* Machine status word *)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /4 SMSW r/m16 Valid Valid Store machine status word to r/m16.
0F 01 /4 SMSW r32/m16 Valid Valid Store machine status word in low-order 16

bits of r32/m16; high-order 16 bits of r32
are undefined.

REX.W +
0F 01 /4

SMSW r64/m16 Valid Valid Store machine status word in low-order 16
bits of r64/m16; high-order 16 bits of r32
are undefined.
4-276 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-277SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z
SQRTPD—Compute Square Roots of Packed Double-Precision
Floating-Point Values

Description
Performs an SIMD computation of the square roots of the two packed double-precision floating-
point values in the source operand (second operand) stores the packed double-precision floating-
point results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 11-3 in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← SQRT(SRC[63:0]);
DEST[127:64] ← SQRT(SRC[127:64]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPD __m128d _mm_sqrt_pd (m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 51 /r SQRTPD xmm1,
xmm2/m128

Valid Valid Computes square roots of the
packed double-precision floating-
point values in xmm2/m128 and
stores the results in xmm1.
4-278 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.CR4.OSXMMEXCPT(bit 10) is 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
Vol. 2B 4-279SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-280 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z
SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

Description
Performs an SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed single-precision
floating-point results in the destination operand. The source operand can be an XMM register
or a 128-bit memory location. The destination operand is an XMM register. See Figure 10-5 in
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an
SIMD single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← SQRT(SRC[31:0]);
DEST[63:32] ← SQRT(SRC[63:32]);
DEST[95:64] ← SQRT(SRC[95:64]);
DEST[127:96] ← SQRT(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPS __m128 _mm_sqrt_ps(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 51 /r SQRTPS xmm1,
xmm2/m128

Valid Valid Computes square roots of the packed
single-precision floating-point values in
xmm2/m128 and stores the results in
xmm1.
Vol. 2B 4-281SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-282 Vol. 2B SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-283SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SQRTSD—Compute Square Root of Scalar Double-Precision
Floating-Point Value

Description
Computes the square root of the low double-precision floating-point value in the source operand
(second operand) and stores the double-precision floating-point result in the destination
operand. The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand remains
unchanged. See Figure 11-4 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of a scalar double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSD __m128d _mm_sqrt_sd (m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 51 /r SQRTSD xmm1,
xmm2/m64

Valid Valid Computes square root of the
low double-precision floating-
point value in xmm2/m64 and
stores the results in xmm1.
4-284 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-285SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-286 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
SQRTSS—Compute Square Root of Scalar Single-Precision
Floating-Point Value

Description
Computes the square root of the low single-precision floating-point value in the source operand
(second operand) and stores the single-precision floating-point result in the destination operand.
The source operand can be an XMM register or a 32-bit memory location. The destination
operand is an XMM register. The three high-order doublewords of the destination operand
remain unchanged. See Figure 10-6 in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSS __m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 51 /r SQRTSS xmm1,
xmm2/m32

Valid Valid Computes square root of the low
single-precision floating-point value
in xmm2/m32 and stores the results
in xmm1.
Vol. 2B 4-287SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-288 Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-289SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z
STC—Set Carry Flag

Description
Sets the CF flag in the EFLAGS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CF ← 1;

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F9 STC Valid Valid Set CF flag.
4-290 Vol. 2B STC—Set Carry Flag

INSTRUCTION SET REFERENCE, N-Z
STD—Set Direction Flag

Description
Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
DF ← 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FD STD Valid Valid Set DF flag.
Vol. 2B 4-291STD—Set Direction Flag

INSTRUCTION SET REFERENCE, N-Z
STI—Set Interrupt Flag

Description
If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF) in the
EFLAGS register. After the IF flag is set, the processor begins responding to external, maskable
interrupts after the next instruction is executed. The delayed effect of this instruction is provided
to allow interrupts to be enabled just before returning from a procedure (or subroutine). For
instance, if an STI instruction is followed by an RET instruction, the RET instruction is allowed
to execute before external interrupts are recognized2. If the STI instruction is followed by a CLI
instruction (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and
NMI interrupts. NMI interrupts may be blocked for one macroinstruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; STI sets
the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-4 indicates the action of the STI instruction depending on the processor’s mode of oper-
ation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

FB STI Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the next
instruction.

2. The STI instruction delays recognition of interrupts only if it is executed with EFLAGS.IF = 0. In a
sequence of STI instructions, only the first instruction in the sequence is guaranteed to delay interrupts.
In the following instruction sequence, interrupts may be recognized before RET executes:

STI
STI
RET
4-292 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z
Operation
IF PE = 0 (* Executing in real-address mode *)

THEN
IF ← 1; (* Set Interrupt Flag *)

ELSE (* Executing in protected mode or virtual-8086 mode *)
IF VM = 0 (* Executing in protected mode*)

THEN
IF IOPL ≥ CPL

THEN
IF ← 1; (* Set Interrupt Flag *)

ELSE
IF (IOPL < CPL) and (CPL = 3) and (VIP = 0)

THEN
VIF ← 1; (* Set Virtual Interrupt Flag *)

ELSE
#GP(0);

FI;
FI;

ELSE (* Executing in Virtual-8086 mode *)
IF IOPL = 3

THEN
IF ← 1; (* Set Interrupt Flag *)

ELSE

Table 4-4. Decision Table for STI Results
PE VM IOPL CPL PVI VIP VME STI Result

0 X X X X X X IF = 1

1 0 ≥ CPL X X X X IF = 1

1 0 < CPL 3 1 0 X VIF = 1

1 0 < CPL < 3 X X X GP Fault

1 0 < CPL X 0 X X GP Fault

1 0 < CPL X X 1 X GP Fault

1 1 3 X X X X IF = 1

1 1 < 3 X X 0 1 VIF = 1

1 1 < 3 X X 1 X GP Fault

1 1 < 3 X X X 0 GP Fault

X = This setting has no impact.
Vol. 2B 4-293STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z
IF ((IOPL < 3) and (VIP = 0) and (VME = 1))
THEN

VIF ← 1; (* Set Virtual Interrupt Flag *)
ELSE

#GP(0); (* Trap to virtual-8086 monitor *)
FI;)

FI;
FI;

FI;

Flags Affected
The IF flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-294 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z
STMXCSR—Store MXCSR Register State

Description
Stores the contents of the MXCSR control and status register to the destination operand. The
destination operand is a 32-bit memory location. The reserved bits in the MXCSR register are
stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
m32 ← MXCSR;

Intel C/C++ Compiler Intrinsic Equivalent
_mm_getcsr(void)

Exceptions
None.

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS, or

GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true: CR0.AM[bit 18] = 1, EFLAGS.AC[bit 18] = 1, current
CPL = 3.

#UD If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F AE /3 STMXCSR m32 Valid Valid Store contents of MXCSR register to m32.
Vol. 2B 4-295STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, N-Z
Real Address Mode Exceptions
GP(0) If any part of the operand would lie outside of the effective address space

from 0 to 0FFFFH.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#UD If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code) For a page fault.

#AC For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CR0.EM[bit 2] = 1.

#NM If CR0.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true: CR0.AM[bit 18] = 1, EFLAGS.AC[bit 18] = 1, current
CPL = 3

#UD If CR4.OSFXSR[bit 9] = 0.

#UD If CPUID.01H:EDX.SSE[bit 25] = 0.
4-296 Vol. 2B STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, N-Z
STOS/STOSB/STOSW/STOSD/STOSQ—Store String

Description
In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or
EAX register (respectively) into the destination operand. The destination operand is a memory
location, the address of which is read from either the ES:EDI or ES:DI register (depending on
the address-size attribute of the instruction and the mode of operation). The ES segment cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the STOS
mnemonic) allows the destination operand to be specified explicitly. Here, the destination
operand should be a symbol that indicates the size and location of the destination value. The
source operand is then automatically selected to match the size of the destination operand (the
AL register for byte operands, AX for word operands, EAX for doubleword operands). The
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the destination operand symbol must
specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have
to specify the correct location. The location is always specified by the ES:(E)DI register. These
must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword
versions of the STOS instructions. Here also ES:(E)DI is assumed to be the destination operand
and AL, AX, or EAX is assumed to be the source operand. The size of the destination and source

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

AA STOS m8 Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.
AA STOSB Valid Valid For legacy mode, store AL at address

ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOSW Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.
Vol. 2B 4-297STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z
operands is selected by the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the
(E)DI register is incremented or decremented according to the setting of the DF flag in the
EFLAGS register. If the DF flag is 0, the register is incremented; if the DF flag is 1, the register
is decremented (the register is incremented or decremented by 1 for byte operations, by 2 for
word operations, by 4 for doubleword operations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the
prefix 67H. Using an REX prefix in the form of REX.W promotes operation on doubleword
operand to 64 bits. The promoted no-operand mnemonic is STOSQ. STOSQ (and its explicit
operands variant) store a quadword from the RAX register into the destination addressed by RDI
or EDI. See the summary chart at the beginning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because data needs to be moved into the AL, AX, or EAX
register before it can be stored. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Oper-
ation Prefix” in this chapter for a description of the REP prefix.

Operation
Non-64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 1;
ELSE (E)DI ← (E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (E)DI ← (E)DI + 2;
ELSE (E)DI ← (E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (E)DI ← (E)DI + 4;
ELSE (E)DI ← (E)DI – 4;

FI;
FI;

FI;
4-298 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z
64-bit Mode:

IF (Byte store)
THEN

DEST ← AL;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 1;
ELSE (R|E)DI ← (R|E)DI – 1;

FI;
ELSE IF (Word store)

THEN
DEST ← AX;

THEN IF DF = 0
THEN (R|E)DI ← (R|E)DI + 2;
ELSE (R|E)DI ← (R|E)DI – 2;

FI;
FI;

ELSE IF (Doubleword store)
THEN

DEST ← EAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 4;
ELSE (R|E)DI ← (R|E)DI – 4;

FI;
FI;

ELSE IF (Quadword store using REX.W)
THEN

DEST ← RAX;
THEN IF DF = 0

THEN (R|E)DI ← (R|E)DI + 8;
ELSE (R|E)DI ← (R|E)DI – 8;

FI;
FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.
Vol. 2B 4-299STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z
#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the ES segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-300 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z
STR—Store Task Register

Description
Stores the segment selector from the task register (TR) in the destination operand. The destina-
tion operand can be a general-purpose register or a memory location. The segment selector
stored with this instruction points to the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit
quantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 bits. In
register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be executed in
protected mode.

Operation
DEST ← TR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is a memory operand that is located in a non-writable

segment or if the effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /1 STR r/m16 Valid Valid Stores segment selector from TR in
r/m16.
Vol. 2B 4-301STR—Store Task Register

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-302 Vol. 2B STR—Store Task Register

INSTRUCTION SET REFERENCE, N-Z
SUB—Subtract

Description
Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

2C ib SUB AL, imm8 Valid Valid Subtract imm8 from AL.
2D iw SUB AX, imm16 Valid Valid Subtract imm16 from AX.
2D id SUB EAX, imm32 Valid Valid Subtract imm32 from EAX.
REX.W + 2D id SUB RAX, imm32 Valid N.E. Subtract imm32 sign-

extended to 64-bits from RAX.
80 /5 ib SUB r/m8, imm8 Valid Valid Subtract imm8 from r/m8.
REX + 80 /5 ib SUB r/m8*, imm8 Valid N.E. Subtract imm8 from r/m8.
81 /5 iw SUB r/m16, imm16 Valid Valid Subtract imm16 from r/m16.
81 /5 id SUB r/m32, imm32 Valid Valid Subtract imm32 from r/m32.
REX.W + 81 /5 id SUB r/m64, imm32 Valid N.E. Subtract imm32 sign-

extended to 64-bits from
r/m64.

83 /5 ib SUB r/m16, imm8 Valid Valid Subtract sign-extended imm8
from r/m16.

83 /5 ib SUB r/m32, imm8 Valid Valid Subtract sign-extended imm8
from r/m32.

REX.W + 83 /5 ib SUB r/m64, imm8 Valid N.E. Subtract sign-extended imm8
from r/m64.

28 /r SUB r/m8, r8 Valid Valid Subtract r8 from r/m8.
REX + 28 /r SUB r/m8*, r8* Valid N.E. Subtract r8 from r/m8.
29 /r SUB r/m16, r16 Valid Valid Subtract r16 from r/m16.
29 /r SUB r/m32, r32 Valid Valid Subtract r32 from r/m32.
REX.W + 29 /r SUB r/m64, r32 Valid N.E. Subtract r64 from r/m64.
2A /r SUB r8, r/m8 Valid Valid Subtract r/m8 from r8.
REX + 2A /r SUB r8*, r/m8* Valid N.E. Subtract r/m8 from r8.
2B /r SUB r16, r/m16 Valid Valid Subtract r/m16 from r16.
2B /r SUB r32, r/m32 Valid Valid Subtract r/m32 from r32.
REX.W + 2B /r SUB r64, r/m64 Valid N.E. Subtract r/m64 from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2B 4-303SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z
The SUB instruction performs integer subtraction. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate an overflow in the signed or
unsigned result, respectively. The SF flag indicates the sign of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST ← (DEST – SRC);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
4-304 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-305SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z
SUBPD—Subtract Packed Double-Precision Floating-Point Values

Description
Performs an SIMD subtract of the two packed double-precision floating-point values in the
source operand (second operand) from the two packed double-precision floating-point values in
the destination operand (first operand), and stores the packed double-precision floating-point
results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 11-3 in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] − SRC[63:0];
DEST[127:64] ← DEST[127:64] − SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPD __m128d _mm_sub_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 5C /r SUBPD xmm1,
xmm2/m128

Valid Valid Subtract packed double-precision
floating-point values in xmm2/m128
from xmm1.
4-306 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 1.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-307SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-308 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SUBPS—Subtract Packed Single-Precision Floating-Point Values

Description
Performs an SIMD subtract of the four packed single-precision floating-point values in the
source operand (second operand) from the four packed single-precision floating-point values in
the destination operand (first operand), and stores the packed single-precision floating-point
results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 10-5 in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] − SRC[31:0];
DEST[63:32] ← DEST[63:32] − SRC[63:32];
DEST[95:64] ← DEST[95:64] − SRC[95:64];
DEST[127:96] ← DEST[127:96] − SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 5C /r SUBPS xmm1
xmm2/m128

Valid Valid Subtract packed single-precision
floating-point values in xmm2/mem from
xmm1.
Vol. 2B 4-309SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-310 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-311SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SUBSD—Subtract Scalar Double-Precision Floating-Point Values

Description
Subtracts the low double-precision floating-point value in the source operand (second operand)
from the low double-precision floating-point value in the destination operand (first operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0] − SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSD __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F2 0F 5C /r SUBSD xmm1,
xmm2/m64

Valid Valid Subtracts the low double-precision
floating-point values in
xmm2/mem64 from xmm1.
4-312 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-313SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-314 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SUBSS—Subtract Scalar Single-Precision Floating-Point Values

Description
Subtracts the low single-precision floating-point value in the source operand (second operand)
from the low single-precision floating-point value in the destination operand (first operand), and
stores the single-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain unchanged. See
Figure 10-6 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← DEST[31:0] − SRC[31:0];
(* DEST[127:96] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

F3 0F 5C /r SUBSS xmm1,
xmm2/m32

Valid Valid Subtract the lower single-precision
floating-point values in xmm2/m32
from xmm1.
Vol. 2B 4-315SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-316 Vol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-317SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
SWAPGS—Swap GS Base Register

Description
SWAPGS exchanges the current GS base register value with the value contained in MSR
address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be canonical; so
SWAPGS does not perform a canonical check. The SWAPGS instruction is a privileged instruc-
tion intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point.
Neither is there a straightforward method to obtain a pointer to kernel structures from which the
kernel stack pointer could be read. Thus, the kernel can't save general purpose registers or refer-
ence memory.

By design, SWAPGS does not require any general purpose registers or memory operands. No
registers need to be saved before using the instruction. SWAPGS exchanges the CPL 0 data
pointer from the KernelGSbase MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access kernel data structures. Similarly, when the OS
kernel is entered using an interrupt or exception (where the kernel stack is already set up),
SWAPGS can be used to quickly get a pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions. Those
instructions are only accessible at privilege level 0. WRMSR will cause a #GP(0) if the value to
be written to KernelGSbase MSR is non-canonical.

See Table 4-5.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 01 /7 SWAPGS Valid Invalid Exchanges the current GS base register
value with the value contained in MSR
address C0000102H.

Table 4-5. SWAPGS Operation Parameters
Opcode ModR/M Byte Instruction

MOD REG R/M Not 64-bit Mode 64-bit Mode

OF 01 MOD ≠ 11 111 xxx INVLPG INVLPG

11 111 000 #UD SWPGS

11 111 ≠ 000 #UD #UD
4-318 Vol. 2B SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, N-Z
Operation
IF CS.L ≠ 1 (* Not in 64-Bit Mode *)

THEN
#UD; FI;

IF CPL ≠ 0
THEN #GP(0); FI;

tmp ← GS(BASE);
GS(BASE) ← KERNELGSbase;
KERNELGSbase ← tmp;

Flags Affected
None

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit

Real-Address Mode Exceptions
#UD Instruction not recognized.

Virtual-8086 Mode Exceptions
#UD Instruction not recognized.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If CPL ≠ 0.
Vol. 2B 4-319SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, N-Z
SYSCALL—Fast System Call

Description
SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new RIP
from the IA32_LSTAR (64-bit mode). Upon return, SYSRET copies the value saved in RCX to
the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an OS-
defined value using the IA32_FMASK (MSR C000_0084). The actual mask value used by the
OS is the complement of the value written to the IA32_FMASK MSR. None of the bits in
RFLAGS are automatically cleared (except for RF). SYSRET restores RFLAGS from R11 (the
lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

• The CS and SS base and limit remain the same for all processes, including the operating
system (the base is 0H and the limit is 0FFFFFFFFH).

• The CS of the SYSCALL target has a privilege level of 0.

• The CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation
IF ((CS ≠ 1) or (IA32_EFER.SCE ≠ 1))
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX ← RIP;
RIP ← LSTAR_MSR;
R11 ← EFLAGS;
EFLAGS ← (EFLAGS MASKED BY IA32_FMASK);
CPL ← 0;
CS(SEL) ← IA32_STAR_MSR[47:32];
CS(DPL) ← 0;
CS(BASE) ← 0;
CS(LIMIT) ← 0xFFFFF;
CS(GRANULAR) ← 1;
SS(SEL) ← IA32_STAR_MSR[47:32] + 8;
SS(DPL) ← 0;
SS(BASE) ← 0;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 05 SYSCALL Valid Invalid Fast call to privilege level 0
system procedures.
4-320 Vol. 2B SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SS(LIMIT) ← 0xFFFFF;
SS(GRANULAR) ← 1;

Flags Affected
All.

Protected Mode Exceptions
#UD If Mode ≠ 64-bit.

Real-Address Mode Exceptions
#UD Instruction is not recognized in this mode.

Virtual-8086 Mode Exceptions
#UD Instruction is not recognized in this mode.

Compatibility Mode Exceptions
#UD Instruction is not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.
Vol. 2B 4-321SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SYSENTER—Fast System Call

Description
Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion
instruction to SYSEXIT. The instruction is optimized to provide the maximum performance for
system calls from user code running at privilege level 3 to operating system or executive proce-
dures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code
segment and code entry point, and the privilege level 0 stack segment and stack pointer by
writing values to the following MSRs:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the
segment selector for the privilege level 0 code segment. This value is also used to compute
the segment selector of the privilege level 0 stack segment.

• IA32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

• IA32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level 0
stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register addresses are
listed in Table 4-6. The addresses are defined to remain fixed for future IA-32 processors.

When SYSENTER is executed, the processor:

1. Loads the segment selector from the IA32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.

3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 34 SYSENTER Valid Valid Fast call to privilege level 0 system
procedures.

Table 4-6. MSRs Used By the SYSENTER and SYSEXIT Instructions
MSR Address

IA32_SYSENTER_CS 174H

IA32_SYSENTER_ESP 175H

IA32_SYSENTER_EIP 176H
4-322 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
6. Clears the VM flag in the EFLAGS register, if the flag is set.

7. Begins executing the selected system procedure.

The processor does not save a return IP or other state information for the calling procedure.

The SYSENTER instruction always transfers program control to a protected-mode code
segment with a DPL of 0. The instruction requires that the following conditions are met by the
operating system:

• The segment descriptor for the selected system code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected system stack segment selects a flat 32-bit stack
segment of up to 4 GBytes, with read, write, accessed, and expand-up permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not consti-
tute a call/return pair. When executing a SYSENTER instruction, the processor does not save
state information for the user code, and neither the SYSENTER nor the SYSEXIT instruction
supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions
between privilege level 3 code and privilege level 0 operating system procedures, the following
conventions must be followed:

• The segment descriptors for the privilege level 0 code and stack segments and for the
privilege level 3 code and stack segments must be contiguous in the global descriptor table.
This convention allows the processor to compute the segment selectors from the value
entered in the SYSENTER_CS_MSR MSR.

• The fast system call “stub” routines executed by user code (typically in shared libraries or
DLLs) must save the required return IP and processor state information if a return to the
calling procedure is required. Likewise, the operating system or executive procedures
called with SYSENTER instructions must have access to and use this saved return and
state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor
family and model to ensure that the SYSENTER/SYSEXIT instructions are actually present.
For example:
IF CPUID SEP bit is set

THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE

SYSENTER/SYSEXIT_Supported; FI;
FI;
Vol. 2B 4-323SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation
IF CR0.PE = 0 THEN #GP(0); FI;
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
EFLAGS.VM ← 0; (* Insures protected mode execution *)
EFLAGS.IF ← 0; (* Mask interrupts *)
EFLAGS.RF ← 0;

CS.SEL ← SYSENTER_CS_MSR (* Operating system provides CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute + Read, Accessed *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 0;
CS.SEL.RPL ← 0;
CS.ARbyte.P ← 1;
CPL ← 0;

SS.SEL ← CS.SEL + 8;
(* Set rest of SS to a fixed value *)
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ← 1; (* 4-KByte granularity *)
SS.ARbyte.S ←;
SS.ARbyte.TYPE ← 0011B; (* Read/Write, Accessed *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 0;
SS.SEL.RPL ← 0;
SS.ARbyte.P ← 1;

ESP ← SYSENTER_ESP_MSR;
EIP ← SYSENTER_EIP_MSR;

IA-32e Mode Operation
In IA-32e mode, SYSENTER executes a fast system calls from user code running at privilege
level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at privi-
lege level 0. This instruction is a companion instruction to the SYSEXIT instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL
selector.
4-324 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
When SYSENTER transfers control, the following fields are generated and bits set:

• Target code segment — Reads non-NULL selector from IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit = FFFFFFFFH.

• Target instruction — Reads 64-bit canonical address from IA32_SYSENTER_EIP.

• Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.

• Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

• New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected
VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-325SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SYSEXIT—Fast Return from Fast System Call

Description
Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the
SYSENTER instruction. The instruction is optimized to provide the maximum performance for
returns from system procedures executing at protections levels 0 to user procedures executing
at protection level 3. It must be executed from code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code
entry point, and the privilege level 3 stack segment and stack pointer by writing values into the
following MSR and general-purpose registers:

• IA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the
segment selector for the privilege level 0 code segment in which the processor is currently
executing. This value is used to compute the segment selectors for the privilege level 3
code and stack segments.

• EDX — Contains the 32-bit offset into the privilege level 3 code segment to the first
instruction to be executed in the user code.

• ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR/WRMSR. The
register address is listed in Table 4-6. This address is defined to remain fixed for future IA-32
processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in IA32_SYSENTER_CS and loads the sum into the CS selector
register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS selector
register.

4. Loads the stack pointer from the ECX register into the ESP register.

5. Switches to privilege level 3.

6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using the
SYSENTER and SYSEXIT instructions as companion call and return instructions.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.
REX.W +
0F 35

SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
user code.
4-326 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z
The SYSEXIT instruction always transfers program control to a protected-mode code segment
with a DPL of 3. The instruction requires that the following conditions are met by the operating
system:

• The segment descriptor for the selected user code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

• The segment descriptor for selected user stack segment selects a flat, 32-bit stack segment
of up to 4 GBytes, with expand-up, read, write, and accessed permissions.

The SYSENTER can be invoked from all operating modes except real-address mode and virtual
8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the
Pentium II processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor
family and model to ensure that the SYSENTER/SYSEXIT instructions are actually present.
For example:
IF CPUID SEP bit is set

THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN

SYSENTER/SYSEXIT_Not_Supported; FI;
ELSE

SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation
IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CR0.PE = 0 THEN #GP(0); FI;
IF CPL ≠ 0 THEN #GP(0); FI;

CS.SEL ← (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)
CS.BASE ← 0; (* Flat segment *)
CS.LIMIT ← FFFFFH; (* 4-GByte limit *)
CS.ARbyte.G ← 1; (* 4-KByte granularity *)
CS.ARbyte.S ← 1;
CS.ARbyte.TYPE ← 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D ← 1; (* 32-bit code segment*)
CS.ARbyte.DPL ← 3;
CS.SEL.RPL ← 3;
CS.ARbyte.P ← 1;
CPL ← 3;

SS.SEL ← (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);
Vol. 2B 4-327SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SS.BASE ← 0; (* Flat segment *)
SS.LIMIT ← FFFFFH; (* 4-GByte limit *)
SS.ARbyte.G ←1; (* 4-KByte granularity *)
SS.ARbyte.S ← ;
SS.ARbyte.TYPE ← 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D ← 1; (* 32-bit stack segment*)
SS.ARbyte.DPL ← 3;
SS.SEL.RPL ← 3;
SS.ARbyte.P ← 1;

ESP ← ECX;
EIP← EDX;

IA-32e Mode Operation
In IA-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive procedures
running at privilege level 0 to user code running at privilege level 3 (in compatibility mode or
64-bit mode). This instruction is a companion instruction to the SYSENTER instruction.

In IA-32e mode, the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; IA32_SYSENTER_CS must not contain a NULL
selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the
following fields are generated and bits set:

• Target code segment — Computed by adding 32 to the value in the
IA32_SYSENTER_CS.

• New CS attributes — L-bit = 1 (go to 64-bit mode).

• Target instruction — Reads 64-bit canonical address in RDX.

• Stack segment — Computed by adding 8 to the value of CS selector.

• Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size
attribute is 32 bits, the following fields are generated and bits set:

• Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.

• New CS attributes — L-bit = 0 (go to compatibility mode).

• Target instruction — Fetch the target instruction from 32-bit address in EDX.

• Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

• Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected
None.
4-328 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

If CPL ≠ 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
#GP(0) Always

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS = 0.

If CPL ≠ 0.

If ECX or EDX contains a non-canonical address.
Vol. 2B 4-329SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SYSRET—Return From Fast System Call

Description
SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the
new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the value saved in
RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value is set to
MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond to selectors
loaded by SYSCALL/SYSRET consistent with the base, limit and attribute values forced by the
these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

• CS and SS base and limit remain the same for all processes, including the operating
system.

• CS of the SYSCALL target has a privilege level of 0.

• CS of the SYSRET target has a privilege level of 3.

SYSCALL/SYSRET do not check for violations of these assumptions.

Operation
IF (CS.L ≠ 1) or (IA32_EFER.SCE ≠ 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL ≠ 0)

THEN #GP(0); FI;
IF (RCX ≠ CANONICAL_ADDRESS)

THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)

THEN (* Return to 64-Bit Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] + 16;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 07 SYSRET Valid Invalid Return from fast system call
4-330 Vol. 2B SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, N-Z
SS(PL) ← 0x3;
RIP ← RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS ← R11;
CPL ← 0x3;
CS(SEL) ← IA32_STAR[63:48] ;
CS(PL) ← 0x3;
SS(SEL) ← IA32_STAR[63:48] + 8;
SS(PL) ← 0x3;
EIP ← ECX;

FI;

Flags Affected
VM, IF, RF.

Protected Mode Exceptions
#UD If Mode ≠ 64-Bit.

Real-Address Mode Exceptions
#UD Instruction not recognized in this mode.

Virtual-8086 Mode Exceptions
#UD Instruction not recognized in this mode.

Compatibility Mode Exceptions
#UD Instruction not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.

#GP(0) If CPL ≠ 0.

If ECX contains a non-canonical address.
Vol. 2B 4-331SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, N-Z
TEST—Logical Compare

Description
Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is
then discarded.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using an REX prefix in the form of REX.W promotes operation to 64 bits. See the
summary chart at the beginning of this section for encoding data and limits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

A8 ib TEST AL, imm8 Valid Valid AND imm8 with AL; set SF,
ZF, PF according to result.

A9 iw TEST AX, imm16 Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.

A9 id TEST EAX, imm32 Valid Valid AND imm32 with EAX; set SF,
ZF, PF according to result.

REX.W + A9 id TEST RAX, imm32 Valid N.E. AND imm32 sign-extended to
64-bits with RAX; set SF, ZF,
PF according to result.

F6 /0 ib TEST r/m8, imm8 Valid Valid AND imm8 with r/m8; set SF,
ZF, PF according to result.

REX + F6 /0 ib TEST r/m8*, imm8 Valid N.E. AND imm8 with r/m8; set SF,
ZF, PF according to result.

F7 /0 iw TEST r/m16,
imm16

Valid Valid AND imm16 with r/m16; set
SF, ZF, PF according to result.

F7 /0 id TEST r/m32,
imm32

Valid Valid AND imm32 with r/m32; set
SF, ZF, PF according to result.

REX.W + F7 /0 id TEST r/m64,
imm32

Valid N.E. AND imm32 sign-extended to
64-bits with r/m64; set SF, ZF,
PF according to result.

84 /r TEST r/m8, r8 Valid Valid AND r8 with r/m8; set SF, ZF,
PF according to result.

REX + 84 /r TEST r/m8*, r8* Valid N.E. AND r8 with r/m8; set SF, ZF,
PF according to result.

85 /r TEST r/m16, r16 Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.

85 /r TEST r/m32, r32 Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.

REX.W + 85 /r TEST r/m64, r64 Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-332 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z
Operation
TEMP ← SRC1 AND SRC2;
SF ← MSB(TEMP);

IF TEMP = 0
THEN ZF ← 1;
ELSE ZF ← 0;

FI:

PF ← BitwiseXNOR(TEMP[0:7]);
CF ← 0;
OF ← 0;
(* AF is undefined *)

Flags Affected
The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the result (see
the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2B 4-333TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-334 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z
UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

Description
Performs and unordered compare of the double-precision floating-point values in the low quad-
words of source operand 1 (first operand) and source operand 2 (second operand), and sets the
ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater than,
less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered
result is returned if either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit
memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals an SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN. The
COMISD instruction signals an invalid operation exception if a source operand is either a QNaN
or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
RESULT ← UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF ← 111;
GREATER_THAN: ZF, PF, CF ← 000;
LESS_THAN: ZF, PF, CF ← 001;
EQUAL: ZF, PF, CF ← 100;

ESAC;
OF, AF, SF ← 0;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 2E /r UCOMISD xmm1,
xmm2/m64

Valid Valid Compares (unordered) the low double-
precision floating-point values in xmm1
and xmm2/m64 and set the EFLAGS
accordingly.
Vol. 2B 4-335UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
int_mm_ucomieq_sd(__m128d a, __m128d b)

int_mm_ucomilt_sd(__m128d a, __m128d b)

int_mm_ucomile_sd(__m128d a, __m128d b)

int_mm_ucomigt_sd(__m128d a, __m128d b)

int_mm_ucomige_sd(__m128d a, __m128d b)

int_mm_ucomineq_sd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
4-336 Vol. 2B UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-337UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

Description
Performs and unordered compare of the single-precision floating-point values in the low double-
words of the source operand 1 (first operand) and the source operand 2 (second operand), and
sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater
than, less than, or equal). In The OF, SF and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit
memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals an SIMD
floating-point invalid operation exception (#I) only when a source operand is an SNaN. The
COMISS instruction signals an invalid operation exception if a source operand is either a QNaN
or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
RESULT ← UnorderedCompare(SRC1[63:0] <> SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF ← 111;
GREATER_THAN: ZF,PF,CF ← 000;
LESS_THAN: ZF,PF,CF ← 001;
EQUAL: ZF,PF,CF ← 100;

ESAC;
OF,AF,SF ← 0;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 2E /r UCOMISS xmm1,
xmm2/m32

Valid Valid Compare lower single-precision floating-
point value in xmm1 register with lower
single-precision floating-point value in
xmm2/mem and set the status flags
accordingly.
4-338 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
int_mm_ucomieq_ss(__m128 a, __m128 b)

int_mm_ucomilt_ss(__m128 a, __m128 b)

int_mm_ucomile_ss(__m128 a, __m128 b)

int_mm_ucomigt_ss(__m128 a, __m128 b)

int_mm_ucomige_ss(__m128 a, __m128 b)

int_mm_ucomineq_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.
Vol. 2B 4-339UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.OSXM-
MEXCPT[bit 10] = 0.

If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-340 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z
UD2—Undefined Instruction

Description
Generates an invalid opcode. This instruction is provided for software testing to explicitly
generate an invalid opcode. The opcode for this instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP instruc-
tion.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
#UD (* Generates invalid opcode exception *);

Flags Affected
None.

Exceptions (All Operating Modes)
#UD Instruction is guaranteed to raise an invalid opcode exception in all oper-

ating modes.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode Description

0F 0B UD2 Valid Valid Raise invalid opcode exception.
Vol. 2B 4-341UD2—Undefined Instruction

INSTRUCTION SET REFERENCE, N-Z
UNPCKHPD—Unpack and Interleave High Packed Double-
Precision Floating-Point Values

Description
Performs an interleaved unpack of the high double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-14.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 15 /r UNPCKHPD xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves double-
precision floating-point values
from high quadwords of xmm1 and
xmm2/m128.

Figure 4-14. UNPCKHPD Instruction High Unpack and Interleave Operation

X1 X0

Y1 Y0

Y1 X1

DEST

SRC

DEST
4-342 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Operation
DEST[63:0] ← DEST[127:64];
DEST[127:64] ← SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.
If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions
#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.
#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-343UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-344 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

Description
Performs an interleaved unpack of the high-order single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-15.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] ← DEST[95:64];
DEST[63:32] ← SRC[95:64];
DEST[95:64] ← DEST[127:96];
DEST[127:96] ← SRC[127:96];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 15 /r UNPCKHPS xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves single-
precision floating-point values
from high quadwords of xmm1
and xmm2/mem into xmm1.

Figure 4-15. UNPCKHPS Instruction High Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y3 X3 Y2 X2

DEST

SRC

DEST
Vol. 2B 4-345UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
4-346 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-347UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

Description
Performs an interleaved unpack of the low double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-16.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] ← DEST[63:0];
DEST[127:64] ← SRC[63:0];

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 14
/r

UNPCKLPD xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves double-
precision floating-point values from low
quadwords of xmm1 and xmm2/m128.

Figure 4-16. UNPCKLPD Instruction Low Unpack and Interleave Operation

X1 X0

Y1 Y0

Y0 X0

DEST

SRC

DEST
4-348 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.
Vol. 2B 4-349UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-350 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Description
Performs an interleaved unpack of the low-order single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-17.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 14 /r UNPCKLPS xmm1,
xmm2/m128

Valid Valid Unpacks and Interleaves single-
precision floating-point values from
low quadwords of xmm1 and
xmm2/mem into xmm1.

Figure 4-17. UNPCKLPS Instruction Low Unpack and Interleave Operation

X3 X2 X1 X0

Y3 Y2 Y1 Y0

Y1 X1 Y0 X0

DEST

SRC

DEST
Vol. 2B 4-351UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Operation
DEST[31:0] ← DEST[31:0];
DEST[63:32] ← SRC[31:0];
DEST[95:64] ← DEST[63:32];
DEST[127:96] ← SRC[63:32];

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
4-352 Vol. 2B UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
Vol. 2B 4-353UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z
VERR/VERW—Verify a Segment for Reading or Writing

Description
Verifies whether the code or data segment specified with the source operand is readable (VERR)
or writable (VERW) from the current privilege level (CPL). The source operand is a 16-bit
register or a memory location that contains the segment selector for the segment to be verified.
If the segment is accessible and readable (VERR) or writable (VERW), the ZF flag is set; other-
wise, the ZF flag is cleared. Code segments are never verified as writable. This check cannot be
performed on system segments.

To set the ZF flag, the following conditions must be met:

• The segment selector is not NULL.

• The selector must denote a descriptor within the bounds of the descriptor table (GDT or
LDT).

• The selector must denote the descriptor of a code or data segment (not that of a system
segment or gate).

• For the VERR instruction, the segment must be readable.

• For the VERW instruction, the segment must be a writable data segment.

• If the segment is not a conforming code segment, the segment’s DPL must be greater than
or equal to (have less or the same privilege as) both the CPL and the segment selector's
RPL.

The validation performed is the same as is performed when a segment selector is loaded into the
DS, ES, FS, or GS register, and the indicated access (read or write) is performed. The segment
selector's value cannot result in a protection exception, enabling the software to anticipate
possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The operand size
is fixed at 16 bits.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 00 /4 VERR r/m16 Valid Valid Set ZF=1 if segment specified with r/m16
can be read.

0F 00 /5 VERW r/m16 Valid Valid Set ZF=1 if segment specified with r/m16
can be written.
4-354 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z
Operation
IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))

THEN ZF ← 0; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) ≠ conforming code segment)
and (CPL > DPL) or (RPL > DPL)

THEN
ZF ← 0;

ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))

THEN
ZF ← 1;

FI;
FI;

Flags Affected
The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW);
otherwise, it is set to 0.

Protected Mode Exceptions
The only exceptions generated for these instructions are those related to illegal addressing of the
source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The VERR and VERW instructions are not recognized in real-address

mode.

Virtual-8086 Mode Exceptions
#UD The VERR and VERW instructions are not recognized in virtual-8086

mode.
Vol. 2B 4-355VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-356 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z
WAIT/FWAIT—Wait

Description
Causes the processor to check for and handle pending, unmasked, floating-point exceptions
before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a
WAIT instruction after a floating-point instruction insures that any unmasked floating-point
exceptions the instruction may raise are handled before the processor can modify the instruc-
tion’s results. See the section titled “Floating-Point Exception Synchronization” in Chapter 8 of
the IA-32 Intel® Architecture Software Developer’s Manual, Volume 1, for more information on
using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected
The C0, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.

Real-Address Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
#NM If CR0.MP[bit 1] = 1 and CR0.TS[bit 3] = 1.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

9B WAIT Valid Valid Check pending unmasked floating-
point exceptions.

9B FWAIT Valid Valid Check pending unmasked floating-
point exceptions.
Vol. 2B 4-357WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-358 Vol. 2B WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, N-Z
WBINVD—Write Back and Invalidate Cache

Description
Writes back all modified cache lines in the processor’s internal cache to main memory and inval-
idates (flushes) the internal caches. The instruction then issues a special-function bus cycle that
directs external caches to also write back modified data and another bus cycle to indicate that
the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete
their write-back and flushing operations before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache write-back and flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also a serializing instruction (see “Serializing Instructions” in Chapter 8 of the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the
INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility
The WBINVD instruction is implementation dependent, and its function may be implemented
differently on future IA-32 processors. The instruction is not supported on IA-32 processors
earlier than the Intel486 processor.

Operation
WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected
None.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 09 WBINVD Valid Valid Write back and flush Internal caches;
initiate writing-back and flushing of
external caches.
Vol. 2B 4-359WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) The WBINVD instruction cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-360 Vol. 2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, N-Z
WRMSR—Write to Model Specific Register

Description
In legacy and compatibility mode, writes the contents of registers EDX:EAX into the 64-bit
model specific register (MSR) specified by the ECX register. The value loaded into the ECX
register is the address of the MSR. The contents of the EDX register are copied to high-order 32
bits of the selected MSR and the contents of the EAX register are copied to low-order 32 bits of
the MSR. Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) is generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception. The processor will also
generate a general protection exception if software attempts to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This
includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine
check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, lists all MSRs that can be read with this instruction
and their addresses. Note that each processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7
of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

In 64-bit mode, operation is the same as legacy mode, except that targeted registers are updated
by MSR[63:32] = RDX[31:0], MSR[31:0] = RAX[31:0].

IA-32 Architecture Compatibility
The MSRs and the ability to read them with the WRMSR instruction were introduced into the
IA-32 architecture with the Pentium processor. Execution of this instruction by an IA-32
processor earlier than the Pentium processor results in an invalid opcode exception #UD.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.

REX.W + 0F 30 WRMSR Valid N.E. Write the value in RDX[31:0]:
RAX[31:0] to MSR specified by RCX.
Vol. 2B 4-361WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, N-Z
Operation
IF 64-BIt Mode and REX.W used

THEN
MSR[RCX] ← RDX:RAX;

ELSE IF (Non-64-Bit Modes or Default 64-Bit Mode)
MSR[ECX] ← EDX:EAX; FI;

FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Real-Address Mode Exceptions
#GP(0) If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.
4-362 Vol. 2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, N-Z
XADD—Exchange and Add

Description
Exchanges the first operand (destination operand) with the second operand (source operand),
then loads the sum of the two values into the destination operand. The destination operand can
be a register or a memory location; the source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

IA-32 Architecture Compatibility
IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this
instruction is used, you should provide an equivalent code sequence that runs on earlier
processors.

Operation
TEMP ← SRC + DEST;
SRC ← DEST;
DEST ← TEMP;

Flags Affected
The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is
stored in the destination operand.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F C0 /r XADD r/m8, r8 Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + 0F C0 /r XADD r/m8*, r8* Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

0F C1 /r XADD r/m16, r16 Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

0F C1 /r XADD r/m32, r32 Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W + 0F C1 /r XADD r/m64, r64 Valid N.E. Exchange r64 and r/m64;
load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used:

AH, BH, CH, DH.
Vol. 2B 4-363XADD—Exchange and Add

INSTRUCTION SET REFERENCE, N-Z
Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-364 Vol. 2B XADD—Exchange and Add

INSTRUCTION SET REFERENCE, N-Z
XCHG—Exchange Register/Memory with Register

Description
Exchanges the contents of the destination (first) and source (second) operands. The operands
can be two general-purpose registers or a register and a memory location. If a memory operand
is referenced, the processor’s locking protocol is automatically implemented for the duration of
the exchange operation, regardless of the presence or absence of the LOCK prefix or of the value
of the IOPL. (See the LOCK prefix description in this chapter for more information on the
locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process
synchronization. (See “Bus Locking” in Chapter 7 of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 3A, for more information on bus locking.)

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

90+rw XCHG AX, r16 Valid Valid Exchange r16 with AX.
90+rw XCHG r16, AX Valid Valid Exchange AX with r16.
90+rd XCHG EAX, r32 Valid Valid Exchange r32 with EAX.
REX.W + 90+rd XCHG RAX, r64 Valid N.E. Exchange r64 with RAX.
90+rd XCHG r32, EAX Valid Valid Exchange EAX with r32.
REX.W + 90+rd XCHG r64, RAX Valid N.E. Exchange RAX with r64.
86 /r XCHG r/m8, r8 Valid Valid Exchange r8 (byte register) with

byte from r/m8.
REX + 86 /r XCHG r/m8*, r8* Valid N.E. Exchange r8 (byte register) with

byte from r/m8.
86 /r XCHG r8, r/m8 Valid Valid Exchange byte from r/m8 with r8

(byte register).
REX + 86 /r XCHG r8*, r/m8* Valid N.E. Exchange byte from r/m8 with r8

(byte register).
87 /r XCHG r/m16, r16 Valid Valid Exchange r16 with word from

r/m16.
87 /r XCHG r16, r/m16 Valid Valid Exchange word from r/m16 with

r16.
87 /r XCHG r/m32, r32 Valid Valid Exchange r32 with doubleword

from r/m32.
REX.W + 87 /r XCHG r/m64, r64 Valid N.E. Exchange r64 with quadword

from r/m64.
87 /r XCHG r32, r/m32 Valid Valid Exchange doubleword from r/m32

with r32.
REX.W + 87 /r XCHG r64, r/m64 Valid N.E. Exchange quadword from r/m64

with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
Vol. 2B 4-365XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z
The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
TEMP ← DEST;
DEST ← SRC;
SRC ← TEMP;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
4-366 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
Vol. 2B 4-367XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z
XLAT/XLATB—Table Look-up Translation

Description
Locates a byte entry in a table in memory, using the contents of the AL register as a table index,
then copies the contents of the table entry back into the AL register. The index in the AL register
is treated as an unsigned integer. The XLAT and XLATB instructions get the base address of the
table in memory from either the DS:EBX or the DS:BX registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The DS segment may be overridden with a
segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand”
form and the “no-operand” form. The explicit-operand form (specified with the XLAT
mnemonic) allows the base address of the table to be specified explicitly with a symbol. This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the symbol does not have to specify the
correct base address. The base address is always specified by the DS:(E)BX registers, which
must be loaded correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also
the processor assumes that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify
the table index (the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s
base address. See the summary chart at the beginning of this section for encoding data and
limits.

Operation
IF AddressSize = 16

THEN
AL ← (DS:BX + ZeroExtend(AL));

ELSE IF (AddressSize = 32)
AL ← (DS:EBX + ZeroExtend(AL)); FI;

ELSE (AddressSize = 64)
AL ← (RBX + ZeroExtend(AL));

FI;

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

D7 XLAT m8 Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

D7 XLATB Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

REX.W + D7 XLATB Valid N.E. Set AL to memory byte [RBX +
unsigned AL].
4-368 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, N-Z
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.
Vol. 2B 4-369XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, N-Z
XOR—Logical Exclusive OR

Description
Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result is 1 if the corresponding bits of the operands are different; each bit is 0 if the corre-
sponding bits are the same.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

34 ib XOR AL, imm8 Valid Valid AL XOR imm8.
35 iw XOR AX, imm16 Valid Valid AX XOR imm16.
35 id XOR EAX, imm32 Valid Valid EAX XOR imm32.
REX.W + 35 id XOR RAX, imm32 Valid N.E. RAX XOR imm32 (sign-

extended).
80 /6 ib XOR r/m8, imm8 Valid Valid r/m8 XOR imm8.
REX + 80 /6 ib XOR r/m8*, imm8 Valid N.E. r/m8 XOR imm8.
81 /6 iw XOR r/m16, imm16 Valid Valid r/m16 XOR imm16.
81 /6 id XOR r/m32, imm32 Valid Valid r/m32 XOR imm32.
REX.W + 81 /6 id XOR r/m64, imm32 Valid N.E. r/m64 XOR imm32 (sign-

extended).
83 /6 ib XOR r/m16, imm8 Valid Valid r/m16 XOR imm8 (sign-

extended).
83 /6 ib XOR r/m32, imm8 Valid Valid r/m32 XOR imm8 (sign-

extended).
REX.W + 83 /6 ib XOR r/m64, imm8 Valid N.E. r/m64 XOR imm8 (sign-

extended).
30 /r XOR r/m8, r8 Valid Valid r/m8 XOR r8.
REX + 30 /r XOR r/m8*, r8* Valid N.E. r/m8 XOR r8.
31 /r XOR r/m16, r16 Valid Valid r/m16 XOR r16.
31 /r XOR r/m32, r32 Valid Valid r/m32 XOR r32.
REX.W + 31 /r XOR r/m64, r64 Valid N.E. r/m64 XOR r64.
32 /r XOR r8, r/m8 Valid Valid r8 XOR r/m8.
REX + 32 /r XOR r8*, r/m8* Valid N.E. r8 XOR r/m8.
33 /r XOR r16, r/m16 Valid Valid r16 XOR r/m16.
33 /r XOR r32, r/m32 Valid Valid r32 XOR r/m32.
REX.W + 33 /r XOR r64, r/m64 Valid N.E. r64 XOR r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is

used: AH, BH, CH, DH.
4-370 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
This instruction can be used with a LOCK prefix to allow the instruction to be executed atom-
ically.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using an REX prefix in the form of REX.W promotes operation to 64 bits. See the
summary chart at the beginning of this section for encoding data and limits.

Operation
DEST ← DEST XOR SRC;

Flags Affected
The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
Vol. 2B 4-371XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#SS(0) If a memory address referencing the SS segment is in a non-canonical

form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.
4-372 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

Description
Performs a bitwise logical exclusive-OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first operand),
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPD __m128d _mm_xor_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

66 0F 57 /r XORPD xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.
Vol. 2B 4-373XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
4-374 Vol. 2B XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point
Values

Description
Performs a bitwise logical exclusive-OR of the four packed single-precision floating-point
values from the source operand (second operand) and the destination operand (first operand),
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] ← DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPS __m128 _mm_xor_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F 57 /r XORPS xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.
Vol. 2B 4-375XORPS—Bitwise Logical XOR for Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z
Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CR0.TS[bit 3] = 1.

#UD If CR0.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
4-376 Vol. 2B XORPS—Bitwise Logical XOR for Single-Precision Floating-Point
Values

5

VMX Instruction
Reference title

CHAPTER 5
VMX INSTRUCTION REFERENCE

5.1 OVERVIEW
This chapter describes the IA-32 instructions that support the virtual-machine extensions
(VMX). VMX is intended to support virtualization of processor hardware and a system software
layer acting as a host to multiple guest software environments. The virtual-machine extensions
(VMX) includes five instructions that manage the virtual-machine control structure (VMCS)
and five instruction that manage VMX operation. Additional details of VMX are described in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3B.

The behavior of the VMCS-maintenance instructions is summarized below:

• VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It
makes the referenced VMCS active and current, loading the current-VMCS pointer with
this operand and establishes the current VMCS based on the contents of VMCS-data area
in the referenced VMCS region. Because this makes the referenced VMCS active, a logical
processor may start maintaining on the processor some of the VMCS data for the VMCS.

• VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

• VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The
instruction sets the launch state of the VMCS referenced by the operand to “clear”, renders
that VMCS inactive, and ensures that data for the VMCS have been written to the VMCS-
data area in the referenced VMCS region. If the operand is the same as the current-VMCS
pointer, that pointer is made invalid.

• VMREAD — This instruction reads a component from the VMCS (the encoding of that
field is given in a register operand) and stores it into a destination operand that may be a
register or in memory.

• VMWRITE — This instruction writes a component to the VMCS (the encoding of that
field is given in a register operand) from a source operand that may be a register or in
memory.

The behavior of the VMX management instructions is summarized below:

• VMCALL — This instruction allows a guest in VMX non-root operation to call the
VMM for service. A VM exit occurs, transferring control to the VMM.

• VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

• VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

• VMXOFF — This instruction causes the processor to leave VMX operation.
Vol. 2B 5-1

VMX INSTRUCTION REFERENCE
• VMXON — This instruction takes a single 64-bit source operand that is in memory. It
causes a logical processor to enter VMX root operation and to use the memory referenced
by the operand to support VMX operation.

Only VMCALL can be executed in compatibility mode (causing a VM exit). The other VMX
instructions generate invalid-opcode exceptions if executed in compatibility mode.

5.2 CONVENTIONS
The operation sections for the VMX instructions in Section 5.3 use the pseudo-function VMexit,
which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfailInvalid, and
VMfailValid. These pseudo-functions signal instruction success or failure by setting or clearing
bits in RFLAGS and, in some cases, by writing the VM-instruction error field. The following
pseudocode fragments detail these functions:

VMsucceed:
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid

THEN VMfailValid(ErrorNumber);
ELSE VMfailInvalid;

FI;

VMfailInvalid:
CF ← 1;
PF ← 0;
AF ← 0;
ZF ← 0;
SF ← 0;
OF ← 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF ← 0;
PF ← 0;
AF ← 0;
ZF ← 1;
SF ← 0;
OF ← 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Appendix J, “VM Instruction
Error Numbers,” in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B.
5-2 Vol. 2B

VMX INSTRUCTION REFERENCE
5.3 VMX INSTRUCTIONS
This section provides detailed descriptions of the VMX instructions.
Vol. 2B 5-3

VMX INSTRUCTION REFERENCE
VMCALL—Call to VM Monitor

Description
This instruction allows guest software can make a call for service into an underlying VM
monitor. The details of the programming interface for such calls are VMM-specific; this instruc-
tion does nothing more than cause a VM exit, registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 24.16.2 in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3B). This invocation will acti-
vate the dual-monitor treatment of system-management interrupts (SMIs) and system-manage-
ment mode (SMM) if it is not already active (see Section 24.16.6 in IA-32 Intel Architecture
Software Developer’s Manual, Volume 3B).

Operation
IF not in VMX operation

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF in SMM or if the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail(VMCALL executed in VMX root operation);
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF CPL > 0

THEN #GP(0);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 24.16.2
 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields pertinent to saving state are not valid1

THEN VMfailValid(VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN

Opcode Instruction Description

0F 01 C1 VMCALL Call to VM monitor by causing VM exit.

1. This includes the “save” VM-exit controls and the VM-exit MSR-store address and count fields.
5-4 Vol. 2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field, MSEG (see Section 24.16.6.2,
in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);

FI;
FI;

FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0 and the logical processor is in VMX

root operation.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMCALL instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.
Vol. 2B 5-5VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.
5-6 Vol. 2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE
VMCLEAR—Clear Virtual-Machine Control Structure

Description
This instruction applies to the VMCS whose VMCS region resides at the physical address
contained in the instruction operand. The instruction ensures that VMCS data for that VMCS
(some of these data may be currently maintained on the processor) are copied to the VMCS region
in memory. It also initializes parts of the VMCS region (for example, it sets the launch state of
that VMCS to clear). See Chapter 20, “Virtual-Machine Control Structures,” in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3B.

The operand of this instruction is always 64 bits and is always in memory. If the operand is the
current-VMCS pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the
data may be already resident in memory before the VMCLEAR is executed.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
(processor supports Intel EM64T and
addr sets any bits beyond the physical-address width) OR
(processor does not support Intel EM64T and addr sets any bits in the range 63:32)

THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMCLEAR with VMXON pointer);
ELSE

ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand ← “clear”
IF operand addr = current-VMCS pointer

THEN current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;
FI;
VMsucceed;

Opcode Instruction Description

66 0F C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.
Vol. 2B 5-7VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
FI;
FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD.

REP* Reserved and may cause unpredictable behavior (applies to both
REPNE/REPNZ and REP/REPE/REPZ).

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMCLEAR instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.
5-8 Vol. 2B VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If not in VMX operation.
Vol. 2B 5-9VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Description
Effects a VM entry managed by the current VMCS.

• VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is
successful, it sets the launch state to “launched.”

• VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as
detailed in Chapter 22, “VM Entries,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3B. Failure to pass checks on the VMX controls or on the host-state area passes
control to the instruction following the VMLAUNCH or VMRESUME instruction. If these pass
but checks on the guest-state area fail, the logical processor loads state from the host-state area
of the VMCS, passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or POP
to SS.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF events are being blocked by MOV SS

THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)

THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched”)

THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE

Check settings of VMX controls and host-state area;
IF invalid settings

THEN VMfailValid(VM entry with invalid VMX-control field(s)) or

Opcode Instruction Description

0F 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.
0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
5-10 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer)
or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;

ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 22.7, in the
IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B);
ELSE

Attempt to load MSRs from VM-entry MSR-load area;
IF failure

THEN VM entry fails (see Section 22.7, in the IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3B);
ELSE

IF VMLAUNCH
THEN launch state of VMCS ← “launched”;

FI;
IF in SMM and “entry to SMM” VM-entry control is 0

THEN
IF “deactivate dual-monitor treatment” VM-entry
control is 0

THEN SMM-transfer VMCS pointer ←
current-VMCS pointer;

FI;
IF executive-VMCS pointer is VMX pointer

THEN current-VMCS pointer ←
VMCS-link pointer;
ELSE current-VMCS pointer ←
executive-VMCS pointer;

FI;
leave SMM;

FI;
VM entry succeeds;

FI;
FI;

FI;
FI;

Further details of the operation of the VM-entry appear in Chapter 22 of IA-32 Intel Architecture
Software Developer’s Manual, Volume 3B.
Vol. 2B 5-11VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMLAUNCH and VMRESUME instructions are not recog-
nized outside VMX operation.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in

virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in

compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

#UD If executed outside VMX operation.
5-12 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Description
Marks the current-VMCS pointer valid and loads it with the physical address in the instruction
operand. The instruction fails if its operand is not properly aligned, sets unsupported physical-
address bits, or is equal to the VMXON pointer. In addition, the instruction fails if the 32 bits in
memory referenced by the operand do not match the VMCS revision identifier supported by this
processor.2

The operand of this instruction is always 64 bits and is always in memory.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
(processor supports Intel EM64T and
addr sets any bits beyond the processor’s physical-address width) OR
processor does not support Intel EM64T and addr sets any bits in the range 63:32

THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer

THEN VMfail(VMPTRLD with VMXON pointer);
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE

current-VMCS pointer ← addr;
VMsucceed;

FI;
FI;

FI;

Opcode Instruction Description

0F C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.

2. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier
supported by this processor (see Appendix G, “VMX Capability Reporting Facility,” in the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3B).
Vol. 2B 5-13VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REPNE/REPNZ Causes #UD

REP/REPE/REPZ Changes encoding to that of VMXON; see “VMXON—Enter VMX Oper-
ation” for operation and interactions with other prefixes.

Segment overrides Treated normally

Operand size Changes encoding to that of VMCLEAR; see “VMCLEAR—Clear
Virtual-Machine Control Structure” for operation and interactions with
other prefixes.

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX oper-

ation and the VMPTRLD instruction is not recognized outside VMX
operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.
5-14 Vol. 2B VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If not in VMX operation.
Vol. 2B 5-15VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMPTRST—Store Pointer to Virtual-Machine Control Structure

Description
Stores the current-VMCS pointer into a specified memory address. The operand of this instruc-
tion is always 64 bits and is always in memory.

Operation
IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE

64-bit in-memory destination operand ← current-VMCS pointer;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

Opcode Instruction Description

0F C7 /7 VMPTRST Stores the current VMCS pointer into memory.
5-16 Vol. 2B VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMPTRST instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS segments and
the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the destination operand is in the SS segment and the memory address is
in a non-canonical form.

#UD If operand is a register.

If not in VMX operation.
Vol. 2B 5-17VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMREAD—Read Field from Virtual-Machine Control Structure

Description
Reads a specified field from the VMCS and stores it into a specified destination operand
(register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the register
source operand. Outside IA-32e mode, the source operand has 32 bits, regardless of the value of
CS.D. In 64-bit mode, the source operand has 64 bits; however, if bits 63:32 of the source
operand are not zero, VMREAD will fail due to an attempt to access an unsupported VMCS
component (see operation section).

The effective size of the primary source operand, which may be a register or in memory, is
always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to operand size)
and 64 bits in 64-bit mode. If the VMCS field specified by the secondary source operand is
shorter than this effective operand size, the high bits of the primary source operand are ignored.
If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory destination operand can occur only after
determining, in the operation section below, that the VMCS pointer is valid and that the speci-
fied VMCS field is supported.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF register source operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE

DEST ← contents of VMCS field indexed by register source operand;
VMsucceed;

FI;

Opcode Instruction Description

0F 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).
0F 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
5-18 Vol. 2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.

#SS(0) If a memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMREAD instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.
Vol. 2B 5-19VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.

#SS(0) If the memory destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.
5-20 Vol. 2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
Vol. 2B 5-21VMRESUME—Resume Virtual Machine

VMX INSTRUCTION REFERENCE
VMWRITE—Write Field to Virtual-Machine Control Structure

Description
Writes to a specified field in the VMCS specified by a secondary source operand (register only)
using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register secondary
source operand. Outside IA-32e mode, the secondary source operand is always 32 bits, regard-
less of the value of CS.D. In 64-bit mode, the secondary source operand has 64 bits; however,
if bits 63:32 of the secondary source operand are not zero, VMWRITE will fail due to an attempt
to access an unsupported VMCS component (see operation section).

The effective size of the primary source operand, which may be a register or in memory, is
always 32 bits outside IA-32e mode (the setting of CS.D is ignored with respect to operand size)
and 64 bits in 64-bit mode. If the VMCS field specified by the secondary source operand is
shorter than this effective operand size, the high bits of the primary source operand are ignored.
If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining,
in the operation section below, that the VMCS pointer is valid but before determining if the
destination VMCS field is supported.

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF current-VMCS pointer is not valid

THEN VMfailInvalid;
ELSIF register destination operand does not correspond to any VMCS field

THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by register destination operand is read-only)

THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

VMCS field indexed by register destination operand ← SRC;
VMsucceed;

FI;

Opcode Instruction Description

0F 79 VMWRITE r64, r/m64 Writes.a specified VMCS field (in 64-bit mode)
0F 79 VMWRITE r32, r/m32 Writes.a specified VMCS field (outside 64-bit mode)
5-22 Vol. 2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If a memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.

#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMWRITE instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.
Vol. 2B 5-23VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.
5-24 Vol. 2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE
VMXOFF—Leave VMX Operation

Description
Takes the logical processor out of VMX operation, unblocks INIT signals, re-enables A20M,
and clears any address-range monitoring.3

Operation
IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
unblock and enable A20M;
clear address-range monitoring;
VMsucceed;

FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Ignored

Operand size Causes #UD

Opcode Instruction Description

0F 01 C4 VMXOFF Leaves VMX operation.

3. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Manage-
ment,” of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3A.
Vol. 2B 5-25VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD A logical processor cannot be in real-address mode while in VMX opera-

tion and the VMXOFF instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.

#UD If executed outside VMX operation.
5-26 Vol. 2B VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE
VMXON—Enter VMX Operation

Description
Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals,
disables A20M, and clears any address-range monitoring established by the MONITOR instruc-
tion.4

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that
references the VMXON region, which the logical processor may use to support VMX operation.
This operand is always 64 bits and is always in memory.

Operation
IF (register operand) or (CR4.VMXE = 0) or (CR0.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF not in VMX operation

THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CR0 and CR4 are supported in VMX operation5) or
(bit 0 (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(bit 2 of IA32_FEATURE_CONTROL MSR is clear)

THEN #GP(0);
ELSE

addr ← contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel EM64T and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel EM64T and
addr sets any bits in the range 63:32)

THEN VMfailInvalid;
ELSE

rev ← 32 bits located at physical address addr;
IF rev ≠ VMCS revision identifier supported by processor

THEN VMfailInvalid;
ELSE

current-VMCS pointer ← FFFFFFFF_FFFFFFFFH;

Opcode Instruction Description

0F 0FC7 /6 VMXON m64 Enter VMX root operation.

4. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3A.

5. See Section 19.8 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3B.
Vol. 2B 5-27VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;

FI;
FI;

FI;
ELSIF in VMX non-root operation

THEN VMexit;
ELSIF CPL > 0

THEN #GP(0);
ELSE VMfail(“VMXON executed in VMX root operation”);

FI;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD

REP* Ignored (includes REPNE/REPNZ and REP/REPE/REPZ)

Segment overrides Treated normally

Operand size Ignored

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If executed outside VMX operation with CPL>0 or with invalid CR0 or

CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.
5-28 Vol. 2B VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
#UD If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions
#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CR0 or

CR4 fixed bits.

If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.

If executed with CR4.VMXE = 0.
Vol. 2B 5-29VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE
5-30 Vol. 2B VMXON—Enter VMX Operation

A

Opcode Map

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 architecture object code. Instructions are
divided into encoding groups:

• 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX
technology, SSE/SSE2/SSE3, and VMX instructions. Maps for these instructions are given
in Table A-2 through Table A-6.

• Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for
floating-point instructions. The maps for these instructions are provided in Table A-7
through Table A-22.

NOTE
All blanks in opcode maps are reserved and must not be used. Do not depend
on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES
Tables in this appendix list opcodes of instructions (including required instruction prefixes, op-
code extensions in associated ModR/M byte). Blank cells in the tables indicate opcodes that are
reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode
byte. For 1-byte encodings (Table A-2), use the four high-order bits of an opcode to index a row
of the opcode table; use the four low-order bits to index a column of the table. For 2-byte op-
codes beginning with 0FH (Table A-3), skip any instruction prefixes, the 0FH byte (0FH may
be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values of the next opcode
byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with 0F38H or
0F3AH (Table A-4), skip any instruction prefixes, 0F38H or 0F3AH and use the upper and low-
er 4-bit values of the third opcode byte to index table rows and columns. See Section A.2.4, “Op-
code Look-up Examples for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution.
For information on how an opcode extension in the ModR/M byte modifies the opcode map in
Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits
of opcodes at the top of each page. See Section A.5. If the accompanying ModR/M byte is in the
range of 00H-BFH, bits 3-5 (the top row of the third table on each page) along with the reg bits
of ModR/M determine the opcode. ModR/M bytes outside the range of 00H-BFH are mapped
by the bottom two tables on each page of the section.
Vol. 2B A-1

OPCODE MAP
A.2 KEY TO ABBREVIATIONS
Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the
type of operand.

A.2.1 Codes for Addressing Method
The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is en-
coded in the instruction. No base register, index register, or scaling factor can be ap-
plied (for example, far JMP (EA)).

C The reg field of the ModR/M byte selects a control register (for example, MOV (0F20,
0F22)).

D The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

E A ModR/M byte follows the opcode and specifies the operand. The operand is either a
general-purpose register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, a displacement.

F EFLAGS/RFLAGS Register.

G The reg field of the ModR/M byte selects a general register (for example, AX (000)).

I Immediate data: the operand value is encoded in subsequent bytes of the instruction.

J The instruction contains a relative offset to be added to the instruction pointer register
(for example, JMP (0E9), LOOP).

M The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHG8B).

N The R/M field of the ModR/M byte selects a packed-quadword, MMX technology reg-
ister.

O The instruction has no ModR/M byte. The offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied (for example, MOV (A0–A3)).

P The reg field of the ModR/M byte selects a packed quadword MMX technology register.

Q A ModR/M byte follows the opcode and specifies the operand. The operand is either
an MMX technology register or a memory address. If it is a memory address, the ad-
dress is computed from a segment register and any of the following values: a base reg-
ister, an index register, a scaling factor, and a displacement.

R The R/M field of the ModR/M byte may refer only to a general register (for example,
MOV (0F20-0F23)).
A-2 Vol. 2B

OPCODE MAP
S The reg field of the ModR/M byte selects a segment register (for example, MOV
(8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register.

V The reg field of the ModR/M byte selects a 128-bit XMM register.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a
128-bit XMM register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or
LODS).

Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS,
STOS, or SCAS).

A.2.2 Codes for Operand Type
The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depend-
ing on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit or 48-bit pointer, depending on operand-size attribute.

pi Quadword MMX technology register (for example: mm0).

ps 128-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

ss Scalar element of a 128-bit packed single-precision floating data.

si Doubleword integer register (for example: eax).

v Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.
Vol. 2B A-3

OPCODE MAP
A.2.3 Register Codes
When an opcode requires a specific register as an operand, the register is identified by name (for
example, AX, CL, or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the oper-
and-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32,
or 64-bit sizes are possible. For example: eAX indicates that the AX register is used when the
operand-size attribute is 16 and the EAX register is used when the operand-size attribute is 32.
rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this
fact is indicated by adding “/x” to the register name to indicate the additional possibility. For
example, rCX/r9 is used to indicate that the register could either be rCX or r9. Note that the size
of r9 in this case is determined by the operand size attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes
is arranged by row (the least-significant 4 bits of the hexadecimal value) and column (the most-
significant 4 bits of the hexadecimal value). Each entry in the table lists one of the following
types of opcodes:

• Instruction mnemonics and operand types using the notations listed in Section A.2

• Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting
the byte following the primary opcode fall into one of the following cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. Operand types are listed according to notations
listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the
ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction prefix or entries for instructions without operands that use ModR/M (for
example: 60H, PUSHA; 06H, PUSH ES).
A-4 Vol. 2B

OPCODE MAP
Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map
(Table A-2) as follows:

• The first digit (0) of the opcode indicates the table row and the second digit (3) indicates
the table column. This locates an opcode for ADD with two operands.

• The first operand (type Gv) indicates a general register that is a word or doubleword
depending on the operand-size attribute. The second operand (type Ev) indicates a
ModR/M byte follows that specifies whether the operand is a word or doubleword general-
purpose register or a memory address.

• The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows
(00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the
EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table).
Group numbers indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an
opcode extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two
bytes or three bytes in length. Primary opcodes that are 2 bytes in length begin with an escape
opcode 0FH. The upper and lower four bits of the second opcode byte are used to index a par-
ticular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H)
and the escape opcode (OFH). The upper and lower four bits of the third byte are used to index
a particular row and column in Table A-3 (except when the second opcode byte is the 3-byte
escape opcodes 38H or 3AH; in this situation refer to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary op-
code fall into one of the following cases:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. The operand types are listed according to
notations listed in Section A.2.

• A ModR/M byte is required and includes an opcode extension in the reg field in the
ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

• Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction without operands that are encoded using ModR/M (for example: 0F77H,
EMMS).
Vol. 2B A-5

OPCODE MAP
Example A-2. Look-up Example for 2-Byte Opcodes

Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.

• The opcode is located in row A, column 4. The location indicates a SHLD instruction with
operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.

— Gv: The reg field of the ModR/M byte selects a general-purpose register.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M
indicate that a 32-bit displacement is used to locate the first operand in memory and eAX
as the second operand.

• The next part of the opcode is the 32-bit displacement for the destination memory operand
(00000000H). The last byte stores immediate byte that provides the count of the shift
(03H).

• By this breakdown, it has been shown that this opcode represents the instruction: SHLD
DS:00000000H, EAX, 3.

A.2.4.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that
are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in length begin with two escape
bytes 0F38H or 0F3A. The upper and lower four bits of the third opcode byte are used to index
a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H)
and two escape bytes (0F38H or 0F3AH). The upper and lower four bits of the fourth byte are
used to index a particular row and column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary op-
code fall into the following case:

• A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. The operand types are listed according to
notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes

Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

• 66H is a prefix and 0F3AH indicate to use Table A-5. The opcode is located in row 0,
column F indicating a PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the
operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.
A-6 Vol. 2B

OPCODE MAP
— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or
memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

• The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is
XMM0. The mod shows that the R/M field specifies a register and the R/M indicates that
the second operand is XMM1.

• The last byte is the immediate byte (08H).

• By this breakdown, it has been shown that this opcode represents the instruction:
PALIGNR XMM0, XMM1, 8.

A.2.5 Superscripts Utilized in Opcode Tables
Table A-1 contains notes on particular encodings. These notes are indicated in the following op-
code maps by superscripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript
Symbol

Meaning of Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4,
“Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately
trying to generate an invalid opcode exception (#UD).

1C Some instructions added in the Pentium III processor may use the same two-byte
opcode. If the instruction has variations, or the opcode represents different
instructions, the ModR/M byte will be used to differentiate the instruction. For the
value of the ModR/M byte needed to decode the instruction, see Table A-6.

These instructions include SFENCE, STMXCSR, LDMXCSR, FXRSTOR, and
FXSAVE, as well as PREFETCH and its variations.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte
INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF Grp 4
and 5 for INC and DEC).

o64 Instruction is only available when in 64-bit mode.

d64 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode
32-bit operand size.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes
that change operand size are ignored for this instruction in 64-bit mode).
Vol. 2B A-7

OPCODE MAP
A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS
See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and
columns with sequential relationships are placed on facing pages to make look-up tasks easier.
Note that table footnotes are not presented on each page. Table footnotes for each table are pre-
sented on the last page of the table.
A-8 Vol. 2B

OPCODE MAP
Table A-2. One-byte Opcode Map: (00H — F7H) *

0 1 2 3 4 5 6 7

0 ADD PUSH
ESi64

POP
ESi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 ADC PUSH
SSi64

POP
SSi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 AND SEG=ES
(Prefix)

DAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 XOR SEG=SS
(Prefix)

AAAi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 INCi64 general register / REXo64 Prefixes

eAX
REX

eCX
REX.B

eDX
REX.X

eBX
REX.XB

eSP
REX.R

eBP
REX.RB

eSI
REX.RX

eDI
REX.RXB

5 PUSHd64 general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHAi64/
PUSHADi64

POPAi64/
POPADi64

BOUNDi64

Gv, Ma
ARPLi64

Ew, Gw
MOVSXDo64

Gv, Ev

SEG=FS
(Prefix)

SEG=GS
(Prefix)

Operand
Size

(Prefix)

Address
Size

(Prefix)

7 Jccf64, Jb - Short-displacement jump on condition

O NO B/NAE/C NB/AE/NC Z/E NZ/NE BE/NA NBE/A

8 Immediate Grp 11A TEST XCHG

Eb, Ib Ev, Iz Eb, Ibi64 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv

9 NOP
PAUSE(F3)

XCHG r8, rAX

XCHG word, double-word or quad-word register with rAX

rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

A MOV MOVS/B
Xb, Yb

MOVS/W/D/Q
Xv, Yv

CMPS/B
Xb, Yb

CMPS/W/D
Xv, YvAL, Ob rAX, Ov Ob, AL Ov, rAX

B MOV immediate byte into byte register

AL/R8L, Ib CL/R9L, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib

C Shift Grp 21A RETNf64

Iw
RETNf64 LESi64

Gz, Mp
LDSi64

Gz, Mp
Grp 111A - MOV

Eb, Ib Ev, Ib Eb, Ib Ev, Iz

D Shift Grp 21A AAMi64

Ib
AADi64

Ib
XLAT/
XLATB Eb, 1 Ev, 1 Eb, CL Ev, CL

E LOOPNEf64/
LOOPNZf64

Jb

LOOPEf64/
LOOPZf64

Jb

LOOPf64

Jb
JrCXZf64/

Jb
IN OUT

AL, Ib eAX, Ib Ib, AL Ib, eAX

F LOCK
(Prefix)

REPNE
(Prefix)

REP/
REPE
(Prefix)

HLT CMC Unary Grp 31A

Eb Ev
Vol. 2B A-9

OPCODE MAP
Table A-2. One-byte Opcode Map: (08H — FFH) *

8 9 A B C D E F

0 OR PUSH
CSi64

2-byte
escape

(Table A-3) Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

1 SBB PUSH
DSi64

POP
DSi64 Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

2 SUB SEG=CS
(Prefix)

DASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

3 CMP SEG=DS
(Prefix)

AASi64

Eb, Gb Ev, Gv Gb, Eb Gv, Ev AL, Ib rAX, Iz

4 DECi64 general register / REXo64 Prefixes

eAX
REX.W

eCX
REX.WB

eDX
REX.WX

eBX
REX.WXB

eSP
REX.WR

eBP
REX.WRB

eSI
REX.WRX

eDI
REX.WRXB

5 POPd64 into general register

rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSI/r14 rDI/r15

6 PUSHd64

Iz
IMUL

Gv, Ev, Iz
PUSHd64

Ib
IMUL

Gv, Ev, Ib
INS/
INSB

Yb, DX

INS/
INSW/
INSD

Yz, DX

OUTS/
OUTSB
DX, Xb

OUTS/
OUTSW/
OUTSD
DX, Xz

7 Jccf64, Jb- Short displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

8 MOV MOV
Ev, Sw

LEA
Gv, M

MOV
Sw, Ew

Grp 1A1A
POPd64 EvEb, Gb Ev, Gv Gb, Eb Gv, Ev

9 CBW/
CWDE/
CDQE

CWD/
CDQ/
CQO

CALLFi64

Ap
FWAIT/
WAIT

PUSHF/D/Q
d64/
Fv

POPF/D/Q
d64/
Fv

SAHF LAHF

A TEST STOS/B
Yb, AL

STOS/W/D/Q
Yv, rAX

LODS/B
AL, Xb

LODS/W/D/Q
rAX, Xv

SCAS/B
AL, Yb

SCAS/W/D/Q
rAX, XvAL, Ib rAX, Iz

B MOV immediate word or double into word, double, or quad register

rAX/r8, Iv rCX/r9, Iv rDX/r10, Iv rBX/r11, Iv rSP/r12, Iv rBP/r13, Iv rSI/r14, Iv rDI/r15 , Iv

C ENTER LEAVEd64 RETF RETF INT 3 INT INTOi64 IRET/D/Q

Iw, Ib Iw Ib

D ESC (Escape to coprocessor instruction set)

E CALLf64 JMP IN OUT

Jz nearf64

Jz
fari64

AP
shortf64

Jb
AL, DX eAX, DX DX, AL DX, eAX

F CLC STC CLI STI CLD STD INC/DEC INC/DEC

Grp 41A Grp 51A

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-10 Vol. 2B

OPCODE MAP
Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is 0FH) *

0 1 2 3 4 5 6 7

0 Grp 61A Grp 71A LAR
Gv, Ew

LSL
Gv, Ew

 SYSCALLo64 CLTS SYSRETo64

1 movups
Vps, Wps

movss (F3)
Vss, Wss

movupd (66)
Vpd, Wpd

movsd (F2)
Vsd, Wsd

movups
Wps, Vps

movss (F3)
Wss, Vss

movupd (66)
Wpd, Vpd

movsd (F2)
Vsd, Wsd

movlps
Vq, Mq

movlpd (66)
Vq, Mq

movhlps
Vq, Uq

movddup(F2)
Vq, Wq

movsldup(F3)
Vq, Wq

movlps
Mq, Vq

movlpd (66)
Mq, Vq

unpcklps
Vps, Wq

unpcklpd (66)
Vpd, Wq

unpckhps
Vps, Wq

unpckhpd (66)
Vpd, Wq

movhps
Vq, Mq

movhpd (66)
Vq, Mq
movlhps
Vq, Uq

movshdup(F3)
Vq, Wq

movhps
Mq, Vq

movhpd(66)
Mq, Vq

2 MOV
Rd, Cd

MOV
Rd, Dd

MOV
Cd, Rd

MOV
Dd, Rd

3 WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT

4 CMOVcc, (Gv, Ev) - Conditional Move

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

5 movmskps
Gd, Ups

movmskpd
(66)

Gd, Upd

sqrtps
Vps, Wps
sqrtss (F3)
Vss, Wss

sqrtpd (66)
Vpd, Wpd
sqrtsd (F2)
Vsd, Wsd

rsqrtps
Vps, Wps

rsqrtss (F3)
Vss, Wss

rcpps
Vps, Wps
rcpss (F3)
Vss, Wss

andps
Vps, Wps

andpd (66)
Vpd, Wpd

andnps
Vps, Wps

andnpd (66)
Vpd, Wpd

orps
Vps, Wps
orpd (66)
Vpd, Wpd

xorps
Vps, Wps
xorpd (66)
Vpd, Wpd

6 punpcklbw
Pq, Qd

punpcklbw
(66)

Vdq, Wdq

punpcklwd
Pq, Qd

punpcklwd
(66)

Vdq, Wdq

punpckldq
Pq, Qd

punpckldq (66)
Vdq, Wdq

packsswb
Pq, Qq

packsswb (66)
Vdq, Wdq

pcmpgtb
Pq, Qq

pcmpgtb (66)
Vdq, Wdq

pcmpgtw
Pq, Qq

pcmpgtw (66)
Vdq, Wdq

pcmpgtd
Pq, Qq

pcmpgtd (66)
Vdq, Wdq

packuswb
Pq, Qq

packuswb (66)
Vdq, Wdq

7 pshufw
Pq, Qq, Ib
pshufd (66)
Vdq,Wdq,Ib
pshufhw(F3)
Vdq,Wdq,Ib
pshuflw (F2)
Vdq Wdq,Ib

(Grp 121A) (Grp 131A) (Grp 141A) pcmpeqb
Pq, Qq

pcmpeqb (66)
Vdq, Wdq

pcmpeqw
Pq, Qq

pcmpeqw (66)
Vdq, Wdq

pcmpeqd
Pq, Qq

pcmpeqd (66)
Vdq, Wdq

emms
Vol. 2B A-11

OPCODE MAP
Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is 0FH) *

8 9 A B C D E F

0 INVD WBINVD 2-byte Illegal
Opcodes
UD21B

NOP Ev

1 Prefetch1C

(Grp 161A)
NOP Ev

2 movaps
Vps, Wps

movapd (66)
Vpd, Wpd

movaps
Wps, Vps

movapd (66)
Wpd, Vpd

cvtpi2ps
Vps, Qq

cvtsi2ss (F3)
Vss, Ed/q

cvtpi2pd (66)
Vpd, Qq

cvtsi2sd (F2)
Vsd, Ed/q

movntps
Mps, Vps

movntpd (66)
Mpd, Vpd

cvttps2pi
Qq, Wps

cvttss2si (F3)
Gd, Wss

cvttpd2pi (66)
Qdq, Wpd

cvttsd2si (F2)
Gd, Wsd

cvtps2pi
Qq, Wps

cvtss2si (F3)
Gd/q, Wss

cvtpd2pi (66)
Qdq, Wpd

cvtsd2si (F2)
Gd/q, Wsd

ucomiss
Vss, Wss

ucomisd (66)
Vsd, Wsd

comiss
Vps, Wps

comisd (66)
Vsd, Wsd

3 3-byte escape
(Table A-4)

3-byte escape
(Table A-5)

4 CMOVcc(Gv, Ev) - Conditional Move

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

5 addps
Vps, Wps
addss (F3)
Vss, Wss

addpd (66)
Vpd, Wpd
addsd (F2)
Vsd, Wsd

mulps
Vps, Wps
mulss (F3)
Vss, Wss

mulpd (66)
Vpd, Wpd
mulsd (F2)
Vsd, Wsd

cvtps2pd
Vpd, Wps

cvtss2sd (F3)
Vss, Wss

cvtpd2ps (66)
Vps, Wpd

cvtsd2ss (F2)
Vsd, Wsd

cvtdq2ps
Vps, Wdq

cvtps2dq (66)
Vdq, Wps

cvttps2dq (F3)
Vdq, Wps

subps
Vps, Wps
subss (F3)
Vss, Wss

subpd (66)
Vpd, Wpd
subsd (F2)
Vsd, Wsd

minps
Vps, Wps
minss (F3)
Vss, Wss

minpd (66)
Vpd, Wpd
minsd (F2)
Vsd, Wsd

 divps
Vps, Wps
divss (F3)
Vss, Wss
divpd (66)
Vpd, Wpd
divsd (F2)
Vsd, Wsd

maxps
Vps, Wps

maxss (F3)
Vss, Wss

maxpd (66)
Vpd, Wpd

maxsd (F2)
Vsd, Wsd

6 punpckhbw
Pq, Qd

punpckhbw
(66)

Pdq, Qdq

punpckhwd
Pq, Qd

punpckhwd
(66)

Pdq, Qdq

punpckhdq
Pq, Qd

punpckhdq
(66)

Pdq, Qdq

packssdw
Pq, Qd

packssdw (66)
Pdq, Qdq

punpcklqdq
(66)

Vdq, Wdq

punpckhqdq
(66)

Vdq, Wdq

movd/q/
Pd, Ed/q

movd/q (66)
Vdq, Ed/q

movq
Pq, Qq

movdqa (66)
Vdq, Wdq

movdqu (F3)
Vdq, Wdq

7 VMREAD
Ed/q, Gd/q

VMWRITE
Gd/q, Ed/q

haddps(F2)
Vps, Wps

haddpd(66)
Vpd, Wpd

hsubps(F2)
Vps, Wps

hsubpd(66)
Vpd, Wpd

movd/q
Ed/q, Pd

movd/q (66)
Ed/q, Vdq
movq (F3)

Vq, Wq

movq
Qq, Pq

movdqa (66)
Wdq, Vdq

movdqu (F3)
Wdq, Vdq
A-12 Vol. 2B

OPCODE MAP
Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is 0FH) *

0 1 2 3 4 5 6 7

8 Jccf64, Jz - Long-displacement jump on condition

O NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

9 SETcc, Eb - Byte Set on condition

O NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE

A PUSHd64

FS
POPd64

FS
CPUID BT

Ev, Gv
SHLD

Ev, Gv, Ib
SHLD

Ev, Gv, CL

B CMPXCHG LSS
Gv, Mp

BTR
Ev, Gv

LFS
Gv, Mp

LGS
Gv, Mp

MOVZX

Eb, Gb Ev, Gv Gv, Eb Gv, Ew

C XADD
Eb, Gb

XADD
Ev, Gv

cmpps
Vps, Wps, Ib
cmpss (F3)

Vss, Wss, Ib
cmppd (66)

Vpd, Wpd, Ib
cmpsd (F2)

Vsd, Wsd, Ib

movnti
Md/q, Gd/q

pinsrw
Pq, Ew, Ib
pinsrw (66)
Vdq, Ew, Ib

pextrw
Gd, Nq, Ib
pextrw (66)
Gd, Udq, Ib

shufps
Vps, Wps, Ib
shufpd (66)

Vpd, Wpd, Ib

Grp 91A

D addsubps(F2)
Vps, Wps

addsubpd(66)
Vpd, Wpd

psrlw
Pq, Qq

psrlw (66)
Vdq, Wdq

psrld
Pq, Qq

psrld (66)
Vdq, Wdq

psrlq
Pq, Qq

psrlq (66)
Vdq, Wdq

paddq
Pq, Qq

paddq (66)
Vdq, Wdq

pmullw
Pq, Qq

pmullw (66)
Vdq, Wdq

movq (66)
Wq, Vq

movq2dq (F3)
Vdq, Nq

movdq2q (F2)
Pq, Uq

pmovmskb
Gd, Nq

pmovmksb (66)
Gd, Udq

E pavgb
Pq, Qq

pavgb (66)
Vdq, Wdq

psraw
Pq, Qq

psraw (66)
Vdq, Wdq

psrad
Pq, Qq

psrad (66)
Vdq, Wdq

pavgw
Pq, Qq

pavgw (66)
Vdq, Wdq

pmulhuw
Pq, Qq

pmulhuw (66)
Vdq, Wdq

pmulhw
Pq, Qq

pmulhw (66)
Vdq, Wdq

cvtpd2dq (F2)
Vdq, Wpd

cvttpd2dq (66)
Vdq, Wpd

cvtdq2pd (F3)
Vpd, Wdq

movntq
Mq, Pq

movntdq (66)
Mdq, Vdq

F lddqu (F2)
Vdq, Mdq

psllw
Pq, Qq

psllw (66)
Vdq, Wdq

pslld
Pq, Qq

pslld (66)
Vdq, Wdq

psllq
Pq, Qq

psllq (66)
Vdq, Wdq

pmuludq
Pq, Qq

pmuludq (66)
Vdq, Wdq

pmaddwd
Pq, Qq

pmaddwd (66)
Vdq, Wdq

psadbw
Pq, Qq

psadbw (66)
Vdq, Wdq

maskmovq
Pq, Nq

maskmovdqu
(66)

Vdq, Udq
Vol. 2B A-13

OPCODE MAP
Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is 0FH) *

8 9 A B C D E F

8 Jccf64, Jz - Long-displacement jump on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

9 SETcc, Eb - Byte Set on condition

S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G

A PUSHd64

GS
POPd64

GS
RSM BTS

Ev, Gv
SHRD

Ev, Gv, Ib
SHRD

Ev, Gv, CL
(Grp 151A)1C IMUL

Gv, Ev

B Grp 101A

Invalid
Opcode1B

Grp 81A

Ev, Ib
BTC

Ev, Gv
BSF

Gv, Ev
BSR

Gv, Ev
MOVSX

Gv, Eb Gv, Ew

C BSWAP

RAX/EAX/
R8/R8D

RCX/ECX/
R9/R9D

RDX/EDX/
R10/R10D

RBX/EBX/
R11/R11D

RSP/ESP/
R12/R12D

RBP/EBP/
R13/R13D

RSI/ESI/
R14/R14D

RDI/EDI/
R15/R15D

D psubusb
Pq, Qq

psubusb (66)
Vdq, Wdq

psubusw
Pq, Qq

psubusw (66)
Vdq, Wdq

pminub
Pq, Qq

pminub (66)
Vdq, Wdq

pand
Pq, Qq

pand (66)
Vdq, Wdq

paddusb
Pq, Qq

paddusb (66)
Vdq, Wdq

paddusw
Pq, Qq

paddusw (66)
Vdq, Wdq

pmaxub
Pq, Qq

pmaxub (66)
Vdq, Wdq

pandn
Pq, Qq

pandn (66)
Vdq, Wdq

E psubsb
Pq, Qq

psubsb (66)
Vdq, Wdq

psubsw
Pq, Qq

psubsw (66)
Vdq, Wdq

pminsw
Pq, Qq

pminsw (66)
Vdq, Wdq

por
Pq, Qq
por (66)

Vdq, Wdq

paddsb
Pq, Qq

paddsb (66)
Vdq, Wdq

paddsw
Pq, Qq

paddsw (66)
Vdq, Wdq

pmaxsw
Pq, Qq

pmaxsw (66)
Vdq, Wdq

pxor
Pq, Qq

pxor (66)
Vdq, Wdq

F psubb
Pq, Qq

psubb (66)
Vdq, Wdq

psubw
Pq, Qq

psubw (66)
Vdq, Wdq

psubd
Pq, Qq

psubd (66)
Vdq, Wdq

psubq
Pq, Qq

psubq (66)
Vdq, Wdq

paddb
Pq, Qq

paddb (66)
Vdq, Wdq

paddw
Pq, Qq

paddw (66)
Vdq, Wdq

paddd
Pq, Qq

paddd (66)
Vdq, Wdq

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-14 Vol. 2B

OPCODE MAP
Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are 0F 38H) *

0 1 2 3 4 5 6 7
0 pshufb

Pq, Qq
pshufb (66)
Vdq, Wdq

phaddw
Pq, Qq

phaddw (66)
Vdq, Wdq

phaddd
Pq, Qq

phaddd (66)
Vdq, Wdq

phaddsw
Pq, Qq

phaddsw (66)
Vdq, Wdq

pmaddubsw
Pq, Qq

pmaddubsw
(66)

Vdq, Wdq

phsubw
Pq, Qq

phsubw (66)
Vdq, Wdq

phsubd
Pq, Qq

phsubd (66)
Vdq, Wdq

phsubsw
Pq, Qq

phsubsw (66)
Vdq, Wdq

1

2
3
4
5
6
7
8
9
A
B
C
D
E
F

Vol. 2B A-15

OPCODE MAP
Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 38H) *

8 9 A B C D E F
0 psignb

Pq, Qq
psignb (66)
Vdq, Wdq

psignw
Pq, Qq

psignw (66)
Vdq, Wdq

psignd
Pq, Qq

psignd (66)
Vdq, Wdq

pmulhrsw
Pq, Qq

pmulhrsw (66)
Vdq, Wdq

1 pabsb
Pq, Qq

pabsb (66)
Vdq, Wdq

pabsw
Pq, Qq

pabsw (66)
Vdq, Wdq

pabsd
Pq, Qq

pabsd (66)
Vdq, Wdq

2
3
4
5
6
7
8
9
A
B
C
D
E
F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-16 Vol. 2B

OPCODE MAP
Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are 0F 3AH) *

0 1 2 3 4 5 6 7
0

1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Vol. 2B A-17

OPCODE MAP
Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are 0F 3AH) *

8 9 A B C D E F
0 palignr

Pq, Qq, Ib
palignr(66)

Vdq, Wdq, Ib
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-18 Vol. 2B

OPCODE MAP
A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE
OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1)
as an extension of the opcode.

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number.
Group numbers (from 1 to 16, second column) provide a table entry point. The encoding for the
r/m field for each instruction can be established using the third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions
An Example is provided below.

Example A-3. Interpreting an ADD Instruction

An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:

• Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this
instruction is 000B.

• The r/m field can be encoded to access a register (11B) or a memory address using a
specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-4. Looking Up 0F01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and
Table A-6:

• 0F tells us that this instruction is in the 2-byte opcode map.

• 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

• C3 is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second
of the Group 7 rows in Table A-6.

• The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.

• Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME
instruction.

mod nnn R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)
Vol. 2B A-19

OPCODE MAP
A.4.2 Opcode Extension Tables
See Table A-6 below.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

000 001 010 011 100 101 110 111

80-83 1 mem, 11B ADD OR ADC SBB AND SUB XOR CMP

8F 1A mem, 11B POP

C0, C1 reg,
imm

D0, D1 reg, 1
D2, D3 reg, CL

2

mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR

F6, F7 3 mem, 11B TEST
Ib/Iz

NOT NEG MUL
AL/rAX

IMUL
AL/rAX

DIV
AL/rAX

IDIV
AL/rAX

FE 4 mem, 11B INC
Eb

DEC
Eb

FF 5 mem, 11B INC
Ev

DEC
Ev

CALLNf64

Ev
CALLF

Ep
JMPNf64

Ev
JMPF

Ep
PUSHd64

Ev

0F 00 6 mem, 11B SLDT
Rv/Mw

STR
Rv/Mw

LLDT
Ew

LTR
Ew

VERR
Ew

VERW
Ew

0F 01 7 mem SGDT
Ms

SIDT
Ms

LGDT
Ms

LIDT
Ms

SMSW
Mw/Rv

LMSW
Ew

INVLPG
Mb

11B VMCALL
(001)

VMLAUNCH
(010)

VMRESUME
(011)

VMXOFF
(100)

MONITOR
(000)

MWAIT
(001)

SWAPGS
o64(000)

0F BA 8 mem, 11B BT BTS BTR BTC

0F C7 9 mem CMPXCH8B
Mq

CMPXCHG16B
Mdq

VMPTRLD
Mq

VMCLEAR
(66)
Mq

VMXON (F3)
Mq

VMPTRST
Mq

11B

0F B9 10 mem

11B

C6 11 mem, 11B MOV
Eb, Ib

C7 mem MOV
Ev, Iz

11B
A-20 Vol. 2B

OPCODE MAP
Opcode Group Mod 7,6

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

000 001 010 011 100 101 110 111
0F 71 12 mem

11B psrlw
Nq, Ib

psrlw (66)
Udq, Ib

psraw
Nq, Ib

psraw (66)
Udq, Ib

psllw
Nq, Ib

psllw (66)
Udq, Ib

0F 72 13 mem

11B psrld
Nq, Ib

psrld (66)
Udq, Ib

psrad
Nq, Ib

psrad (66)
Udq, Ib

pslld
Nq, Ib

pslld (66)
Udq, Ib

0F 73 14 mem

11B psrlq
Nq, Ib

psrlq (66)
Udq, Ib

psrldq (66)
Udq, Ib

psllq
Nq, Ib

psllq (66)
Udq, Ib

pslldq (66)
Udq, Ib

0F AE 15 mem fxsave fxrstor ldmxcsr stmxcsr clflush

11B lfence mfence sfence

0F 18 16 mem prefetch
NTA

prefetch
T0

prefetch
T1

prefetch
T2

11B

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *
Vol. 2B A-21

OPCODE MAP
A.5 ESCAPE OPCODE INSTRUCTIONS
Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction op-
codes) are in Table A-7 through Table A-22. These maps are grouped by the first byte of the
opcode, from D8-DF. Each of these opcodes has a ModR/M byte. If the ModR/M byte is within
the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as an opcode extension, similar to
the technique used for 1-and 2-byte opcodes (see Section A.4). If the ModR/M byte is outside
the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction
Opcodes

Examples are provided below.

Example A-5. Opcode with ModR/M Byte in the 00H through BFH Range

DD0504000000H can be interpreted as follows:

• The instruction encoded with this opcode can be located in Section . Since the ModR/M
byte (05H) is within the 00H through BFH range, bits 3 through 5 (000) of this byte
indicate the opcode for an FLD double-real instruction (see Table A-9).

• The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows
and belongs to this opcode).

Example A-6. Opcode with ModR/M Byte outside the 00H through BFH Range

D8C1H can be interpreted as follows:

• This example illustrates an opcode with a ModR/M byte outside the range of 00H through
BFH. The instruction can be located in Section A.4.

• In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction
using ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables
Tables are listed below.
A-22 Vol. 2B

OPCODE MAP
A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table
A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD single-
real

FMUL single-
real

FCOM single-
real

FCOMP single-
real

FSUB single-
real

FSUBR single-
real

FDIV single-real FDIVR single-
real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOM

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) ST(0),T(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FSUBR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F FDIVR

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
Vol. 2B A-23

OPCODE MAP
A.5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-
9 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-9. D9 Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD
single-real

FST
single-real

FSTP
single-real

FLDENV
14/28 bytes

FLDCW
2 bytes

FSTENV
14/28 bytes

FSTCW
2 bytes

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM

F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP

8 9 A B C D E F

C FXCH

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D

E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ

F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-24 Vol. 2B

OPCODE MAP
A.5.2.3 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table
A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the
ModR/M byte selects the table row and the second digit selects the column.

Table A-11. DA Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
dword-integer

FIMUL
dword-integer

FICOM
dword-integer

FICOMP
dword-integer

FISUB
dword-integer

FISUBR
dword-integer

FIDIV
dword-integer

FIDIVR
dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-12. DA Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E

F

8 9 A B C D E F

C FCMOVE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMPP

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
Vol. 2B A-25

OPCODE MAP
A.5.2.4 Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table
A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-13. DB Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
dword-integer

FISTTP dword-
integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FCMOVNB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-26 Vol. 2B

OPCODE MAP
A.5.2.5 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table
A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case
the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-15. DC Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B

FADD double-
real

FMUL double-
real

FCOM
double-real

FCOMP
double-real

FSUB double-
real

FSUBR
double-real

FDIV double-
real

FDIVR
double-real

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-16. DC Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADD

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVR

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMUL

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUB

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIV

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
Vol. 2B A-27

OPCODE MAP
A.5.2.6 Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table
A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FLD double-
real

FISTTP
integer64

FST double-
real

FSTP double-
real

FRSTOR
98/108bytes

FSAVE
98/108bytes

FSTSW 2
bytes

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FFREE

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

D FST

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F

8 9 A B C D E F

C

D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-28 Vol. 2B

OPCODE MAP
A.5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH.
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-19. DE Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD
word-integer

FIMUL
word-integer

FICOM
word-integer

FICOMP word-
integer

FISUB
word-integer

FISUBR word-
integer

FIDIV
word-integer

FIDIVR
word-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-20. DE Opcode Map When ModR/M Byte is Outside 00H to BFH *
0 1 2 3 4 5 6 7

C FADDP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D

E FSUBRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVRP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C FMULP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

D FCOMPP

E FSUBP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

F FDIVP

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0). ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
Vol. 2B A-29

OPCODE MAP
A.5.2.8 Escape Opcodes with DF As First Byte

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with
DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD
word-integer

FISTTP
word-integer

FIST
word-integer

FISTP
word-integer

FBLD packed-
BCD

FILD
qword-integer

FBSTP packed-
BCD

FISTP
qword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 1 2 3 4 5 6 7

C

D

E FSTSW
AX

F FCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 9 A B C D E F

C

D

E FUCOMIP

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

F

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.
A-30 Vol. 2B

B

Instruction Formats
and Encodings

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 architecture in-
structions. The first section describes the IA-32 architecture’s machine instruction format. The
remaining sections show the formats and encoding of general-purpose, MMX, P6 family,
SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Instruction formats used in
64-bit mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT
All Intel Architecture instructions are encoded using subsets of the general machine instruction
format shown in Figure B-1. Each instruction consists of:

• an opcode

• a register and/or address mode specifier consisting of the ModR/M byte and sometimes the
scale-index-base (SIB) byte (if required)

• a displacement and an immediate data field (if required)

The following sections discuss this format.

Figure B-1. General Machine Instruction Format

ModR/M Byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7-6 5-3 2-07-6 5-3 2-0

T T T T T T T T T T T T T T T T

Mod Reg* R/M Scale Index Base d32 | 16 | 8 | Noned32 | 16 | 8 | None

SIB Byte Address Displacement
(4, 2, 1 Bytes or None)

Immediate Data
(4,2,1 Bytes or None)

Register and/or Address
Mode Specifier

Legacy Prefixes REX Prefixes

7 6 5 4 3 2 1 0

T T T T T T T T

(optional)Grp 1, Grp 2,
Grp 3, Grp 4
(optional)

NOTE:
* The Reg Field may be used as an opcode

extension field (TTT) and as a way to encode
diagnostic registers (eee).

1, 2, or 3 Byte Opcodes (T = Opcode bit)
Vol. 2B B-1

INSTRUCTION FORMATS AND ENCODINGS
B.1.1 Legacy Prefixes
The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional,
except when F2H, F3H and 66H are used in new instruction extensions. Legacy prefixes must
be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on legacy prefixes.

B.1.2 REX Prefixes
REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries
40H to 4FH. These opcodes represent valid instructions (INC or DEC) in legacy IA-32 operating
modes and in compatibility mode. In 64-bit mode, the same opcodes represent the instruction
prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields
The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within
the primary opcode, smaller encoding fields may be defined. These fields vary according to the
class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or ad-
dress mode byte following the opcode. This byte, the ModR/M byte, consists of the mod field
(3 bits), the reg field (3 bits; this field is sometimes an opcode extension), and the R/M field
(2 bits). Certain encodings of the ModR/M byte indicate that a second address mode byte, the
SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately
following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction
specifies an immediate value, the immediate value follows any displacement bytes. The imme-
diate, if specified, is always the last field of the instruction.

Refer to Chapter 2, “Instruction Format,” in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on opcodes.

B.1.4 Special Fields
Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes.
All of these fields (except the d bit) occur in the general-purpose instruction formats in Table B-13.
Vol. 2B B-2

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.1 Reg Field (reg) for Non-64-Bit Modes

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of
registers specified is modified by the presence and state of the w bit in an encoding (refer to Sec-
tion B.1.4.3). Table B-2 shows the encoding of the reg field when the w bit is not present in an
encoding; Table B-3 shows the encoding of the reg field when the w bit is present.

Table B-1. Special Fields Within Instruction Encodings

Field Name Description
Number of

Bits

reg General-register specifier (see Table B-4 or B-5) 3

w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits
(see Table B-6)

1

s Specifies sign extension of an immediate field (see Table B-7) 1

sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2

sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3

eee Specifies a special-purpose (control or debug) register (see Table B-9) 3

tttn For conditional instructions, specifies a condition asserted or negated
(see Table B-12)

4

d Specifies direction of data operation (see Table B-11) 1

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI
Vol. 2B B-3

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.2 Reg Field (reg) for 64-Bit Mode

Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose reg-
ister operand. The group of registers specified is modified by the presence of and state of the w
bit in an encoding (refer to Section B.1.4.3). Table B-4 shows the encoding of the reg field when
the w bit is not present in an encoding; Table B-5 shows the encoding of the reg field when the
w bit is present.

Table B-3. Encoding of reg Field When w Field is Present in Instruction
Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH SP 100 AH ESP

101 CH BP 101 CH EBP

110 DH SI 110 DH ESI

111 BH DI 111 BH EDI

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

reg Field
Register Selected during
16-Bit Data Operations

Register Selected during
32-Bit Data Operations

Register Selected during
64-Bit Data Operations

000 AX EAX RAX

001 CX ECX RCX

010 DX EDX RDX

011 BX EBX RBX

100 SP ESP RSP

101 BP EBP RBP

110 SI ESI RSI

111 DI EDI RDI
Vol. 2B B-4

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.3 Encoding of Operand Size (w) Bit

The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit
or 64-bit operations. Within the constraints of the current operand-size attribute, the operand-
size bit (w) can be used to indicate operations on 8-bit operands or the full operand size specified
with the operand-size attribute. Table B-6 shows the encoding of the w bit depending on the cur-
rent operand-size attribute.

B.1.4.4 Sign-Extend (s) Bit

The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended
from 8 bits to 16 or 32 bits. See Table B-7.

Table B-5. Encoding of reg Field When w Field is Present in Instruction
Register Specified by reg Field
During 16-Bit Data Operations

Register Specified by reg Field
During 32-Bit Data Operations

Function of w Field Function of w Field

reg When w = 0 When w = 1 reg When w = 0 When w = 1

000 AL AX 000 AL EAX

001 CL CX 001 CL ECX

010 DL DX 010 DL EDX

011 BL BX 011 BL EBX

100 AH1 SP 100 AH* ESP

101 CH1 BP 101 CH* EBP

110 DH1 SI 110 DH* ESI

111 BH1 DI 111 BH* EDI

NOTES:
1. AH, CH, DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low

byte.

Table B-6. Encoding of Operand Size (w) Bit

w Bit
Operand Size When

Operand-Size Attribute is 16 Bits
Operand Size When

Operand-Size Attribute is 32 Bits

0 8 Bits 8 Bits

1 16 Bits 32 Bits
Vol. 2B B-5

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.5 Segment Register (sreg) Field

When an instruction operates on a segment register, the reg field in the ModR/M byte is called
the sreg field and is used to specify the segment register. Table B-8 shows the encoding of the
sreg field. This field is sometimes a 2-bit field (sreg2) and other times a 3-bit field (sreg3).

NOTES:
1. Do not use reserved encodings.

Table B-7. Encoding of Sign-Extend (s) Bit

s
Effect on 8-Bit

Immediate Data
Effect on 16- or 32-Bit

Immediate Data

0 None None

1 Sign-extend to fill 16-bit or 32-bit destination None

Table B-8. Encoding of the Segment Register (sreg) Field

2-Bit sreg2 Field
Segment Register

Selected 3-Bit sreg3 Field
Segment Register

Selected

00 ES 000 ES

01 CS 001 CS

10 SS 010 SS

11 DS 011 DS

100 FS

101 GS

110 Reserved1

111 Reserved
Vol. 2B B-6

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.6 Special-Purpose Register (eee) Field

When control or debug registers are referenced in an instruction they are encoded in the eee
field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of the sreg field).
See Table B-9.

B.1.4.7 Condition Test (tttn) Field

For conditional instructions (such as conditional jumps and set on condition), the condition test
field (tttn) is encoded for the condition being tested. The ttt part of the field gives the condition
to test and the n part indicates whether to use the condition (n = 0) or its negation (n = 1).

• For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte.

• For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second
opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-9. Encoding of Special-Purpose Register (eee) Field
eee Control Register Debug Register

000 CR0 DR0

001 Reserved1 DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved

101 Reserved Reserved

110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.

Table B-10. Encoding of Conditional Test (tttn) Field
t t t n Mnemonic Condition

0000 O Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal

0011 NB, AE Not below, Above or equal

0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above

0111 NBE, A Not below or equal, Above
Vol. 2B B-7

INSTRUCTION FORMATS AND ENCODINGS
B.1.4.8 Direction (d) Bit

In many two-operand instructions, a direction bit (d) indicates which operand is considered the
source and which is the destination. See Table B-11.

• When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode.
Note that this bit does not appear as the symbol “d” in Table B-13; the actual encoding of
the bit as 1 or 0 is given.

• When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the
first byte of the primary opcode.

B.1.5 Other Notes
Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown
in the following sections by superscripts.

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to

1101 NL, GE Not less than, Greater than or equal to

1110 LE, NG Less than or equal to, Not greater than

1111 NLE, G Not less than or equal to, Greater than

Table B-11. Encoding of Operation Direction (d) Bit
d Source Destination

0 reg Field ModR/M or SIB Byte

1 ModR/M or SIB Byte reg Field

Table B-12. Notes on Instruction Encoding

Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

Table B-10. Encoding of Conditional Test (tttn) Field (Contd.)
t t t n Mnemonic Condition
Vol. 2B B-8

INSTRUCTION FORMATS AND ENCODINGS
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions
in non-64-bit modes.

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

Instruction and Format Encoding

AAA – ASCII Adjust after Addition 0011 0111

AAD – ASCII Adjust AX before Division 1101 0101 : 0000 1010

AAM – ASCII Adjust AX after Multiply 1101 0100 : 0000 1010

AAS – ASCII Adjust AL after Subtraction 0011 1111

ADC – ADD with Carry

register1 to register2 0001 000w : 11 reg1 reg2

register2 to register1 0001 001w : 11 reg1 reg2

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data

ADD – Add

register1 to register2 0000 000w : 11 reg1 reg2

register2 to register1 0000 001w : 11 reg1 reg2

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND – Logical AND

register1 to register2 0010 000w : 11 reg1 reg2

register2 to register1 0010 001w : 11 reg1 reg2

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data

immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data
Vol. 2B B-9

INSTRUCTION FORMATS AND ENCODINGS
ARPL – Adjust RPL Field of Selector

from register 0110 0011 : 11 reg1 reg2

from memory 0110 0011 : mod reg r/m

BOUND – Check Array Against Bounds 0110 0010 : modA reg r/m

BSF – Bit Scan Forward

register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR – Bit Scan Reverse

register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2

memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BT – Bit Test

register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data

register1, register2 0000 1111 : 1010 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC – Bit Test and Complement

register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data

register1, register2 0000 1111 : 1011 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR – Bit Test and Reset

register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data

register1, register2 0000 1111 : 1011 0011 : 11 reg2 reg1

memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS – Bit Test and Set

register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data

memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data

register1, register2 0000 1111 : 1010 1011 : 11 reg2 reg1

memory, reg 0000 1111 : 1010 1011 : mod reg r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-10

INSTRUCTION FORMATS AND ENCODINGS
CALL – Call Procedure (in same segment)

direct 1110 1000 : full displacement

register indirect 1111 1111 : 11 010 reg

memory indirect 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

direct 1001 1010 : unsigned full offset, selector

indirect 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

CMP – Compare Two Operands

register1 with register2 0011 100w : 11 reg1 reg2

register2 with register1 0011 101w : 11 reg1 reg2

memory with register 0011 100w : mod reg r/m

register with memory 0011 101w : mod reg r/m

immediate with register 1000 00sw : 11 111 reg : immediate data

immediate with AL, AX, or EAX 0011 110w : immediate data

immediate with memory 1000 00sw : mod 111 r/m : immediate data

CMPS/CMPSB/CMPSW/CMPSD – Compare
String Operands

1010 011w

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

CPUID – CPU Identification 0000 1111 : 1010 0010

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DAA – Decimal Adjust AL after Addition 0010 0111

DAS – Decimal Adjust AL after Subtraction 0010 1111

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-11

INSTRUCTION FORMATS AND ENCODINGS
DEC – Decrement by 1

register 1111 111w : 11 001 reg

register (alternate encoding) 0100 1 reg

memory 1111 111w : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 1111 011w : 11 110 reg

AL, AX, or EAX by memory 1111 011w : mod 110 r/m

ENTER – Make Stack Frame for High Level
Procedure

1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 1111 011w : 11 111 reg

AL, AX, or EAX by memory 1111 011w : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 1111 011w : 11 101 reg

AL, AX, or EAX with memory 1111 011w : mod 101 reg

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

register with memory 0000 1111 : 1010 1111 : mod reg r/m

register1 with immediate to register2 0110 10s1 : 11 reg1 reg2 : immediate data

memory with immediate to register 0110 10s1 : mod reg r/m : immediate data

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 1111 111w : 11 000 reg

reg (alternate encoding) 0100 0 reg

memory 1111 111w : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-12

INSTRUCTION FORMATS AND ENCODINGS
INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

IRET/IRETD – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

full displacement 0000 1111 : 1000 tttn : full displacement

JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ
 and JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : full displacement

register indirect 1111 1111 : 11 100 reg

memory indirect 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

direct intersegment 1110 1010 : unsigned full offset, selector

indirect intersegment 1111 1111 : mod 101 r/m

LAHF – Load Flags into AHRegister 1001 1111

LAR – Load Access Rights Byte

from register 0000 1111 : 0000 0010 : 11 reg1 reg2

from memory 0000 1111 : 0000 0010 : mod reg r/m

LDS – Load Pointer to DS 1100 0101 : modA reg r/m

LEA – Load Effective Address 1000 1101 : modA reg r/m

LEAVE – High Level Procedure Exit 1100 1001

LES – Load Pointer to ES 1100 0100 : modA reg r/m

LFS – Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m

LGDT – Load Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 010 r/m

LGS – Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m

LIDT – Load Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 011 r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-13

INSTRUCTION FORMATS AND ENCODINGS
LMSW – Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg

from memory 0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD – Load String
Operand

1010 110w

LOOP – Loop Count 1110 0010 : 8-bit displacement

LOOPZ/LOOPE – Loop Count while Zero/Equal 1110 0001 : 8-bit displacement

LOOPNZ/LOOPNE – Loop Count while not
Zero/Equal

1110 0000 : 8-bit displacement

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from memory 0000 1111 : 0000 0011 : mod reg r/m

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m

LTR – Load Task Register

from register 0000 1111 : 0000 0000 : 11 011 reg

from memory 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 1000 100w : 11 reg1 reg2

register2 to register1 1000 101w : 11 reg1 reg2

memory to reg 1000 101w : mod reg r/m

reg to memory 1000 100w : mod reg r/m

immediate to register 1100 011w : 11 000 reg : immediate data

immediate to register (alternate encoding) 1011 w reg : immediate data

immediate to memory 1100 011w : mod 000 r/m : immediate data

memory to AL, AX, or EAX 1010 000w : full displacement

AL, AX, or EAX to memory 1010 001w : full displacement

MOV – Move to/from Control Registers

CR0 from register 0000 1111 : 0010 0010 : 11 000 reg

CR2 from register 0000 1111 : 0010 0010 : 11 010reg

CR3 from register 0000 1111 : 0010 0010 : 11 011 reg

CR4 from register 0000 1111 : 0010 0010 : 11 100 reg

register from CR0-CR4 0000 1111 : 0010 0000 : 11 eee reg

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-14

INSTRUCTION FORMATS AND ENCODINGS
MOV – Move to/from Debug Registers

DR0-DR3 from register 0000 1111 : 0010 0011 : 11 eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : 11 eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : 11 eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : 11 eee reg

register from DR0-DR3 0000 1111 : 0010 0001 : 11 eee reg

MOV – Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m

MOVS/MOVSB/MOVSW/MOVSD – Move Data
from String to String

1010 010w

MOVSX – Move with Sign-Extend

register2 to register1 0000 1111 : 1011 111w : 11 reg1 reg2

memory to reg 0000 1111 : 1011 111w : mod reg r/m

MOVZX – Move with Zero-Extend

register2 to register1 0000 1111 : 1011 011w : 11 reg1 reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 reg

NEG – Two's Complement Negation

register 1111 011w : 11 011 reg

memory 1111 011w : mod 011 r/m

NOP – No Operation 1001 0000

NOP – Multi-byte No Operation1

register 0000 1111 0001 1111 : 11 000 reg

memory 0000 1111 0001 1111 : mod 000 r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-15

INSTRUCTION FORMATS AND ENCODINGS
NOT – One's Complement Negation

register 1111 011w : 11 010 reg

memory 1111 011w : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

register2 to register1 0000 101w : 11 reg1 reg2

memory to register 0000 101w : mod reg r/m

register to memory 0000 100w : mod reg r/m

immediate to register 1000 00sw : 11 001 reg : immediate data

immediate to AL, AX, or EAX 0000 110w : immediate data

immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port 0110 111w

POP – Pop a Word from the Stack

register 1000 1111 : 11 000 reg

register (alternate encoding) 0101 1 reg

memory 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001

POPA/POPAD – Pop All General Registers 0110 0001

POPF/POPFD – Pop Stack into FLAGS or
EFLAGS Register

1001 1101

PUSH – Push Operand onto the Stack

register 1111 1111 : 11 110 reg

register (alternate encoding) 0101 0 reg

memory 1111 1111 : mod 110 r/m

immediate 0110 10s0 : immediate data

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-16

INSTRUCTION FORMATS AND ENCODINGS
PUSH – Push Segment Register onto the Stack

segment register CS,DS,ES,SS 000 sreg2 110

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHA/PUSHAD – Push All General Registers 0110 0000

PUSHF/PUSHFD – Push Flags Register onto the
Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 1101 000w : 11 010 reg

memory by 1 1101 000w : mod 010 r/m

register by CL 1101 001w : 11 010 reg

memory by CL 1101 001w : mod 010 r/m

register by immediate count 1100 000w : 11 010 reg : imm8 data

memory by immediate count 1100 000w : mod 010 r/m : imm8 data

RCR – Rotate thru Carry Right

register by 1 1101 000w : 11 011 reg

memory by 1 1101 000w : mod 011 r/m

register by CL 1101 001w : 11 011 reg

memory by CL 1101 001w : mod 011 r/m

register by immediate count 1100 000w : 11 011 reg : imm8 data

memory by immediate count 1100 000w : mod 011 r/m : imm8 data

RDMSR – Read from Model-Specific Register 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring
Counters

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter 0000 1111 : 0011 0001

REP INS – Input String 1111 0011 : 0110 110w

REP LODS – Load String 1111 0011 : 1010 110w

REP MOVS – Move String 1111 0011 : 1010 010w

REP OUTS – Output String 1111 0011 : 0110 111w

REP STOS – Store String 1111 0011 : 1010 101w

REPE CMPS – Compare String 1111 0011 : 1010 011w

REPE SCAS – Scan String 1111 0011 : 1010 111w

REPNE CMPS – Compare String 1111 0010 : 1010 011w

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-17

INSTRUCTION FORMATS AND ENCODINGS
REPNE SCAS – Scan String 1111 0010 : 1010 111w

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

ROL – Rotate Left

register by 1 1101 000w : 11 000 reg

memory by 1 1101 000w : mod 000 r/m

register by CL 1101 001w : 11 000 reg

memory by CL 1101 001w : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8 data

memory by immediate count 1100 000w : mod 000 r/m : imm8 data

ROR – Rotate Right

register by 1 1101 000w : 11 001 reg

memory by 1 1101 000w : mod 001 r/m

register by CL 1101 001w : 11 001 reg

memory by CL 1101 001w : mod 001 r/m

register by immediate count 1100 000w : 11 001 reg : imm8 data

memory by immediate count 1100 000w : mod 001 r/m : imm8 data

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAHF – Store AH into Flags 1001 1110

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 1101 000w : 11 111 reg

memory by 1 1101 000w : mod 111 r/m

register by CL 1101 001w : 11 111 reg

memory by CL 1101 001w : mod 111 r/m

register by immediate count 1100 000w : 11 111 reg : imm8 data

memory by immediate count 1100 000w : mod 111 r/m : imm8 data

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-18

INSTRUCTION FORMATS AND ENCODINGS
SBB – Integer Subtraction with Borrow

register1 to register2 0001 100w : 11 reg1 reg2

register2 to register1 0001 101w : 11 reg1 reg2

memory to register 0001 101w : mod reg r/m

register to memory 0001 100w : mod reg r/m

immediate to register 1000 00sw : 11 011 reg : immediate data

immediate to AL, AX, or EAX 0001 110w : immediate data

immediate to memory 1000 00sw : mod 011 r/m : immediate data

SCAS/SCASB/SCASW/SCASD – Scan String 1010 111w

SETcc – Byte Set on Condition

register 0000 1111 : 1001 tttn : 11 000 reg

memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data

memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD – Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR – Shift Right

register by 1 1101 000w : 11 101 reg

memory by 1 1101 000w : mod 101 r/m

register by CL 1101 001w : 11 101 reg

memory by CL 1101 001w : mod 101 r/m

register by immediate count 1100 000w : 11 101 reg : imm8 data

memory by immediate count 1100 000w : mod 101 r/m : imm8 data

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-19

INSTRUCTION FORMATS AND ENCODINGS
SHRD – Double Precision Shift Right

register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8

memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8

register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

SLDT – Store Local Descriptor Table Register

to register 0000 1111 : 0000 0000 : 11 000 reg

to memory 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0000 1111 : 0000 0001 : 11 100 reg

to memory 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD – Store String Data 1010 101w

STR – Store Task Register

to register 0000 1111 : 0000 0000 : 11 001 reg

to memory 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 to register2 0010 100w : 11 reg1 reg2

register2 to register1 0010 101w : 11 reg1 reg2

memory to register 0010 101w : mod reg r/m

register to memory 0010 100w : mod reg r/m

immediate to register 1000 00sw : 11 101 reg : immediate data

immediate to AL, AX, or EAX 0010 110w : immediate data

immediate to memory 1000 00sw : mod 101 r/m : immediate data

TEST – Logical Compare

register1 and register2 1000 010w : 11 reg1 reg2

memory and register 1000 010w : mod reg r/m

immediate and register 1111 011w : 11 000 reg : immediate data

immediate and AL, AX, or EAX 1010 100w : immediate data

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-20

INSTRUCTION FORMATS AND ENCODINGS
immediate and memory 1111 011w : mod 000 r/m : immediate data

UD2 – Undefined instruction 0000 FFFF : 0000 1011

VERR – Verify a Segment for Reading

register 0000 1111 : 0000 0000 : 11 100 reg

memory 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0000 1111 : 0000 0000 : 11 101 reg

memory 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0000 1111 : 1100 000w : 11 reg2 reg1

memory, reg 0000 1111 : 1100 000w : mod reg r/m

XCHG – Exchange Register/Memory with
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with reg 1001 0 reg

memory with reg 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0011 000w : 11 reg1 reg2

register2 to register1 0011 001w : 11 reg1 reg2

memory to register 0011 001w : mod reg r/m

register to memory 0011 000w : mod reg r/m

immediate to register 1000 00sw : 11 110 reg : immediate data

immediate to AL, AX, or EAX 0011 010w : immediate data

immediate to memory 1000 00sw : mod 110 r/m : immediate data

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-21

INSTRUCTION FORMATS AND ENCODINGS
B.2.1 General Purpose Instruction Formats and Encodings for
64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose instructions
in 64-bit mode.

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

NOTES:
1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory

operation.

Table B-14. Special Symbols

Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode

Instruction and Format Encoding

ADC – ADD with Carry

register1 to register2 0100 0R0B : 0001 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0001 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B : 0001 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0001 001w : mod reg r/m

memory to qwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0001 000w : mod reg r/m

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
Vol. 2B B-22

INSTRUCTION FORMATS AND ENCODINGS
qwordregister to memory 0100 1RXB : 0001 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 010 reg : immediate

immediate to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm32

immediate to qwordregister 0100 1R0B : 1000 0011 : 11 010 qwordreg : imm8

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 010 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0031 : mod 010 r/m : imm8

ADD – Add

register1 to register2 0100 0R0B : 0000 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0000 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B : 0000 001w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0000 0010 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB : 0000 001w : mod reg r/m

memory64 to qwordregister 0100 1RXB : 0000 0000 : mod qwordreg r/m

register to memory 0100 0RXB : 0000 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0000 0011 : mod qwordreg r/m

immediate to register 0100 0000B : 1000 00sw : 11 000 reg : immediate
data

immediate32 to qwordregister 0100 100B : 1000 0001 : 11 010 qwordreg : imm

immediate to AL, AX, or EAX 0000 010w : immediate8

immediate to RAX 0100 1000 : 0000 0101 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 000 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 010 r/m : imm32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 010 r/m : imm8

AND – Logical AND

register1 to register2 0100 0R0B 0010 000w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 0010 0001 : 11 qwordreg1 qwordreg2

register2 to register1 0100 0R0B 0010 001w : 11 reg1 reg2

register1 to register2 0100 1R0B 0010 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0010 001w : mod reg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-23

INSTRUCTION FORMATS AND ENCODINGS
memory64 to qwordregister 0100 1RXB : 0010 0011 : mod qwordreg r/m

register to memory 0100 0RXB : 0010 000w : mod reg r/m

qwordregister to memory64 0100 1RXB : 0010 0001 : mod qwordreg r/m

immediate to register 0100 000B : 1000 00sw : 11 100 reg : immediate

immediate32 to qwordregister 0100 100B 1000 0001 : 11 100 qwordreg : imm32

immediate to AL, AX, or EAX 0010 010w : immediate

immediate32 to RAX 0100 1000 0010 1001 : imm32

immediate to memory 0100 00XB : 1000 00sw : mod 100 r/m : immediate

immediate32 to memory64 0100 10XB : 1000 0001 : mod 100 r/m :
immediate32

immediate8 to memory64 0100 10XB : 1000 0011 : mod 100 r/m : imm8

BSF – Bit Scan Forward

register1, register2 0100 0R0B 0000 1111 : 1011 1100 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1100 : 11 qwordreg1
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1100 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1100 : mod
qwordreg r/m

BSR – Bit Scan Reverse

register1, register2 0100 0R0B 0000 1111 : 1011 1101 : 11 reg1 reg2

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1101 : 11 qwordreg1
qwordreg2

memory, register 0100 0RXB 0000 1111 : 1011 1101 : mod reg r/m

memory64, qwordregister 0100 1RXB 0000 1111 : 1011 1101 : mod
qwordreg r/m

BSWAP – Byte Swap 0000 1111 : 1100 1 reg

BSWAP – Byte Swap 0100 100B 0000 1111 : 1100 1 qwordreg

BT – Bit Test

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 100 reg:
imm8

qwordregister, immediate8 0100 100B 1111 : 1011 1010 : 11 100 qwordreg:
imm8 data

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m :
imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m :
imm8 data

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-24

INSTRUCTION FORMATS AND ENCODINGS
register1, register2 0100 0R0B 0000 1111 : 1010 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 0011 : 11 qwordreg2
qwordreg1

memory, reg 0100 0RXB 0000 1111 : 1010 0011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1010 0011 : mod
qwordreg r/m

BTC – Bit Test and Complement

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 111 reg:
imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 111
qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 111 r/m :
imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 111 r/m :
imm8

register1, register2 0100 0R0B 0000 1111 : 1011 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 1011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 1011 : mod reg r/m

memory, qwordreg 0100 1RXB 0000 1111 : 1011 1011 : mod
qwordreg r/m

BTR – Bit Test and Reset

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 110 reg:
imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 110
qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 110 r/m :
imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 110 r/m :
imm8

register1, register2 0100 0R0B 0000 1111 : 1011 0011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1011 0011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1011 0011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1011 0011 : mod
qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-25

INSTRUCTION FORMATS AND ENCODINGS
BTS – Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 reg:
imm8

qwordregister, immediate8 0100 100B 0000 1111 : 1011 1010 : 11 101
qwordreg: imm8

memory, immediate 0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m :
imm8

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m :
imm8

register1, register2 0100 0R0B 0000 1111 : 1010 1011 : 11 reg2 reg1

qwordregister1, qwordregister2 0100 1R0B 0000 1111 : 1010 1011 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1010 1011 : mod reg r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1010 1011 : mod
qwordreg r/m

CALL – Call Procedure (in same segment)

direct 1110 1000 : displacement32

 register indirect 0100 WR00w 1111 1111 : 11 010 reg

memory indirect 0100 W0XBw 1111 1111 : mod 010 r/m

CALL – Call Procedure (in other segment)

indirect 1111 1111 : mod 011 r/m

indirect 0100 10XB 0100 1000 1111 1111 : mod 011 r/m

CBW – Convert Byte to Word 1001 1000

CDQ – Convert Doubleword to Qword+ 1001 1001

CDQE – RAX, Sign-Extend of EAX 0100 1000 1001 1001

CLC – Clear Carry Flag 1111 1000

CLD – Clear Direction Flag 1111 1100

CLI – Clear Interrupt Flag 1111 1010

CLTS – Clear Task-Switched Flag in CR0 0000 1111 : 0000 0110

CMC – Complement Carry Flag 1111 0101

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-26

INSTRUCTION FORMATS AND ENCODINGS
CMP – Compare Two Operands

register1 with register2 0100 0R0B 0011 100w : 11 reg1 reg2

qwordregister1 with qwordregister2 0100 1R0B 0011 1001 : 11 qwordreg1 qwordreg2

register2 with register1 0100 0R0B 0011 101w : 11 reg1 reg2

qwordregister2 with qwordregister1 0100 1R0B 0011 101w : 11 qwordreg1 qwordreg2

memory with register 0100 0RXB 0011 100w : mod reg r/m

memory64 with qwordregister 0100 1RXB 0011 1001 : mod qwordreg r/m

register with memory 0100 0RXB 0011 101w : mod reg r/m

qwordregister with memory64 0100 1RXB 0011 101w1 : mod qwordreg r/m

immediate with register 0100 000B 1000 00sw : 11 111 reg : imm

immediate32 with qwordregister 0100 100B 1000 0001 : 11 111 qwordreg : imm64

immediate with AL, AX, or EAX 0011 110w : imm

immediate32 with RAX 0100 1000 0011 1101 : imm32

immediate with memory 0100 00XB 1000 00sw : mod 111 r/m : imm

immediate32 with memory64 0100 1RXB 1000 0001 : mod 111 r/m : imm64

immediate8 with memory64 0100 1RXB 1000 0011 : mod 111 r/m : imm8

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ –
Compare String Operands

compare string operands [X at DS:(E)SI with Y at
ES:(E)DI]

1010 011w

qword at address RSI with qword at address RDI 0100 1000 1010 0111

CMPXCHG – Compare and Exchange

register1, register2 0000 1111 : 1011 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 000B 0000 1111 : 1011 0000 : 11 bytereg2
reg1

qwordregister1, qwordregister2 0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2
reg1

memory, register 0000 1111 : 1011 000w : mod reg r/m

memory8, byteregister 0100 00XB 0000 1111 : 1011 0000 : mod bytereg
r/m

memory64, qwordregister 0100 10XB 0000 1111 : 1011 0001 : mod qwordreg
r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-27

INSTRUCTION FORMATS AND ENCODINGS
CPUID – CPU Identification 0000 1111 : 1010 0010

CQO – Sign-Extend RAX 0100 1000 1001 1001

CWD – Convert Word to Doubleword 1001 1001

CWDE – Convert Word to Doubleword 1001 1000

DEC – Decrement by 1

register 0100 000B 1111 111w : 11 001 reg

qwordregister 0100 100B 1111 1111 : 11 001 qwordreg

memory 0100 00XB 1111 111w : mod 001 r/m

memory64 0100 10XB 1111 1111 : mod 001 r/m

DIV – Unsigned Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 110 reg

Divide RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 110 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 110 r/m

Divide RDX:RAX by memory64 0100 10XB 1111 0111 : mod 110 r/m

ENTER – Make Stack Frame for High Level
Procedure

1100 1000 : 16-bit displacement : 8-bit level (L)

HLT – Halt 1111 0100

IDIV – Signed Divide

AL, AX, or EAX by register 0100 000B 1111 011w : 11 111 reg

RDX:RAX by qwordregister 0100 100B 1111 0111 : 11 111 qwordreg

AL, AX, or EAX by memory 0100 00XB 1111 011w : mod 111 r/m

RDX:RAX by memory64 0100 10XB 1111 0111 : mod 111 r/m

IMUL – Signed Multiply

AL, AX, or EAX with register 0100 000B 1111 011w : 11 101 reg

RDX:RAX <- RAX with qwordregister 0100 100B 1111 0111 : 11 101 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 101 r/m

RDX:RAX <- RAX with memory64 0100 10XB 1111 0111 : mod 101 r/m

register1 with register2 0000 1111 : 1010 1111 : 11 : reg1 reg2

qwordregister1 <- qwordregister1 with
qwordregister2

0100 1R0B 0000 1111 : 1010 1111 : 11 :
qwordreg1 qwordreg2

register with memory 0100 0RXB 0000 1111 : 1010 1111 : mod reg r/m

qwordregister <- qwordregister with memory64 0100 1RXB 0000 1111 : 1010 1111 : mod qwordreg
r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-28

INSTRUCTION FORMATS AND ENCODINGS
register1 with immediate to register2 0100 0R0B 0110 10s1 : 11 reg1 reg2 : imm

qwordregister1 <- qwordregister2 with sign-
extended immediate8

0100 1R0B 0110 1011 : 11 qwordreg1 qwordreg2 :
imm8

qwordregister1 <- qwordregister2 with
immediate32

0100 1R0B 0110 1001 : 11 qwordreg1 qwordreg2 :
imm32

memory with immediate to register 0100 0RXB 0110 10s1 : mod reg r/m : imm

qwordregister <- memory64 with sign-extended
immediate8

0100 1RXB 0110 1011 : mod qwordreg r/m : imm8

qwordregister <- memory64 with immediate32 0100 1RXB 0110 1001 : mod qwordreg r/m :
imm32

IN – Input From Port

fixed port 1110 010w : port number

variable port 1110 110w

INC – Increment by 1

reg 0100 000B 1111 111w : 11 000 reg

qwordreg 0100 100B 1111 1111 : 11 000 qwordreg

memory 0100 00XB 1111 111w : mod 000 r/m

memory64 0100 10XB 1111 1111 : mod 000 r/m

INS – Input from DX Port 0110 110w

INT n – Interrupt Type n 1100 1101 : type

INT – Single-Step Interrupt 3 1100 1100

INTO – Interrupt 4 on Overflow 1100 1110

INVD – Invalidate Cache 0000 1111 : 0000 1000

INVLPG – Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m

IRETO – Interrupt Return 1100 1111

Jcc – Jump if Condition is Met

8-bit displacement 0111 tttn : 8-bit displacement

displacements (excluding 16-bit relative offsets) 0000 1111 : 1000 tttn : displacement32

JCXZ/JECXZ – Jump on CX/ECX Zero
 Address-size prefix differentiates JCXZ
 and JECXZ

1110 0011 : 8-bit displacement

JMP – Unconditional Jump (to same segment)

short 1110 1011 : 8-bit displacement

direct 1110 1001 : displacement32

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-29

INSTRUCTION FORMATS AND ENCODINGS
register indirect 0100 W00Bw : 1111 1111 : 11 100 reg

memory indirect 0100 W0XBw : 1111 1111 : mod 100 r/m

JMP – Unconditional Jump (to other segment)

indirect intersegment 0100 00XB : 1111 1111 : mod 101 r/m

64-bit indirect intersegment 0100 10XB : 1111 1111 : mod 101 r/m

LAR – Load Access Rights Byte

from register 0100 0R0B : 0000 1111 : 0000 0010 : 11 reg1 reg2

from dwordregister to qwordregister, masked by
00FxFF00H

0100 WR0B : 0000 1111 : 0000 0010 : 11
qwordreg1 dwordreg2

from memory 0100 0RXB : 0000 1111 : 0000 0010 : mod reg r/m

from memory32 to qwordregister, masked by
00FxFF00H

0100 WRXB 0000 1111 : 0000 0010 : mod r/m

LEA – Load Effective Address

in wordregister/dwordregister 0100 0RXB : 1000 1101 : modA reg r/m

in qwordregister 0100 1RXB : 1000 1101 : modA qwordreg r/m

LEAVE – High Level Procedure Exit 1100 1001

LFS – Load Pointer to FS

FS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0100 : modA reg
r/m

FS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0100 : modA
qwordreg r/m

LGDT – Load Global Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 010
r/m

LGS – Load Pointer to GS

GS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0101 : modA reg
r/m

GS:r64 with far pointer from memory 0100 1RXB : 0000 1111 : 1011 0101 : modA
qwordreg r/m

LIDT – Load Interrupt Descriptor Table Register 0100 10XB : 0000 1111 : 0000 0001 : modA 011
r/m

LLDT – Load Local Descriptor Table Register

LDTR from register 0100 000B : 0000 1111 : 0000 0000 : 11 010 reg

LDTR from memory 0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-30

INSTRUCTION FORMATS AND ENCODINGS
LMSW – Load Machine Status Word

from register 0100 000B : 0000 1111 : 0000 0001 : 11 110 reg

from memory 0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m

LOCK – Assert LOCK# Signal Prefix 1111 0000

LODS/LODSB/LODSW/LODSD/LODSQ – Load
String Operand

at DS:(E)SI to AL/EAX/EAX 1010 110w

at (R)SI to RAX 0100 1000 1010 1101

LOOP – Loop Count

if count != 0, 8-bit displacement 1110 0010

if count !=0, RIP + 8-bit displacement sign-
extended to 64-bits

0100 1000 1110 0010

LOOPE – Loop Count while Zero/Equal

if count != 0 & ZF =1, 8-bit displacement 1110 0001

if count !=0 & ZF = 1, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0001

LOOPNE/LOOPNZ – Loop Count while not
Zero/Equal

if count != 0 & ZF = 0, 8-bit displacement 1110 0000

if count !=0 & ZF = 0, RIP + 8-bit displacement
sign-extended to 64-bits

0100 1000 1110 0000

LSL – Load Segment Limit

from register 0000 1111 : 0000 0011 : 11 reg1 reg2

from qwordregister 0100 1R00 0000 1111 : 0000 0011 : 11 qwordreg1
reg2

from memory16 0000 1111 : 0000 0011 : mod reg r/m

from memory64 0100 1RXB 0000 1111 : 0000 0011 : mod
qwordreg r/m

LSS – Load Pointer to SS

SS:r16/r32 with far pointer from memory 0100 0RXB : 0000 1111 : 1011 0010 : modA reg
r/m

SS:r64 with far pointer from memory 0100 1WXB : 0000 1111 : 1011 0010 : modA
qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-31

INSTRUCTION FORMATS AND ENCODINGS
LTR – Load Task Register

from register 0100 0R00 : 0000 1111 : 0000 0000 : 11 011 reg

from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m

MOV – Move Data

register1 to register2 0100 0R0B : 1000 100w : 11 reg1 reg2

qwordregister1 to qwordregister2 0100 1R0B 1000 1001 : 11 qwordeg1 qwordreg2

register2 to register1 0100 0R0B : 1000 101w : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 1000 1011 : 11 qwordreg1 qwordreg2

memory to reg 0100 0RXB : 1000 101w : mod reg r/m

memory64 to qwordregister 0100 1RXB 1000 1011 : mod qwordreg r/m

reg to memory 0100 0RXB : 1000 100w : mod reg r/m

qwordregister to memory64 0100 1RXB 1000 1001 : mod qwordreg r/m

immediate to register 0100 000B : 1100 011w : 11 000 reg : imm

immediate32 to qwordregister (zero extend) 0100 100B 1100 0111 : 11 000 qwordreg : imm32

immediate to register (alternate encoding) 0100 000B : 1011 w reg : imm

immediate64 to qwordregister (alternate encoding) 0100 100B 1011 1000 reg : imm64

immediate to memory 0100 00XB : 1100 011w : mod 000 r/m : imm

immediate32 to memory64 (zero extend) 0100 10XB 1100 0111 : mod 000 r/m : imm32

memory to AL, AX, or EAX 0100 0000 : 1010 000w : displacement

memory64 to RAX 0100 1000 1010 0001 : displacement64

AL, AX, or EAX to memory 0100 0000 : 1010 001w : displacement

RAX to memory64 0100 1000 1010 0011 : displacement64

MOV – Move to/from Control Registers

CR0-CR4 from register 0100 0R0B : 0000 1111 : 0010 0010 : 11 eee reg
(eee = CR#)

CRx from qwordregister 0100 1R0B : 0000 1111 : 0010 0010 : 11 eee
qwordreg (Reee = CR#)

register from CR0-CR4 0100 0R0B : 0000 1111 : 0010 0000 : 11 eee reg
(eee = CR#)

qwordregister from CRx 0100 1R0B 0000 1111 : 0010 0000 : 11 eee
qwordreg (Reee = CR#)

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-32

INSTRUCTION FORMATS AND ENCODINGS
MOV – Move to/from Debug Registers

DR0-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg (eee = DR#)

DR0-DR7 from quadregister 0100 10OB 0000 1111 : 0010 0011 : 11 eee reg
(eee = DR#)

register from DR0-DR7 0000 1111 : 0010 0001 : 11 eee reg (eee = DR#)

quadregister from DR0-DR7 0100 10OB 0000 1111 : 0010 0001 : 11 eee
quadreg (eee = DR#)

MOV – Move to/from Segment Registers

register to segment register 0100 W00Bw : 1000 1110 : 11 sreg reg

register to SS 0100 000B : 1000 1110 : 11 sreg reg

memory to segment register 0100 00XB : 1000 1110 : mod sreg r/m

memory64 to segment register (lower 16 bits) 0100 10XB 1000 1110 : mod sreg r/m

memory to SS 0100 00XB : 1000 1110 : mod sreg r/m

segment register to register 0100 000B : 1000 1100 : 11 sreg reg

segment register to qwordregister (zero extended) 0100 100B 1000 1100 : 11 sreg qwordreg

segment register to memory 0100 00XB : 1000 1100 : mod sreg r/m

segment register to memory64 (zero extended) 0100 10XB 1000 1100 : mod sreg3 r/m

MOVS/MOVSB/MOVSW/MOVSD/MOVSQ – Move
Data from String to String

Move data from string to string 1010 010w

Move data from string to string (qword) 0100 1000 1010 0101

MOVSX/MOVSXD – Move with Sign-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 111w : 11 reg1 reg2

byteregister2 to qwordregister1 (sign-extend) 0100 1R0B 0000 1111 : 1011 1110 : 11 quadreg1
bytereg2

wordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 1111 : 11 quadreg1
wordreg2

dwordregister2 to qwordregister1 0100 1R0B 0110 0011 : 11 quadreg1 dwordreg2

memory to register 0100 0RXB : 0000 1111 : 1011 111w : mod reg r/m

memory8 to qwordregister (sign-extend) 0100 1RXB 0000 1111 : 1011 1110 : mod qwordreg
r/m

memory16 to qwordregister 0100 1RXB 0000 1111 : 1011 1111 : mod qwordreg
r/m

memory32 to qwordregister 0100 1RXB 0110 0011 : mod qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-33

INSTRUCTION FORMATS AND ENCODINGS
MOVZX – Move with Zero-Extend

register2 to register1 0100 0R0B : 0000 1111 : 1011 011w : 11 reg1 reg2

dwordregister2 to qwordregister1 0100 1R0B 0000 1111 : 1011 0111 : 11 qwordreg1
dwordreg2

memory to register 0100 0R0B : 0000 1111 : 1011 011w : mod reg r/m

memory32 to qwordregister 0100 1R0B 0000 1111 : 1011 0111 : mod qwordreg
r/m

MUL – Unsigned Multiply

AL, AX, or EAX with register 0100 000B : 1111 011w : 11 100 reg

RAX with qwordregister (to RDX:RAX) 0100 100B 1111 0111 : 11 100 qwordreg

AL, AX, or EAX with memory 0100 00XB 1111 011w : mod 100 r/m

RAX with memory64 (to RDX:RAX) 0100 10XB 1111 0111 : mod 100 r/m

NEG – Two's Complement Negation

register 0100 000B : 1111 011w : 11 011 reg

qwordregister 0100 100B 1111 0111 : 11 011 qwordreg

memory 0100 00XB : 1111 011w : mod 011 r/m

memory64 0100 10XB 1111 0111 : mod 011 r/m

NOP – No Operation 1001 0000

NOT – One's Complement Negation

register 0100 000B : 1111 011w : 11 010 reg

qwordregister 0100 000B 1111 0111 : 11 010 qwordreg

memory 0100 00XB : 1111 011w : mod 010 r/m

memory64 0100 1RXB 1111 0111 : mod 010 r/m

OR – Logical Inclusive OR

register1 to register2 0000 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0000 1000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0000 1001 : 11 qwordreg1 qwordreg2

register2 to register1 0000 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0000 1010 : 11 bytereg1 bytereg2

qwordregister2 to qwordregister1 0100 0R0B 0000 1011 : 11 qwordreg1 qwordreg2

memory to register 0000 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0000 1010 : mod bytereg r/m

memory8 to qwordregister 0100 0RXB 0000 1011 : mod qwordreg r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-34

INSTRUCTION FORMATS AND ENCODINGS
register to memory 0000 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0000 1000 : mod bytereg r/m

qwordregister to memory64 0100 1RXB 0000 1001 : mod qwordreg r/m

immediate to register 1000 00sw : 11 001 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 001 bytereg : imm8

immediate32 to qwordregister 0100 000B 1000 0001 : 11 001 qwordreg : imm32

immediate8 to qwordregister 0100 000B 1000 0011 : 11 001 qwordreg : imm8

immediate to AL, AX, or EAX 0000 110w : imm

immediate64 to RAX 0100 1000 0000 1101 : imm64

immediate to memory 1000 00sw : mod 001 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 001 r/m : imm8

immediate32 to memory64 0100 00XB 1000 0001 : mod 001 r/m : imm32

immediate8 to memory64 0100 00XB 1000 0011 : mod 001 r/m : imm8

OUT – Output to Port

fixed port 1110 011w : port number

variable port 1110 111w

OUTS – Output to DX Port

output to DX Port 0110 111w

POP – Pop a Value from the Stack

wordregister 0101 0101 : 0100 000B : 1000 1111 : 11 000 reg16

qwordregister 0100 W00BS : 1000 1111 : 11 000 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 1 reg16

qwordregister (alternate encoding) 0100 W00B : 0101 1 reg64

memory64 0100 W0XBS : 1000 1111 : mod 000 r/m

memory16 0101 0101 : 0100 00XB 1000 1111 : mod 000 r/m

POP – Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register FS, GS 0000 1111: 10 sreg3 001

POPF/POPFQ – Pop Stack into FLAGS/RFLAGS
Register

pop stack to FLAGS register 0101 0101 : 1001 1101

pop Stack to RFLAGS register 0100 1000 1001 1101

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-35

INSTRUCTION FORMATS AND ENCODINGS
PUSH – Push Operand onto the Stack

wordregister 0101 0101 : 0100 000B : 1111 1111 : 11 110 reg16

qwordregister 0100 W00BS : 1111 1111 : 11 110 reg64

wordregister (alternate encoding) 0101 0101 : 0100 000B : 0101 0 reg16

qwordregister (alternate encoding) 0100 W00BS : 0101 0 reg64

memory16 0101 0101 : 0100 000B : 1111 1111 : mod 110 r/m

memory64 0100 W00BS : 1111 1111 : mod 110 r/m

immediate8 0110 1010 : imm8

immediate16 0101 0101 : 0110 1000 : imm16

immediate64 0110 1000 : imm64

PUSH – Push Segment Register onto the Stack

segment register FS,GS 0000 1111: 10 sreg3 000

PUSHF/PUSHFD – Push Flags Register onto the
Stack

1001 1100

RCL – Rotate thru Carry Left

register by 1 0100 000B : 1101 000w : 11 010 reg

qwordregister by 1 0100 100B 1101 0001 : 11 010 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 010 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 010 r/m

register by CL 0100 000B : 1101 001w : 11 010 reg

qwordregister by CL 0100 100B 1101 0011 : 11 010 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 010 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 010 r/m

register by immediate count 0100 000B : 1100 000w : 11 010 reg : imm

qwordregister by immediate count 0100 100B 1100 0001 : 11 010 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 010 r/m : imm

memory64 by immediate count 0100 10XB 1100 0001 : mod 010 r/m : imm8

RCR – Rotate thru Carry Right

register by 1 0100 000B : 1101 000w : 11 011 reg

qwordregister by 1 0100 100B 1101 0001 : 11 011 qwordreg

memory by 1 0100 00XB : 1101 000w : mod 011 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 011 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-36

INSTRUCTION FORMATS AND ENCODINGS
register by CL 0100 000B : 1101 001w : 11 011 reg

qwordregister by CL 0100 000B 1101 0010 : 11 011 qwordreg

memory by CL 0100 00XB : 1101 001w : mod 011 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 011 r/m

register by immediate count 0100 000B : 1100 000w : 11 011 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 011 qwordreg : imm8

memory by immediate count 0100 00XB : 1100 000w : mod 011 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 011 r/m : imm8

RDMSR – Read from Model-Specific Register

load ECX-specified register into EDX:EAX 0000 1111 : 0011 0010

RDPMC – Read Performance Monitoring
Counters

load ECX-specified performance counter into
EDX:EAX

0000 1111 : 0011 0011

RDTSC – Read Time-Stamp Counter

read time-stamp counter into EDX:EAX 0000 1111 : 0011 0001

REP INS – Input String

REP LODS – Load String

REP MOVS – Move String

REP OUTS – Output String

REP STOS – Store String

REPE CMPS – Compare String

REPE SCAS – Scan String

REPNE CMPS – Compare String

REPNE SCAS – Scan String

RET – Return from Procedure (to same segment)

no argument 1100 0011

adding immediate to SP 1100 0010 : 16-bit displacement

RET – Return from Procedure (to other segment)

intersegment 1100 1011

adding immediate to SP 1100 1010 : 16-bit displacement

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-37

INSTRUCTION FORMATS AND ENCODINGS
ROL – Rotate Left

register by 1 0100 000B 1101 000w : 11 000 reg

byteregister by 1 0100 000B 1101 0000 : 11 000 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 000 qwordreg

memory by 1 0100 00XB 1101 000w : mod 000 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 000 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 000 r/m

register by CL 0100 000B 1101 001w : 11 000 reg

byteregister by CL 0100 000B 1101 0010 : 11 000 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 000 qwordreg

memory by CL 0100 00XB 1101 001w : mod 000 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 000 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 000 r/m

register by immediate count 1100 000w : 11 000 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 000 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 000 bytereg : imm8

memory by immediate count 1100 000w : mod 000 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 000 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 000 r/m : imm8

ROR – Rotate Right

register by 1 0100 000B 1101 000w : 11 001 reg

byteregister by 1 0100 000B 1101 0000 : 11 001 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 001 qwordreg

memory by 1 0100 00XB 1101 000w : mod 001 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 001 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 001 r/m

register by CL 0100 000B 1101 001w : 11 001 reg

byteregister by CL 0100 000B 1101 0010 : 11 001 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 001 qwordreg

memory by CL 0100 00XB 1101 001w : mod 001 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 001 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 001 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-38

INSTRUCTION FORMATS AND ENCODINGS
register by immediate count 0100 000B 1100 000w : 11 001 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 001 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 001 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 001 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 001 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 001 r/m : imm8

RSM – Resume from System Management Mode 0000 1111 : 1010 1010

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

register by 1 0100 000B 1101 000w : 11 111 reg

byteregister by 1 0100 000B 1101 0000 : 11 111 bytereg

qwordregister by 1 0100 100B 1101 0001 : 11 111 qwordreg

memory by 1 0100 00XB 1101 000w : mod 111 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 111 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 111 r/m

register by CL 0100 000B 1101 001w : 11 111 reg

byteregister by CL 0100 000B 1101 0010 : 11 111 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 111 qwordreg

memory by CL 0100 00XB 1101 001w : mod 111 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 111 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 111 r/m

register by immediate count 0100 000B 1100 000w : 11 111 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 111 bytereg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 111 qwordreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 111 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 111 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 111 r/m : imm8

SBB – Integer Subtraction with Borrow

register1 to register2 0100 0R0B 0001 100w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0001 1000 : 11 bytereg1 bytereg2

quadregister1 to quadregister2 0100 1R0B 0001 1001 : 11 quadreg1 quadreg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-39

INSTRUCTION FORMATS AND ENCODINGS
register2 to register1 0100 0R0B 0001 101w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0001 1010 : 11 reg1 bytereg2

byteregister2 to byteregister1 0100 1R0B 0001 1011 : 11 reg1 bytereg2

memory to register 0100 0RXB 0001 101w : mod reg r/m

memory8 to byteregister 0100 0RXB 0001 1010 : mod bytereg r/m

memory64 to byteregister 0100 1RXB 0001 1011 : mod quadreg r/m

register to memory 0100 0RXB 0001 100w : mod reg r/m

byteregister to memory8 0100 0RXB 0001 1000 : mod reg r/m

quadregister to memory64 0100 1RXB 0001 1001 : mod reg r/m

immediate to register 0100 000B 1000 00sw : 11 011 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 011 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 011 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 011 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0001 110w : imm

immediate32 to RAL 0100 1000 0001 1101 : imm32

immediate to memory 0100 00XB 1000 00sw : mod 011 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 011 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 011 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 011 r/m : imm8

SCAS/SCASB/SCASW/SCASD – Scan String

scan string 1010 111w

scan string (compare AL with byte at RDI) 0100 1000 1010 1110

scan string (compare RAX with qword at RDI) 0100 1000 1010 1111

SETcc – Byte Set on Condition

register 0100 000B 0000 1111 : 1001 tttn : 11 000 reg

register 0100 0000 0000 1111 : 1001 tttn : 11 000 reg

memory 0100 00XB 0000 1111 : 1001 tttn : mod 000 r/m

memory 0100 0000 0000 1111 : 1001 tttn : mod 000 r/m

SGDT – Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m

SHL – Shift Left

register by 1 0100 000B 1101 000w : 11 100 reg

byteregister by 1 0100 000B 1101 0000 : 11 100 bytereg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-40

INSTRUCTION FORMATS AND ENCODINGS
qwordregister by 1 0100 100B 1101 0001 : 11 100 qwordreg

memory by 1 0100 00XB 1101 000w : mod 100 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 100 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 100 r/m

register by CL 0100 000B 1101 001w : 11 100 reg

byteregister by CL 0100 000B 1101 0010 : 11 100 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 100 qwordreg

memory by CL 0100 00XB 1101 001w : mod 100 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 100 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 100 r/m

register by immediate count 0100 000B 1100 000w : 11 100 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 100 bytereg : imm8

quadregister by immediate count 0100 100B 1100 0001 : 11 100 quadreg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 100 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 100 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 100 r/m : imm8

SHLD – Double Precision Shift Left

register by immediate count 0100 0R0B 0000 1111 : 1010 0100 : 11 reg2 reg1 :
imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 0100 : 11
qworddreg2 qwordreg1 : imm8

memory by immediate count 0100 0RXB 0000 1111 : 1010 0100 : mod reg r/m :
imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 0100 : mod
qwordreg r/m : imm8

register by CL 0100 0R0B 0000 1111 : 1010 0101 : 11 reg2 reg1

quadregister by CL 0100 1R0B 0000 1111 : 1010 0101 : 11 quadreg2
quadreg1

memory by CL 0100 00XB 0000 1111 : 1010 0101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 0101 : mod quadreg
r/m

SHR – Shift Right

register by 1 0100 000B 1101 000w : 11 101 reg

byteregister by 1 0100 000B 1101 0000 : 11 101 bytereg

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-41

INSTRUCTION FORMATS AND ENCODINGS
qwordregister by 1 0100 100B 1101 0001 : 11 101 qwordreg

memory by 1 0100 00XB 1101 000w : mod 101 r/m

memory8 by 1 0100 00XB 1101 0000 : mod 101 r/m

memory64 by 1 0100 10XB 1101 0001 : mod 101 r/m

register by CL 0100 000B 1101 001w : 11 101 reg

byteregister by CL 0100 000B 1101 0010 : 11 101 bytereg

qwordregister by CL 0100 100B 1101 0011 : 11 101 qwordreg

memory by CL 0100 00XB 1101 001w : mod 101 r/m

memory8 by CL 0100 00XB 1101 0010 : mod 101 r/m

memory64 by CL 0100 10XB 1101 0011 : mod 101 r/m

register by immediate count 0100 000B 1100 000w : 11 101 reg : imm8

byteregister by immediate count 0100 000B 1100 0000 : 11 101 reg : imm8

qwordregister by immediate count 0100 100B 1100 0001 : 11 101 reg : imm8

memory by immediate count 0100 00XB 1100 000w : mod 101 r/m : imm8

memory8 by immediate count 0100 00XB 1100 0000 : mod 101 r/m : imm8

memory64 by immediate count 0100 10XB 1100 0001 : mod 101 r/m : imm8

SHRD – Double Precision Shift Right

register by immediate count 0100 0R0B 0000 1111 : 1010 1100 : 11 reg2 reg1 :
imm8

qwordregister by immediate8 0100 1R0B 0000 1111 : 1010 1100 : 11 qwordreg2
qwordreg1 : imm8

memory by immediate count 0100 00XB 0000 1111 : 1010 1100 : mod reg r/m :
imm8

memory64 by immediate8 0100 1RXB 0000 1111 : 1010 1100 : mod
qwordreg r/m : imm8

register by CL 0100 000B 0000 1111 : 1010 1101 : 11 reg2 reg1

qwordregister by CL 0100 1R0B 0000 1111 : 1010 1101 : 11 qwordreg2
qwordreg1

memory by CL 0000 1111 : 1010 1101 : mod reg r/m

memory64 by CL 0100 1RXB 0000 1111 : 1010 1101 : mod
qwordreg r/m

SIDT – Store Interrupt Descriptor Table Register 0000 1111 : 0000 0001 : modA 001 r/m

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-42

INSTRUCTION FORMATS AND ENCODINGS
SLDT – Store Local Descriptor Table Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 000 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 000 r/m

SMSW – Store Machine Status Word

to register 0100 000B 0000 1111 : 0000 0001 : 11 100 reg

to memory 0100 00XB 0000 1111 : 0000 0001 : mod 100 r/m

STC – Set Carry Flag 1111 1001

STD – Set Direction Flag 1111 1101

STI – Set Interrupt Flag 1111 1011

STOS/STOSB/STOSW/STOSD/STOSQ – Store
String Data

store string data 1010 101w

store string data (RAX at address RDI) 0100 1000 1010 1011

STR – Store Task Register

to register 0100 000B 0000 1111 : 0000 0000 : 11 001 reg

to memory 0100 00XB 0000 1111 : 0000 0000 : mod 001 r/m

SUB – Integer Subtraction

register1 from register2 0100 0R0B 0010 100w : 11 reg1 reg2

byteregister1 from byteregister2 0100 0R0B 0010 1000 : 11 bytereg1 bytereg2

qwordregister1 from qwordregister2 0100 1R0B 0010 1000 : 11 qwordreg1 qwordreg2

register2 from register1 0100 0R0B 0010 101w : 11 reg1 reg2

byteregister2 from byteregister1 0100 0R0B 0010 1010 : 11 bytereg1 bytereg2

qwordregister2 from qwordregister1 0100 1R0B 0010 1011 : 11 qwordreg1 qwordreg2

memory from register 0100 00XB 0010 101w : mod reg r/m

memory8 from byteregister 0100 0RXB 0010 1010 : mod bytereg r/m

memory64 from qwordregister 0100 1RXB 0010 1011 : mod qwordreg r/m

register from memory 0100 0RXB 0010 100w : mod reg r/m

byteregister from memory8 0100 0RXB 0010 1000 : mod bytereg r/m

qwordregister from memory8 0100 1RXB 0010 1000 : mod qwordreg r/m

immediate from register 0100 000B 1000 00sw : 11 101 reg : imm

immediate8 from byteregister 0100 000B 1000 0000 : 11 101 bytereg : imm8

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-43

INSTRUCTION FORMATS AND ENCODINGS
immediate32 from qwordregister 0100 100B 1000 0001 : 11 101 qwordreg : imm32

immediate8 from qwordregister 0100 100B 1000 0011 : 11 101 qwordreg : imm8

immediate from AL, AX, or EAX 0100 000B 0010 110w : imm

immediate32 from RAX 0100 1000 0010 1101 : imm32

immediate from memory 0100 00XB 1000 00sw : mod 101 r/m : imm

immediate8 from memory8 0100 00XB 1000 0000 : mod 101 r/m : imm8

immediate32 from memory64 0100 10XB 1000 0001 : mod 101 r/m : imm32

immediate8 from memory64 0100 10XB 1000 0011 : mod 101 r/m : imm8

SWAPGS – Swap GS Base Register

GS base register value for value in MSR
C0000102H

0000 1111 0000 0001 [this one incomplete]

SYSCALL – Fast System Call

fast call to privilege level 0 system procedures 0000 1111 0000 0101

SYSRET – Return From Fast System Call

return from fast system call 0000 1111 0000 0111

TEST – Logical Compare

register1 and register2 0100 0R0B 1000 010w : 11 reg1 reg2

byteregister1 and byteregister2 0100 0R0B 1000 0100 : 11 bytereg1 bytereg2

qwordregister1 and qwordregister2 0100 1R0B 1000 0101 : 11 qwordreg1 qwordreg2

memory and register 0100 0R0B 1000 010w : mod reg r/m

memory8 and byteregister 0100 0RXB 1000 0100 : mod bytereg r/m

memory64 and qwordregister 0100 1RXB 1000 0101 : mod qwordreg r/m

immediate and register 0100 000B 1111 011w : 11 000 reg : imm

immediate8 and byteregister 0100 000B 1111 0110 : 11 000 bytereg : imm8

immediate32 and qwordregister 0100 100B 1111 0111 : 11 000 bytereg : imm8

immediate and AL, AX, or EAX 0100 000B 1010 100w : imm

immediate32 and RAX 0100 1000 1010 1001 : imm32

immediate and memory 0100 00XB 1111 011w : mod 000 r/m : imm

immediate8 and memory8 0100 1000 1111 0110 : mod 000 r/m : imm8

immediate32 and memory64 0100 1000 1111 0111 : mod 000 r/m : imm32

UD2 – Undefined instruction 0000 FFFF : 0000 1011

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-44

INSTRUCTION FORMATS AND ENCODINGS
VERR – Verify a Segment for Reading

register 0100 000B 0000 1111 : 0000 0000 : 11 100 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 100 r/m

VERW – Verify a Segment for Writing

register 0100 000B 0000 1111 : 0000 0000 : 11 101 reg

memory 0100 00XB 0000 1111 : 0000 0000 : mod 101 r/m

WAIT – Wait 1001 1011

WBINVD – Writeback and Invalidate Data Cache 0000 1111 : 0000 1001

WRMSR – Write to Model-Specific Register

write EDX:EAX to ECX specified MSR 0000 1111 : 0011 0000

write RDX[31:0]:RAX[31:0] to RCX specified MSR 0100 1000 0000 1111 : 0011 0000

XADD – Exchange and Add

register1, register2 0100 0R0B 0000 1111 : 1100 000w : 11 reg2 reg1

byteregister1, byteregister2 0100 0R0B 0000 1111 : 1100 0000 : 11 bytereg2
bytereg1

qwordregister1, qwordregister2 0100 0R0B 0000 1111 : 1100 0001 : 11 qwordreg2
qwordreg1

memory, register 0100 0RXB 0000 1111 : 1100 000w : mod reg r/m

memory8, bytereg 0100 1RXB 0000 1111 : 1100 0000 : mod bytereg
r/m

memory64, qwordreg 0100 1RXB 0000 1111 : 1100 0001 : mod
qwordreg r/m

XCHG – Exchange Register/Memory with
Register

register1 with register2 1000 011w : 11 reg1 reg2

AX or EAX with register 1001 0 reg

memory with register 1000 011w : mod reg r/m

XLAT/XLATB – Table Look-up Translation

AL to byte DS:[(E)BX + unsigned AL] 1101 0111

AL to byte DS:[RBX + unsigned AL] 0100 1000 1101 0111

XOR – Logical Exclusive OR

register1 to register2 0100 0RXB 0011 000w : 11 reg1 reg2

byteregister1 to byteregister2 0100 0R0B 0011 0000 : 11 bytereg1 bytereg2

qwordregister1 to qwordregister2 0100 1R0B 0011 0001 : 11 qwordreg1 qwordreg2

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-45

INSTRUCTION FORMATS AND ENCODINGS
register2 to register1 0100 0R0B 0011 001w : 11 reg1 reg2

byteregister2 to byteregister1 0100 0R0B 0011 0010 : 11 bytereg1 bytereg2

qwordregister2 to qwordregister1 0100 1R0B 0011 0011 : 11 qwordreg1 qwordreg2

memory to register 0100 0RXB 0011 001w : mod reg r/m

memory8 to byteregister 0100 0RXB 0011 0010 : mod bytereg r/m

memory64 to qwordregister 0100 1RXB 0011 0011 : mod qwordreg r/m

register to memory 0100 0RXB 0011 000w : mod reg r/m

byteregister to memory8 0100 0RXB 0011 0000 : mod bytereg r/m

qwordregister to memory8 0100 1RXB 0011 0001 : mod qwordreg r/m

immediate to register 0100 000B 1000 00sw : 11 110 reg : imm

immediate8 to byteregister 0100 000B 1000 0000 : 11 110 bytereg : imm8

immediate32 to qwordregister 0100 100B 1000 0001 : 11 110 qwordreg : imm32

immediate8 to qwordregister 0100 100B 1000 0011 : 11 110 qwordreg : imm8

immediate to AL, AX, or EAX 0100 000B 0011 010w : imm

immediate to RAX 0100 1000 0011 0101 : immediate data

immediate to memory 0100 00XB 1000 00sw : mod 110 r/m : imm

immediate8 to memory8 0100 00XB 1000 0000 : mod 110 r/m : imm8

immediate32 to memory64 0100 10XB 1000 0001 : mod 110 r/m : imm32

immediate8 to memory64 0100 10XB 1000 0011 : mod 110 r/m : imm8

Prefix Bytes

address size 0110 0111

LOCK 1111 0000

operand size 0110 0110

CS segment override 0010 1110

DS segment override 0011 1110

ES segment override 0010 0110

FS segment override 0110 0100

GS segment override 0110 0101

SS segment override 0011 0110

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
Vol. 2B B-46

INSTRUCTION FORMATS AND ENCODINGS
B.3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS
AND ENCODINGS

The following table shows formats and encodings introduced by the Pentium processor family.

B.4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD
INSTRUCTION EXTENSIONS

Non-64-bit mode instruction encodings for MMX Technology, SSE, SSE2, and SSE3 are cov-
ered by applying these rules to Table B-19 through Table B-30. Table B-31 lists special encod-
ings (instructions that do not follow the rules below).

1. The REX instruction has no effect:

• On immediates

• If both operands are MMX registers

• On MMX registers and XMM registers

• If an MMX register is encoded in the reg field of the ModR/M byte

2. If a memory operand is encoded in the r/m field of the ModR/M byte, REX.X and REX.B
may be used for encoding the memory operand.

3. If a general-purpose register is encoded in the r/m field of the ModR/M byte, REX.B may
be used for register encoding and REX.W may be used to encode the 64-bit operand size.

4. If an XMM register operand is encoded in the reg field of the ModR/M byte, REX.R may
be used for register encoding. If an XMM register operand is encoded in the r/m field of
the ModR/M byte, REX.B may be used for register encoding.

Table B-16. Pentium Processor Family Instruction Formats and Encodings,
Non-64-Bit Modes

Instruction and Format Encoding

CMPXCHG8B – Compare and Exchange 8 Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

Table B-17. Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode
Instruction and Format Encoding

CMPXCHG8B/CMPXCHG16B – Compare and
Exchange Bytes

EDX:EAX with memory64 0000 1111 : 1100 0111 : mod 001 r/m

RDX:RAX with memory128 0100 10XB 0000 1111 : 1100 0111 : mod 001 r/m
Vol. 2B B-47

INSTRUCTION FORMATS AND ENCODINGS
B.5 MMX INSTRUCTION FORMATS AND ENCODINGS
MMX instructions, except the EMMS instruction, use a format similar to the 2-byte Intel Archi-
tecture integer format. Details of subfield encodings within these formats are presented below.

B.5.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is oper-
ating on. When this field is used, it is located in bits 1 and 0 of the second opcode byte. Table
B-18 shows the encoding of the gg field.

B.5.2 MMX Technology and General-Purpose Register Fields
(mmxreg and reg)

When MMX technology registers (mmxreg) are used as operands, they are encoded in the
ModR/M byte in the reg field (bits 5, 4, and 3) and/or the R/M field (bits 2, 1, and 0).

If an MMX instruction operates on a general-purpose register (reg), the register is encoded in
the R/M field of the ModR/M byte.

Table B-18. Encoding of Granularity of Data Field (gg)
gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword
Vol. 2B B-48

INSTRUCTION FORMATS AND ENCODINGS
B.5.3 MMX Instruction Formats and Encodings Table
Table B-19 shows the formats and encodings of the integer instructions.

.

Table B-19. MMX Instruction Formats and Encodings
Instruction and Format Encoding

EMMS - Empty MMX technology state 0000 1111:01110111

MOVD - Move doubleword

reg to mmreg 0000 1111:0110 1110: 11 mmxreg reg

reg from mmxreg 0000 1111:0111 1110: 11 mmxreg reg

mem to mmxreg 0000 1111:0110 1110: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1110: mod mmxreg r/m

MOVQ - Move quadword

mmxreg2 to mmxreg1 0000 1111:0110 1111: 11 mmxreg1 mmxreg2

mmxreg2 from mmxreg1 0000 1111:0111 1111: 11 mmxreg1 mmxreg2

mem to mmxreg 0000 1111:0110 1111: mod mmxreg r/m

mem from mmxreg 0000 1111:0111 1111: mod mmxreg r/m

PACKSSDW1 - Pack dword to word data
(signed with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 1011: mod mmxreg r/m

PACKSSWB1 - Pack word to byte data (signed
with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0011: mod mmxreg r/m

PACKUSWB1 - Pack word to byte data
(unsigned with saturation)

mmxreg2 to mmxreg1 0000 1111:0110 0111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 0111: mod mmxreg r/m
Vol. 2B B-49

INSTRUCTION FORMATS AND ENCODINGS
PADD - Add with wrap-around

mmxreg2 to mmxreg1 0000 1111: 1111 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1111 11gg: mod mmxreg r/m

PADDS - Add signed with saturation

mmxreg2 to mmxreg1 0000 1111: 1110 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1110 11gg: mod mmxreg r/m

PADDUS - Add unsigned with saturation

mmxreg2 to mmxreg1 0000 1111: 1101 11gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111: 1101 11gg: mod mmxreg r/m

PAND - Bitwise And

mmxreg2 to mmxreg1 0000 1111:1101 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1011: mod mmxreg r/m

PANDN - Bitwise AndNot

mmxreg2 to mmxreg1 0000 1111:1101 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 1111: mod mmxreg r/m

PCMPEQ - Packed compare for equality

 mmxreg1 with mmxreg2 0000 1111:0111 01gg: 11 mmxreg1 mmxreg2

 mmxreg with memory 0000 1111:0111 01gg: mod mmxreg r/m

PCMPGT - Packed compare greater (signed)

mmxreg1 with mmxreg2 0000 1111:0110 01gg: 11 mmxreg1 mmxreg2

mmxreg with memory 0000 1111:0110 01gg: mod mmxreg r/m

PMADDWD - Packed multiply add

mmxreg2 to mmxreg1 0000 1111:1111 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1111 0101: mod mmxreg r/m

PMULHUW - Packed multiplication, store high
word (unsigned)

 mmxreg2 to mmxreg1 0000 1111: 1110 0100: 11 mmxreg1 mmxreg2

 memory to mmxreg 0000 1111: 1110 0100: mod mmxreg r/m

PMULHW - Packed multiplication, store high
word

mmxreg2 to mmxreg1 0000 1111:1110 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 0101: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-50

INSTRUCTION FORMATS AND ENCODINGS
PMULLW - Packed multiplication, store low
word

mmxreg2 to mmxreg1 0000 1111:1101 0101: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1101 0101: mod mmxreg r/m

POR - Bitwise Or

mmxreg2 to mmxreg1 0000 1111:1110 1011: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1011: mod mmxreg r/m

PSLL2 - Packed shift left logical

mmxreg1 by mmxreg2 0000 1111:1111 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1111 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 110 mmxreg: imm8 data

PSRA2 - Packed shift right arithmetic

mmxreg1 by mmxreg2 0000 1111:1110 00gg: 11 mmxreg1 mmxreg2

mmxreg by memory 0000 1111:1110 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 100 mmxreg: imm8 data

PSRL2 - Packed shift right logical

mmxreg1 by mmxreg2 0000 1111:1101 00gg: 11 mmxreg1 mmxreg2

 mmxreg by memory 0000 1111:1101 00gg: mod mmxreg r/m

mmxreg by immediate 0000 1111:0111 00gg: 11 010 mmxreg: imm8 data

PSUB - Subtract with wrap-around

mmxreg2 from mmxreg1 0000 1111:1111 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1111 10gg: mod mmxreg r/m

PSUBS - Subtract signed with saturation

mmxreg2 from mmxreg1 0000 1111:1110 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1110 10gg: mod mmxreg r/m

PSUBUS - Subtract unsigned with saturation

mmxreg2 from mmxreg1 0000 1111:1101 10gg: 11 mmxreg1 mmxreg2

memory from mmxreg 0000 1111:1101 10gg: mod mmxreg r/m

PUNPCKH - Unpack high data to next larger
type

mmxreg2 to mmxreg1 0000 1111:0110 10gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 10gg: mod mmxreg r/m

Table B-19. MMX Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-51

INSTRUCTION FORMATS AND ENCODINGS
.

B.6 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGS
Table B-20 shows the formats and encodings for several instructions that were introduced into
the IA-32 architecture in the P6 family processors.

PUNPCKL - Unpack low data to next larger
type

mmxreg2 to mmxreg1 0000 1111:0110 00gg: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:0110 00gg: mod mmxreg r/m

PXOR - Bitwise Xor

mmxreg2 to mmxreg1 0000 1111:1110 1111: 11 mmxreg1 mmxreg2

memory to mmxreg 0000 1111:1110 1111: mod mmxreg r/m

NOTES:
1. The pack instructions perform saturation from signed packed data of one type to signed or unsigned

data of the next smaller type.
2. The format of the shift instructions has one additional format to support shifting by immediate shift-

counts. The shift operations are not supported equally for all data types.

Table B-20. Formats and Encodings of P6 Family Instructions
Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to register1 0000 1111: 0100 tttn : 11 reg1 reg2

memory to register 0000 1111 : 0100 tttn : mod reg r/m

FCMOVcc – Conditional Move on EFLAG
Register Condition Codes

move if below (B) 11011 010 : 11 000 ST(i)

move if equal (E) 11011 010 : 11 001 ST(i)

move if below or equal (BE) 11011 010 : 11 010 ST(i)

move if unordered (U) 11011 010 : 11 011 ST(i)

move if not below (NB) 11011 011 : 11 000 ST(i)

move if not equal (NE) 11011 011 : 11 001 ST(i)

move if not below or equal (NBE) 11011 011 : 11 010 ST(i)

move if not unordered (NU) 11011 011 : 11 011 ST(i)

FCOMI – Compare Real and Set EFLAGS 11011 011 : 11 110 ST(i)

Table B-19. MMX Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-52

INSTRUCTION FORMATS AND ENCODINGS
B.7 SSE INSTRUCTION FORMATS AND ENCODINGS
The SSE instructions use the ModR/M format and are preceded by the 0FH prefix byte. In gen-
eral, operations are not duplicated to provide two directions (that is, separate load and store
variants).

The following three tables (Tables B-21, B-22, and B-23) show the formats and encodings for
the SSE SIMD floating-point, SIMD integer, and cacheability and memory ordering instruc-
tions, respectively. Some SSE instructions require a mandatory prefix (66H, F2H, F3H) as part
of the two-byte opcode. Mandatory prefixes are included in the tables.

FXRSTOR—Restore x87 FPU, MMX, SSE, and
SSE2 State1

0000 1111:1010 1110: modA 001 r/m

FXSAVE—Save x87 FPU, MMX, SSE, and SSE2
State1

0000 1111:1010 1110: modA 000 r/m

SYSENTER—Fast System Call 0000 1111:0011 0100

SYSEXIT—Fast Return from Fast System Call 0000 1111:0011 0101

NOTES:
1. For FXSAVE and FXRSTOR, “mod = 11” is reserved.

Table B-21. Formats and Encodings of SSE Floating-Point Instructions
Instruction and Format Encoding

ADDPS—Add Packed Single-Precision
Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1000: mod xmmreg r/m

ADDSS—Add Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:01011000:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01011000: mod xmmreg r/m

ANDNPS—Bitwise Logical AND NOT of
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0101: mod xmmreg r/m

ANDPS—Bitwise Logical AND of Packed
Single-Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0100: mod xmmreg r/m

Table B-20. Formats and Encodings of P6 Family Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-53

INSTRUCTION FORMATS AND ENCODINGS
CMPPS—Compare Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0000 1111:1100 0010:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSS—Compare Scalar Single-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 1111 0011:0000 1111:1100 0010:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISS—Compare Scalar Ordered
Single-Precision Floating-Point Values
and Set EFLAGS

 xmmreg to xmmreg 0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PS—Convert Packed Doubleword
Integers to Packed Single-Precision
Floating-Point Values

 mmreg to xmmreg 0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0000 1111:0010 1010: mod xmmreg r/m

CVTPS2PI—Convert Packed Single-
Precision Floating-Point Values to Packed
Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1101: mod mmreg r/m

CVTSI2SS—Convert Doubleword Integer
to Scalar Single-Precision Floating-Point
Value

 r32 to xmmreg1 1111 0011:0000 1111:00101010:11 xmmreg r32

 mem to xmmreg 1111 0011:0000 1111:00101010: mod xmmreg r/m

CVTSS2SI—Convert Scalar Single-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0011:0000 1111:0010 1101: mod r32 r/m

CVTTPS2PI—Convert with Truncation
Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to mmreg 0000 1111:0010 1100:11 mmreg1 xmmreg1

 mem to mmreg 0000 1111:0010 1100: mod mmreg r/m

Table B-21. Formats and Encodings of SSE Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-54

INSTRUCTION FORMATS AND ENCODINGS
CVTTSS2SI—Convert with Truncation
Scalar Single-Precision Floating-Point
Value to Doubleword Integer

 xmmreg to r32 1111 0011:0000 1111:0010 1100:11 r32 xmmreg1

 mem to r32 1111 0011:0000 1111:0010 1100: mod r32 r/m

DIVPS—Divide Packed Single-Precision
Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1110: mod xmmreg r/m

DIVSS—Divide Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1110: mod xmmreg r/m

LDMXCSR—Load MXCSR Register State

 m32 to MXCSR 0000 1111:1010 1110:modA 010 mem

MAXPS—Return Maximum Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1111: mod xmmreg r/m

MAXSS—Return Maximum Scalar Double-
Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1111: mod xmmreg r/m

MINPS—Return Minimum Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1101: mod xmmreg r/m

MINSS—Return Minimum Scalar Double-
Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1101: mod xmmreg r/m

MOVAPS—Move Aligned Packed Single-
Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0010 1000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0010 1000: mod xmmreg r/m

Table B-21. Formats and Encodings of SSE Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-55

INSTRUCTION FORMATS AND ENCODINGS
 xmmreg1 to xmmreg2 0000 1111:0010 1001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0010 1001: mod xmmreg r/m

MOVHLPS—Move Packed Single-
Precision Floating-Point Values High to
Low

 xmmreg to xmmreg 0000 1111:0001 0010:11 xmmreg1 xmmreg2

MOVHPS—Move High Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0110: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0111: mod xmmreg r/m

MOVLHPS—Move Packed Single-
Precision Floating-Point Values Low to
High

 xmmreg to xmmreg 0000 1111:00010110:11 xmmreg1 xmmreg2

MOVLPS—Move Low Packed Single-
Precision Floating-Point Values

 mem to xmmreg 0000 1111:0001 0010: mod xmmreg r/m

 xmmreg to mem 0000 1111:0001 0011: mod xmmreg r/m

MOVMSKPS—Extract Packed Single-
Precision Floating-Point Sign Mask

 xmmreg to r32 0000 1111:0101 0000:11 r32 xmmreg

MOVSS—Move Scalar Single-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0011:0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 1111 0011:0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 1111 0011:0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 1111 0011:0000 1111:0001 0001: mod xmmreg r/m

MOVUPS—Move Unaligned Packed
Single-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0000 1111:0001 0000:11 xmmreg2 xmmreg1

 mem to xmmreg1 0000 1111:0001 0000: mod xmmreg r/m

 xmmreg1 to xmmreg2 0000 1111:0001 0001:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0000 1111:0001 0001: mod xmmreg r/m

MULPS—Multiply Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1001: mod xmmreg rm

Table B-21. Formats and Encodings of SSE Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-56

INSTRUCTION FORMATS AND ENCODINGS
MULSS—Multiply Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1001: mod xmmreg r/m

ORPS—Bitwise Logical OR of Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0110 mod xmmreg r/m

RCPPS—Compute Reciprocals of Packed
Single-Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0011: mod xmmreg r/m

RCPSS—Compute Reciprocals of Scalar
Single-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:01010011:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:01010011: mod xmmreg r/m

RSQRTPS—Compute Reciprocals of
Square Roots of Packed Single-Precision
Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0010 mode xmmreg r/m

RSQRTSS—Compute Reciprocals of
Square Roots of Scalar Single-Precision
Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 0010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 0010 mod xmmreg r/m

SHUFPS—Shuffle Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0000 1111:1100 0110:11 xmmreg1 xmmreg2: imm8

 mem to xmmreg, imm8 0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPS—Compute Square Roots of
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 0001:11 xmmreg1 xmmreg 2

 mem to xmmreg 0000 1111:0101 0001 mod xmmreg r/m

Table B-21. Formats and Encodings of SSE Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-57

INSTRUCTION FORMATS AND ENCODINGS
SQRTSS—Compute Square Root of Scalar
Single-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 0001:11 xmmreg1 xmmreg 2

 mem to xmmreg 1111 0011:0000 1111:0101 0001:mod xmmreg r/m

STMXCSR—Store MXCSR Register State

 MXCSR to mem 0000 1111:1010 1110:modA 011 mem

SUBPS—Subtract Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1100:mod xmmreg r/m

SUBSS—Subtract Scalar Single-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1100:mod xmmreg r/m

UCOMISS—Unordered Compare Scalar
Ordered Single-Precision Floating-Point
Values and Set EFLAGS

 xmmreg to xmmreg 0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0010 1110 mod xmmreg r/m

UNPCKHPS—Unpack and Interleave High
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0001 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0101 mod xmmreg r/m

UNPCKLPS—Unpack and Interleave Low
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0001 0100 mod xmmreg r/m

XORPS—Bitwise Logical XOR of Single-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 0111:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 0111 mod xmmreg r/m

Table B-21. Formats and Encodings of SSE Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-58

INSTRUCTION FORMATS AND ENCODINGS
Table B-22. Formats and Encodings of SSE Integer Instructions
Instruction and Format Encoding

PAVGB/PAVGW—Average Packed Integers

 mmreg to mmreg 0000 1111:1110 0000:11 mmreg1 mmreg2

0000 1111:1110 0011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0000 mod mmreg r/m

0000 1111:1110 0011 mod mmreg r/m

PEXTRW—Extract Word

 mmreg to reg32, imm8 0000 1111:1100 0101:11 r32 mmreg: imm8

PINSRW - Insert Word

 reg32 to mmreg, imm8 0000 1111:1100 0100:11 mmreg r32: imm8

 m16 to mmreg, imm8 0000 1111:1100 0100 mod mmreg r/m: imm8

PMAXSW—Maximum of Packed Signed Word
Integers

 mmreg to mmreg 0000 1111:1110 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1110 mod mmreg r/m

PMAXUB—Maximum of Packed Unsigned Byte
Integers

 mmreg to mmreg 0000 1111:1101 1110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1110 mod mmreg r/m

PMINSW—Minimum of Packed Signed Word
Integers

 mmreg to mmreg 0000 1111:1110 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 1010 mod mmreg r/m

PMINUB—Minimum of Packed Unsigned Byte
Integers

 mmreg to mmreg 0000 1111:1101 1010:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 1010 mod mmreg r/m

PMOVMSKB - Move Byte Mask To Integer

 mmreg to reg32 0000 1111:1101 0111:11 r32 mmreg

PMULHUW—Multiply Packed Unsigned Integers
and Store High Result

 mmreg to mmreg 0000 1111:1110 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1110 0100 mod mmreg r/m
Vol. 2B B-59

INSTRUCTION FORMATS AND ENCODINGS

PSADBW—Compute Sum of Absolute Differences

 mmreg to mmreg 0000 1111:1111 0110:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0110 mod mmreg r/m

PSHUFW—Shuffle Packed Words

 mmreg to mmreg, imm8 0000 1111:0111 0000:11 mmreg1 mmreg2: imm8

 mem to mmreg, imm8 0000 1111:0111 0000:11 mod mmreg r/m: imm8

Table B-23. Format and Encoding of SSE Cacheability & Memory Ordering Instructions
Instruction and Format Encoding

MASKMOVQ—Store Selected Bytes of Quadword

 mmreg to mmreg 0000 1111:1111 0111:11 mmreg1 mmreg2

MOVNTPS—Store Packed Single-Precision Floating-
Point Values Using Non-Temporal Hint

 xmmreg to mem 0000 1111:0010 1011: mod xmmreg r/m

MOVNTQ—Store Quadword Using Non-Temporal Hint

 mmreg to mem 0000 1111:1110 0111: mod mmreg r/m

PREFETCHT0—Prefetch Temporal to All Cache Levels 0000 1111:0001 1000:modA 001 mem

PREFETCHT1—Prefetch Temporal to First Level Cache 0000 1111:0001 1000:modA 010 mem

PREFETCHT2—Prefetch Temporal to Second Level
Cache

0000 1111:0001 1000:modA 011 mem

PREFETCHNTA—Prefetch Non-Temporal to All Cache
Levels

0000 1111:0001 1000:modA 000 mem

SFENCE—Store Fence 0000 1111:1010 1110:11 111 000

Table B-22. Formats and Encodings of SSE Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-60

INSTRUCTION FORMATS AND ENCODINGS
B.8 SSE2 INSTRUCTION FORMATS AND ENCODINGS
The SSE2 instructions use the ModR/M format and are preceded by the 0FH prefix byte. In
general, operations are not duplicated to provide two directions (that is, separate load and store
variants).

The following three tables show the formats and encodings for the SSE2 SIMD floating-point,
SIMD integer, and cacheability instructions, respectively. Some SSE2 instructions require a
mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included
in the tables.

B.8.1 Granularity Field (gg)
The granularity field (gg) indicates the size of the packed operands that the instruction is operating
on. When this field is used, it is located in bits 1 and 0 of the second opcode byte. Table B-24
shows the encoding of this gg field.

Table B-24. Encoding of Granularity of Data Field (gg)
gg Granularity of Data

00 Packed Bytes

01 Packed Words

10 Packed Doublewords

11 Quadword

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions
Instruction and Format Encoding

ADDPD - Add Packed Double-Precision
Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1000: mod xmmreg r/m

ADDSD - Add Scalar Double-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1000:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1000: mod xmmreg r/m

ANDNPD—Bitwise Logical AND NOT of
Packed Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0101: mod xmmreg r/m
Vol. 2B B-61

INSTRUCTION FORMATS AND ENCODINGS
ANDPD—Bitwise Logical AND of
Packed Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0100: mod xmmreg r/m

CMPPD—Compare Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:1100 0010:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0010: mod xmmreg r/m: imm8

CMPSD—Compare Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 1111 0010:0000 1111:1100 0010:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 11110 010:0000 1111:1100 0010: mod xmmreg r/m: imm8

COMISD—Compare Scalar Ordered
Double-Precision Floating-Point Values
and Set EFLAGS

 xmmreg to xmmreg 0110 0110:0000 1111:0010 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1111: mod xmmreg r/m

CVTPI2PD—Convert Packed
Doubleword Integers to Packed Double-
Precision Floating-Point Values

 mmreg to xmmreg 0110 0110:0000 1111:0010 1010:11 xmmreg1 mmreg1

 mem to xmmreg 0110 0110:0000 1111:0010 1010: mod xmmreg r/m

CVTPD2PI—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1101:11 mmreg1 xmmreg1

 mem to mmreg 0110 0110:0000 1111:0010 1101: mod mmreg r/m

CVTSI2SD—Convert Doubleword
Integer to Scalar Double-Precision
Floating-Point Value

 r32 to xmmreg1 1111 0010:0000 1111:0010 1010:11 xmmreg r32

 mem to xmmreg 1111 0010:0000 1111:0010 1010: mod xmmreg r/m

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-62

INSTRUCTION FORMATS AND ENCODINGS
CVTSD2SI—Convert Scalar Double-
Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1101:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1101: mod r32 r/m

CVTTPD2PI—Convert with Truncation
Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to mmreg 0110 0110:0000 1111:0010 1100:11 mmreg xmmreg

 mem to mmreg 0110 0110:0000 1111:0010 1100: mod mmreg r/m

CVTTSD2SI—Convert with Truncation
Scalar Double-Precision Floating-Point
Value to Doubleword Integer

 xmmreg to r32 1111 0010:0000 1111:0010 1100:11 r32 xmmreg

 mem to r32 1111 0010:0000 1111:0010 1100: mod r32 r/m

CVTPD2PS—Covert Packed Double-
Precision Floating-Point Values to
Packed Single-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1010: mod xmmreg r/m

CVTPS2PD—Covert Packed Single-
Precision Floating-Point Values to
Packed Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1010: mod xmmreg r/m

CVTSD2SS—Covert Scalar Double-
Precision Floating-Point Value to Scalar
Single-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1010: mod xmmreg r/m

CVTSS2SD—Covert Scalar Single-
Precision Floating-Point Value to Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:00001 111:0101 1010: mod xmmreg r/m

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-63

INSTRUCTION FORMATS AND ENCODINGS
CVTPD2DQ—Convert Packed Double-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to xmmreg 1111 0010:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:1110 0110: mod xmmreg r/m

CVTTPD2DQ—Convert With Truncation
Packed Double-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0110: mod xmmreg r/m

CVTDQ2PD—Convert Packed
Doubleword Integers to Packed Single-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0011:0000 1111:1110 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:1110 0110: mod xmmreg r/m

CVTPS2DQ—Convert Packed Single-
Precision Floating-Point Values to
Packed Doubleword Integers

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1011: mod xmmreg r/m

CVTTPS2DQ—Convert With Truncation
Packed Single-Precision Floating-Point
Values to Packed Doubleword Integers

 xmmreg to xmmreg 1111 0011:0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0101 1011: mod xmmreg r/m

CVTDQ2PS—Convert Packed
Doubleword Integers to Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0000 1111:0101 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0000 1111:0101 1011: mod xmmreg r/m

DIVPD—Divide Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1110: mod xmmreg r/m

DIVSD—Divide Scalar Double-Precision
Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1110: mod xmmreg r/m

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-64

INSTRUCTION FORMATS AND ENCODINGS
MAXPD—Return Maximum Packed
Double-Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1111: mod xmmreg r/m

MAXSD—Return Maximum Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1111: mod xmmreg r/m

MINPD—Return Minimum Packed
Double-Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1101: mod xmmreg r/m

MINSD—Return Minimum Scalar
Double-Precision Floating-Point Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1101: mod xmmreg r/m

MOVAPD—Move Aligned Packed
Double-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0010 1001:11 xmmreg2 xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0010 1001: mod xmmreg r/m

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0010 1000:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0010 1000: mod xmmreg r/m

MOVHPD—Move High Packed Double-
Precision Floating-Point Values

 mem to xmmreg 0110 0110:0000 1111:0001 0111: mod xmmreg r/m

 xmmreg to mem 0110 0110:0000 1111:0001 0110: mod xmmreg r/m

MOVLPD—Move Low Packed Double-
Precision Floating-Point Values

 mem to xmmreg 0110 0110:0000 1111:0001 0011: mod xmmreg r/m

 xmmreg to mem 0110 0110:0000 1111:0001 0010: mod xmmreg r/m

MOVMSKPD—Extract Packed Double-
Precision Floating-Point Sign Mask

 xmmreg to r32 0110 0110:0000 1111:0101 0000:11 r32 xmmreg

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-65

INSTRUCTION FORMATS AND ENCODINGS
MOVSD—Move Scalar Double-Precision
Floating-Point Values

 xmmreg2 to xmmreg1 1111 0010:0000 1111:0001 0001:11 xmmreg2 xmmreg1

 mem to xmmreg1 1111 0010:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg1 to xmmreg2 1111 0010:0000 1111:0001 0000:11 xmmreg1 xmmreg2

 xmmreg1 to mem 1111 0010:0000 1111:0001 0000: mod xmmreg r/m

MOVUPD—Move Unaligned Packed
Double-Precision Floating-Point Values

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0001 0001:11 xmmreg2 xmmreg1

 mem to xmmreg1 0110 0110:0000 1111:0001 0001: mod xmmreg r/m

 xmmreg1 to xmmreg2 0110 0110:0000 1111:0001 0000:11 xmmreg1 xmmreg2

 xmmreg1 to mem 0110 0110:0000 1111:0001 0000: mod xmmreg r/m

MULPD—Multiply Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1001:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1001: mod xmmreg rm

MULSD—Multiply Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0010:00001111:01011001:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:00001111:01011001: mod xmmreg r/m

ORPD—Bitwise Logical OR of Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0110: mod xmmreg r/m

SHUFPD—Shuffle Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:1100 0110:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:1100 0110: mod xmmreg r/m: imm8

SQRTPD—Compute Square Roots of
Packed Double-Precision Floating-Point
Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0001:11 xmmreg1 xmmreg 2

 mem to xmmreg 0110 0110:0000 1111:0101 0001: mod xmmreg r/m

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-66

INSTRUCTION FORMATS AND ENCODINGS
SQRTSD—Compute Square Root of
Scalar Double-Precision Floating-Point
Value

 xmmreg to xmmreg 1111 0010:0000 1111:0101 0001:11 xmmreg1 xmmreg 2

 mem to xmmreg 1111 0010:0000 1111:0101 0001: mod xmmreg r/m

SUBPD—Subtract Packed Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 1100: mod xmmreg r/m

SUBSD—Subtract Scalar Double-
Precision Floating-Point Values

 xmmreg to xmmreg 1111 0010:0000 1111:0101 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0010:0000 1111:0101 1100: mod xmmreg r/m

UCOMISD—Unordered Compare Scalar
Ordered Double-Precision Floating-
Point Values and Set EFLAGS

 xmmreg to xmmreg 0110 0110:0000 1111:0010 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0010 1110: mod xmmreg r/m

UNPCKHPD—Unpack and Interleave
High Packed Double-Precision Floating-
Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0001 0101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0101: mod xmmreg r/m

UNPCKLPD—Unpack and Interleave
Low Packed Double-Precision Floating-
Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0001 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0001 0100: mod xmmreg r/m

XORPD—Bitwise Logical OR of Double-
Precision Floating-Point Values

 xmmreg to xmmreg 0110 0110:0000 1111:0101 0111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0101 0111: mod xmmreg r/m

Table B-25. Formats and Encodings of SSE2 Floating-Point Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-67

INSTRUCTION FORMATS AND ENCODINGS
Table B-26. Formats and Encodings of SSE2 Integer Instructions
Instruction and Format Encoding

MOVD - Move Doubleword

 reg to xmmeg 0110 0110:0000 1111:0110 1110: 11 xmmreg reg

reg from xmmreg 0110 0110:0000 1111:0111 1110: 11 xmmreg reg

mem to xmmreg 0110 0110:0000 1111:0110 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:0111 1110: mod xmmreg r/m

MOVDQA—Move Aligned Double
Quadword

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1111:11 xmmreg1 xmmreg2

0110 0110:0000 1111:0111 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 0110 0110:0000 1111:0111 1111: mod xmmreg r/m

MOVDQU—Move Unaligned Double
Quadword

 xmmreg to xmmreg 1111 0011:0000 1111:0110 1111:11 xmmreg1 xmmreg2

1111 0011:0000 1111:0111 1111:11 xmmreg1 xmmreg2

 mem to xmmreg 1111 0011:0000 1111:0110 1111: mod xmmreg r/m

 mem from xmmreg 1111 0011:0000 1111:0111 1111: mod xmmreg r/m

MOVQ2DQ—Move Quadword from MMX
to XMM Register

 mmreg to xmmreg 1111 0011:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVDQ2Q—Move Quadword from XMM
to MMX Register

 xmmreg to mmreg 1111 0010:0000 1111:1101 0110:11 mmreg1 mmreg2

MOVQ - Move Quadword

xmmreg2 to xmmreg1 1111 0011:0000 1111:0111 1110: 11 xmmreg1 xmmreg2

xmmreg2 from xmmreg1 0110 0110:0000 1111:1101 0110: 11 xmmreg1 xmmreg2

mem to xmmreg 1111 0011:0000 1111:0111 1110: mod xmmreg r/m

mem from xmmreg 0110 0110:0000 1111:1101 0110: mod xmmreg r/m

PACKSSDW1 - Pack Dword To Word
Data (signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 1011: mod xmmreg r/m
Vol. 2B B-68

INSTRUCTION FORMATS AND ENCODINGS
PACKSSWB - Pack Word To Byte Data
(signed with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0011: mod xmmreg r/m

PACKUSWB - Pack Word To Byte Data
(unsigned with saturation)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:0110 0111: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:0110 0111: mod xmmreg r/m

PADDQ—Add Packed Quadword
Integers

 mmreg to mmreg 0000 1111:1101 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1101 0100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:1101 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 0100: mod xmmreg r/m

PADD - Add With Wrap-around

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1111 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1111 11gg: mod xmmreg r/m

PADDS - Add Signed With Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1110 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1110 11gg: mod xmmreg r/m

PADDUS - Add Unsigned With
Saturation

 xmmreg2 to xmmreg1 0110 0110:0000 1111: 1101 11gg: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111: 1101 11gg: mod xmmreg r/m

PAND - Bitwise And

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1011: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1011: mod xmmreg r/m

PANDN - Bitwise AndNot

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 1111: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 1111: mod xmmreg r/m

PAVGB—Average Packed Integers

 xmmreg to xmmreg 0110 0110:0000 1111:11100 000:11 xmmreg1 xmmreg2

 mem to xmmreg 01100110:00001111:11100000 mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-69

INSTRUCTION FORMATS AND ENCODINGS
PAVGW—Average Packed Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 0011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 0011 mod xmmreg r/m

PCMPEQ - Packed Compare For
Equality

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0111 01gg: 11 xmmreg1 xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0111 01gg: mod xmmreg r/m

PCMPGT - Packed Compare Greater
(signed)

 xmmreg1 with xmmreg2 0110 0110:0000 1111:0110 01gg: 11 xmmreg1 xmmreg2

 xmmreg with memory 0110 0110:0000 1111:0110 01gg: mod xmmreg r/m

PEXTRW—Extract Word

 xmmreg to reg32, imm8 0110 0110:0000 1111:1100 0101:11 r32 xmmreg: imm8

PINSRW - Insert Word

 reg32 to xmmreg, imm8 0110 0110:0000 1111:1100 0100:11 xmmreg r32: imm8

 m16 to xmmreg, imm8 0110 0110:0000 1111:1100 0100 mod xmmreg r/m: imm8

PMADDWD - Packed Multiply Add

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1111 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1111 0101: mod xmmreg r/m

PMAXSW—Maximum of Packed Signed
Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 01100110:00001111:11101110 mod xmmreg r/m

PMAXUB—Maximum of Packed
Unsigned Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1101 1110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1110 mod xmmreg r/m

PMINSW—Minimum of Packed Signed
Word Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1110 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1110 1010 mod xmmreg r/m

PMINUB—Minimum of Packed
Unsigned Byte Integers

 xmmreg to xmmreg 0110 0110:0000 1111:1101 1010:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1101 1010 mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-70

INSTRUCTION FORMATS AND ENCODINGS
PMOVMSKB - Move Byte Mask To
Integer

 xmmreg to reg32 0110 0110:0000 1111:1101 0111:11 r32 xmmreg

PMULHUW - Packed multiplication,
store high word (unsigned)

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0100: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0100: mod xmmreg r/m

PMULHW - Packed Multiplication, store
high word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1110 0101: mod xmmreg r/m

PMULLW - Packed Multiplication, store
low word

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1101 0101: 11 xmmreg1 xmmreg2

 memory to xmmreg 0110 0110:0000 1111:1101 0101: mod xmmreg r/m

PMULUDQ—Multiply Packed Unsigned
Doubleword Integers

 mmreg to mmreg 0000 1111:1111 0100:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 0100: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:00001111:1111 0100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:00001111:1111 0100: mod xmmreg r/m

POR - Bitwise Or

 xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1011: 11 xmmreg1 xmmreg2

 xmemory to xmmreg 0110 0110:0000 1111:1110 1011: mod xmmreg r/m

PSADBW—Compute Sum of Absolute
Differences

 xmmreg to xmmreg 0110 0110:0000 1111:1111 0110:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 0110: mod xmmreg r/m

PSHUFLW—Shuffle Packed Low Words

 xmmreg to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 1111 0010:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

Table B-26. Formats and Encodings of SSE2 Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-71

INSTRUCTION FORMATS AND ENCODINGS
PSHUFHW—Shuffle Packed High
Words

 xmmreg to xmmreg, imm8 1111 0011:0000 1111:0111 0000:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 1111 0011:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

PSHUFD—Shuffle Packed Doublewords

 xmmreg to xmmreg, imm8 0110 0110:0000 1111:0111 0000:11 xmmreg1 xmmreg2:
imm8

 mem to xmmreg, imm8 0110 0110:0000 1111:0111 0000:11 mod xmmreg r/m: imm8

PSLLDQ—Shift Double Quadword Left
Logical

 xmmreg, imm8 0110 0110:0000 1111:0111 0011:11 111 xmmreg: imm8

PSLL - Packed Shift Left Logical

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1111 00gg: 11 xmmreg1 xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1111 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 110 xmmreg: imm8

PSRA - Packed Shift Right Arithmetic

 xmmreg1 by xmmreg2 0110 0110:0000 1111:1110 00gg: 11 xmmreg1 xmmreg2

 xmmreg by memory 0110 0110:0000 1111:1110 00gg: mod xmmreg r/m

 xmmreg by immediate 0110 0110:0000 1111:0111 00gg: 11 100 xmmreg: imm8

PSRLDQ—Shift Double Quadword
Right Logical

 xmmreg, imm8 0110 0110:00001111:01110011:11 011 xmmreg: imm8

PSRL - Packed Shift Right Logical

 xmmxreg1 by xmmxreg2 0110 0110:0000 1111:1101 00gg: 11 xmmreg1 xmmreg2

 xmmxreg by memory 0110 0110:0000 1111:1101 00gg: mod xmmreg r/m

 xmmxreg by immediate 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg: imm8

PSUBQ—Subtract Packed Quadword
Integers

 mmreg to mmreg 0000 1111:11111 011:11 mmreg1 mmreg2

 mem to mmreg 0000 1111:1111 1011: mod mmreg r/m

 xmmreg to xmmreg 0110 0110:0000 1111:1111 1011:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:1111 1011: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-72

INSTRUCTION FORMATS AND ENCODINGS
PSUB - Subtract With Wrap-around

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1111 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1111 10gg: mod xmmreg r/m

PSUBS - Subtract Signed With
Saturation

 xmmreg2 from xmmreg1 0110 0110:0000 1111:1110 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0110 0110:0000 1111:1110 10gg: mod xmmreg r/m

PSUBUS - Subtract Unsigned With
Saturation

 xmmreg2 from xmmreg1 0000 1111:1101 10gg: 11 xmmreg1 xmmreg2

 memory from xmmreg 0000 1111:1101 10gg: mod xmmreg r/m

PUNPCKH—Unpack High Data To Next
Larger Type

 xmmreg to xmmreg 0110 0110:0000 1111:0110 10gg:11 xmmreg1 Xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 10gg: mod xmmreg r/m

PUNPCKHQDQ—Unpack High Data

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1101:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1101: mod xmmreg r/m

PUNPCKL—Unpack Low Data To Next
Larger Type

 xmmreg to xmmreg 0110 0110:0000 1111:0110 00gg:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 00gg: mod xmmreg r/m

PUNPCKLQDQ—Unpack Low Data

 xmmreg to xmmreg 0110 0110:0000 1111:0110 1100:11 xmmreg1 xmmreg2

 mem to xmmreg 0110 0110:0000 1111:0110 1100: mod xmmreg r/m

PXOR - Bitwise Xor

xmmreg2 to xmmreg1 0110 0110:0000 1111:1110 1111: 11 xmmreg1 xmmreg2

memory to xmmreg 0110 0110:0000 1111:1110 1111: mod xmmreg r/m

Table B-26. Formats and Encodings of SSE2 Integer Instructions (Contd.)
Instruction and Format Encoding
Vol. 2B B-73

INSTRUCTION FORMATS AND ENCODINGS

Table B-27. Format and Encoding of SSE2 Cacheability Instructions
Instruction and Format Encoding

MASKMOVDQU—Store Selected Bytes
of Double Quadword

 xmmreg to xmmreg 0110 0110:0000 1111:1111 0111:11 xmmreg1 xmmreg2

CLFLUSH—Flush Cache Line

 mem 0000 1111:1010 1110:mod r/m

MOVNTPD—Store Packed Double-
Precision Floating-Point Values Using
Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:0010 1011: mod xmmreg r/m

MOVNTDQ—Store Double Quadword
Using Non-Temporal Hint

 xmmreg to mem 0110 0110:0000 1111:1110 0111: mod xmmreg r/m

MOVNTI—Store Doubleword Using
Non-Temporal Hint

 reg to mem 0000 1111:1100 0011: mod reg r/m

PAUSE—Spin Loop Hint 1111 0011:1001 0000

LFENCE—Load Fence 0000 1111:1010 1110: 11 101 000

MFENCE—Memory Fence 0000 1111:1010 1110: 11 110 000
Vol. 2B B-74

INSTRUCTION FORMATS AND ENCODINGS
B.9 SSE3 FORMATS AND ENCODINGS TABLE
The tables in this section provide SSE3 formats and encodings. Some SSE3 instructions require
a mandatory prefix (66H, F2H, F3H) as part of the two-byte opcode. These prefixes are included
in the tables.

When in IA-32e mode, use of the REX.R prefix permits instructions that use general purpose
and XMM registers to access additional registers. Some instructions require the REX.W prefix
to promote the instruction to 64-bit operation. Instructions that require the REX.W prefix are
listed (with their opcodes) in Section B.10.

.

Table B-28. Formats and Encodings of SSE3 Floating-Point Instructions
Instruction and Format Encoding

ADDSUBPD—Add /Sub packed DP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:11010000: mod xmmreg r/m

ADDSUBPS — Add /Sub packed SP FP
numbers from XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:11010000:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:11010000: mod xmmreg r/m

HADDPD — Add horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111100: mod xmmreg r/m

HADDPS — Add horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111100:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111100: mod xmmreg r/m

HSUBPD — Sub horizontally packed DP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 01100110:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 01100110:00001111:01111101: mod xmmreg r/m

HSUBPS — Sub horizontally packed SP FP
numbers XMM2/Mem to XMM1

xmmreg2 to xmmreg1 11110010:00001111:01111101:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:01111101: mod xmmreg r/m
Vol. 2B B-75

INSTRUCTION FORMATS AND ENCODINGS
.

.

Table B-29. Formats and Encodings for SSE3 Event Management Instructions
Instruction and Format Encoding

MONITOR — Set up a linear address range to
be monitored by hardware

eax, ecx, edx 0000 1111 : 0000 0001:11 001 000

MWAIT — Wait until write-back store
performed within the range specified by the
instruction MONITOR

eax, ecx 0000 1111 : 0000 0001:11 001 001

Table B-30. Formats and Encodings for SSE3 Integer and Move Instructions
Instruction and Format Encoding

FISTTP — Store ST in int16 (chop) and pop

m16int 11011 111 : modA 001 r/m

FISTTP — Store ST in int32 (chop) and pop

m32int 11011 011 : modA 001 r/m

FISTTP — Store ST in int64 (chop) and pop

m64int 11011 101 : modA 001 r/m

LDDQU — Load unaligned integer 128-bit

xmm, m128 11110010:00001111:11110000: modA xmmreg r/m

MOVDDUP — Move 64 bits representing one
DP data from XMM2/Mem to XMM1 and
duplicate

xmmreg2 to xmmreg1 11110010:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110010:00001111:00010010: mod xmmreg r/m

MOVSHDUP — Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate high

xmmreg2 to xmmreg1 11110011:00001111:00010110:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010110: mod xmmreg r/m

MOVSLDUP — Move 128 bits representing 4
SP data from XMM2/Mem to XMM1 and
duplicate low

xmmreg2 to xmmreg1 11110011:00001111:00010010:11 xmmreg1 xmmreg2

mem to xmmreg 11110011:00001111:00010010: mod xmmreg r/m
Vol. 2B B-76

INSTRUCTION FORMATS AND ENCODINGS
B.10 SPECIAL ENCODINGS FOR 64-BIT MODE
The following Pentium, P6, MMX, SSE, SSE2, SSE3 instructions are promoted to 64-bit oper-
ation in IA-32e mode by using REX.W. However, these entries are special cases that do not fol-
low the general rules (specified in Section B.4).

Table B-31. Special Case Instructions Promoted Using REX.W
Instruction and Format Encoding

CMOVcc – Conditional Move

register2 to register1 0100 0R0B 0000 1111: 0100 tttn : 11 reg1 reg2

qwordregister2 to qwordregister1 0100 1R0B 0000 1111: 0100 tttn : 11 qwordreg1
qwordreg2

memory to register 0100 0RXB 0000 1111 : 0100 tttn : mod reg r/m

memory64 to qwordregister 0100 1RXB 0000 1111 : 0100 tttn : mod qwordreg
r/m

CVTSD2SI—Convert Scalar Double-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0010:0000 1111:0010 1101:11
r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1101:11
r64 xmmreg

 mem64 to r32 0100 0R0XB 1111 0010:0000 1111:0010 1101:
mod r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1101: mod
r64 r/m

CVTSI2SS—Convert Doubleword Integer to
Scalar Single-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0011:0000 1111:0010 1010:11
xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0011:0000 1111:0010 1010:11
xmmreg r64

 mem to xmmreg 0100 0RXB 1111 0011:0000 1111:0010 1010: mod
xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0011:0000 1111:0010 1010: mod
xmmreg r/m

CVTSI2SD—Convert Doubleword Integer to
Scalar Double-Precision Floating-Point Value

 r32 to xmmreg1 0100 0R0B 1111 0010:0000 1111:0010 1010:11
xmmreg r32

 r64 to xmmreg1 0100 1R0B 1111 0010:0000 1111:0010 1010:11
xmmreg r64
Vol. 2B B-77

INSTRUCTION FORMATS AND ENCODINGS
 mem to xmmreg 0100 0RXB 1111 0010:0000 1111:00101 010: mod
xmmreg r/m

 mem64 to xmmreg 0100 1RXB 1111 0010:0000 1111:0010 1010: mod
xmmreg r/m

CVTSS2SI—Convert Scalar Single-Precision
Floating-Point Value to Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1101:11
r32 xmmreg

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1101:11
r64 xmmreg

 mem to r32 0100 0RXB 11110011:00001111:00101101: mod
r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1101: mod
r64 r/m

CVTTSD2SI—Convert with Truncation Scalar
Double-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B 11110010:00001111:00101100:11 r32
xmmreg

 xmmreg to r64 0100 1R0B 1111 0010:0000 1111:0010 1100:11
r64 xmmreg

 mem64 to r32 0100 0RXB 1111 0010:0000 1111:0010 1100: mod
r32 r/m

 mem64 to r64 0100 1RXB 1111 0010:0000 1111:0010 1100: mod
r64 r/m

CVTTSS2SI—Convert with Truncation Scalar
Single-Precision Floating-Point Value to
Doubleword Integer

 xmmreg to r32 0100 0R0B 1111 0011:0000 1111:0010 1100:11
r32 xmmreg1

 xmmreg to r64 0100 1R0B 1111 0011:0000 1111:0010 1100:11
r64 xmmreg1

 mem to r32 0100 0RXB 1111 0011:0000 1111:0010 1100: mod
r32 r/m

 mem32 to r64 0100 1RXB 1111 0011:0000 1111:0010 1100: mod
r64 r/m

MOVD/MOVQ - Move doubleword

reg to mmxreg 0100 0R0B 0000 1111:0110 1110: 11 mmxreg reg

qwordreg to mmxreg 0100 1R0B 0000 1111:0110 1110: 11 mmxreg
qwordreg

reg from mmxreg 0100 0R0B 0000 1111:0111 1110: 11 mmxreg reg

Table B-31. Special Case Instructions Promoted Using REX.W (Contd.)
Instruction and Format Encoding
Vol. 2B B-78

INSTRUCTION FORMATS AND ENCODINGS
qwordreg from mmxreg 0100 1R0B 0000 1111:0111 1110: 11 mmxreg
qwordreg

mem to mmxreg 0100 0RXB 0000 1111:0110 1110: mod mmxreg
r/m

mem64 to mmxreg 0100 1RXB 0000 1111:0110 1110: mod mmxreg
r/m

mem from mmxreg 0100 0RXB 0000 1111:0111 1110: mod mmxreg
r/m

mem64 from mmxreg 0100 1RXB 0000 1111:0111 1110: mod mmxreg
r/m

mmxreg with memory 0100 0RXB 0000 1111:0110 01gg: mod mmxreg
r/m

MOVMSKPS—Extract Packed Single-Precision
Floating-Point Sign Mask

 xmmreg to r32 0100 0R0B 0000 1111:0101 0000:11 r32 xmmreg

 xmmreg to r64 0100 1R0B 00001111:01010000:11 r64 xmmreg

PEXTRW—Extract Word

 mmreg to reg32, imm8 0100 0R0B 0000 1111:1100 0101:11 r32 mmreg:
imm8

 mmreg to reg64, imm8 0100 1R0B 0000 1111:1100 0101:11 r64 mmreg:
imm8

 xmmreg to reg32, imm8 0100 0R0B 0110 0110 0000 1111:1100 0101:11
r32 xmmreg: imm8

 xmmreg to reg64, imm8 0100 1R0B 0110 0110 0000 1111:1100 0101:11
r64 xmmreg: imm8

PINSRW - Insert Word

 reg32 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100:11 mmreg r32:
imm8

 reg64 to mmreg, imm8 0100 1R0B 0000 1111:1100 0100:11 mmreg r64:
imm8

 m16 to mmreg, imm8 0100 0R0B 0000 1111:1100 0100 mod mmreg r/m:
imm8

 m16 to mmreg, imm8 0100 1RXB 0000 1111:11000100 mod mmreg r/m:
imm8

 reg32 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11
xmmreg r32: imm8

 reg64 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100:11
xmmreg r64: imm8

 m16 to xmmreg, imm8 0100 0RXB 0110 0110 0000 1111:1100 0100 mod
xmmreg r/m: imm8

Table B-31. Special Case Instructions Promoted Using REX.W (Contd.)
Instruction and Format Encoding
Vol. 2B B-79

INSTRUCTION FORMATS AND ENCODINGS
B.11 FLOATING-POINT INSTRUCTION FORMATS AND
ENCODINGS

Table B-32 shows the five different formats used for floating-point instructions. In all cases, in-
structions are at least two bytes long and begin with the bit pattern 11011.

 m16 to xmmreg, imm8 0100 1RXB 0110 0110 0000 1111:1100 0100 mod
xmmreg r/m: imm8

PMOVMSKB - Move Byte Mask To Integer

 mmreg to reg32 0100 0RXB 0000 1111:1101 0111:11 r32 mmreg

 mmreg to reg64 0100 1R0B 0000 1111:1101 0111:11 r64 mmreg

 xmmreg to reg32 0100 0RXB 0110 0110 0000 1111:1101 0111:11
r32 mmreg

 xmmreg to reg64 0110 0110 0000 1111:1101 0111:11 r64 xmmreg

Table B-32. General Floating-Point Instruction Formats

Instruction

First Byte Second Byte Optional Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB R ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

MF = Memory Format
00 — 32-bit real
01 — 32-bit integer
10 — 64-bit real
11 — 16-bit integer

P = Pop
0 — Do not pop stack
1 — Pop stack after operation

d = Destination
0 — Destination is ST(0)
1 — Destination is ST(i)

R XOR d = 0 — Destination OP Source
R XOR d = 1 — Source OP Destination

ST(i) = Register stack element i
000 = Stack Top
001 = Second stack element
 ⋅
 ⋅
 ⋅
111 = Eighth stack element

Table B-31. Special Case Instructions Promoted Using REX.W (Contd.)
Instruction and Format Encoding
Vol. 2B B-80

INSTRUCTION FORMATS AND ENCODINGS
The Mod and R/M fields of the ModR/M byte have the same interpretation as the corresponding
fields of the integer instructions. The SIB byte and disp (displacement) are optionally present in
instructions that have Mod and R/M fields. Their presence depends on the values of Mod and
R/M, as for integer instructions.

Table B-33 shows the formats and encodings of the floating-point instructions.

Table B-33. Floating-Point Instruction Formats and Encodings
Instruction and Format Encoding

F2XM1 – Compute 2ST(0) – 1 11011 001 : 1111 0000

FABS – Absolute Value 11011 001 : 1110 0001

FADD – Add

 ST(0) ← ST(0) + 32-bit memory 11011 000 : mod 000 r/m

ST(0) ← ST(0) + 64-bit memory 11011 100 : mod 000 r/m

ST(d) ← ST(0) + ST(i) 11011 d00 : 11 000 ST(i)

FADDP – Add and Pop

ST(0) ← ST(0) + ST(i) 11011 110 : 11 000 ST(i)

FBLD – Load Binary Coded Decimal 11011 111 : mod 100 r/m

FBSTP – Store Binary Coded Decimal and Pop 11011 111 : mod 110 r/m

FCHS – Change Sign 11011 001 : 1110 0000

FCLEX – Clear Exceptions 11011 011 : 1110 0010

FCOM – Compare Real

32-bit memory 11011 000 : mod 010 r/m

64-bit memory 11011 100 : mod 010 r/m

ST(i) 11011 000 : 11 010 ST(i)

FCOMP – Compare Real and Pop

32-bit memory 11011 000 : mod 011 r/m

64-bit memory 11011 100 : mod 011 r/m

ST(i) 11011 000 : 11 011 ST(i)

FCOMPP – Compare Real and Pop Twice 11011 110 : 11 011 001

FCOMIP – Compare Real, Set EFLAGS, and Pop 11011 111 : 11 110 ST(i)

FCOS – Cosine of ST(0) 11011 001 : 1111 1111

FDECSTP – Decrement Stack-Top Pointer 11011 001 : 1111 0110

FDIV – Divide

ST(0) ← ST(0) ÷ 32-bit memory 11011 000 : mod 110 r/m

ST(0) ← ST(0) ÷ 64-bit memory 11011 100 : mod 110 r/m

ST(d) ← ST(0) ÷ ST(i) 11011 d00 : 1111 R ST(i)
Vol. 2B B-81

INSTRUCTION FORMATS AND ENCODINGS
FDIVP – Divide and Pop

ST(0) ← ST(0) ÷ ST(i) 11011 110 : 1111 1 ST(i)

FDIVR – Reverse Divide

ST(0) ← 32-bit memory ÷ ST(0) 11011 000 : mod 111 r/m

ST(0) ← 64-bit memory ÷ ST(0) 11011 100 : mod 111 r/m

ST(d) ← ST(i) ÷ ST(0) 11011 d00 : 1111 R ST(i)

FDIVRP – Reverse Divide and Pop

ST(0) ¨ ST(i) ÷ ST(0) 11011 110 : 1111 0 ST(i)

FFREE – Free ST(i) Register 11011 101 : 1100 0 ST(i)

FIADD – Add Integer

ST(0) ← ST(0) + 16-bit memory 11011 110 : mod 000 r/m

ST(0) ← ST(0) + 32-bit memory 11011 010 : mod 000 r/m

FICOM – Compare Integer

16-bit memory 11011 110 : mod 010 r/m

32-bit memory 11011 010 : mod 010 r/m

FICOMP – Compare Integer and Pop

16-bit memory 11011 110 : mod 011 r/m

32-bit memory 11011 010 : mod 011 r/m

FIDIV

ST(0) ← ST(0) ÷ 16-bit memory 11011 110 : mod 110 r/m

ST(0) ← ST(0) ÷ 32-bit memory 11011 010 : mod 110 r/m

FIDIVR

ST(0) ← 16-bit memory ÷ ST(0) 11011 110 : mod 111 r/m

ST(0) ← 32-bit memory ÷ ST(0) 11011 010 : mod 111 r/m

FILD – Load Integer

16-bit memory 11011 111 : mod 000 r/m

32-bit memory 11011 011 : mod 000 r/m

64-bit memory 11011 111 : mod 101 r/m

FIMUL

ST(0) ← ST(0) × 16-bit memory 11011 110 : mod 001 r/m

ST(0) ← ST(0) × 32-bit memory 11011 010 : mod 001 r/m

FINCSTP – Increment Stack Pointer 11011 001 : 1111 0111

FINIT – Initialize Floating-Point Unit

Table B-33. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-82

INSTRUCTION FORMATS AND ENCODINGS
FIST – Store Integer

16-bit memory 11011 111 : mod 010 r/m

32-bit memory 11011 011 : mod 010 r/m

FISTP – Store Integer and Pop

16-bit memory 11011 111 : mod 011 r/m

32-bit memory 11011 011 : mod 011 r/m

64-bit memory 11011 111 : mod 111 r/m

FISUB

ST(0) ← ST(0) - 16-bit memory 11011 110 : mod 100 r/m

ST(0) ← ST(0) - 32-bit memory 11011 010 : mod 100 r/m

FISUBR

ST(0) ← 16-bit memory − ST(0) 11011 110 : mod 101 r/m

ST(0) ← 32-bit memory − ST(0) 11011 010 : mod 101 r/m

FLD – Load Real

32-bit memory 11011 001 : mod 000 r/m

64-bit memory 11011 101 : mod 000 r/m

80-bit memory 11011 011 : mod 101 r/m

ST(i) 11011 001 : 11 000 ST(i)

FLD1 – Load +1.0 into ST(0) 11011 001 : 1110 1000

FLDCW – Load Control Word 11011 001 : mod 101 r/m

FLDENV – Load FPU Environment 11011 001 : mod 100 r/m

FLDL2E – Load log2(ε) into ST(0) 11011 001 : 1110 1010

FLDL2T – Load log2(10) into ST(0) 11011 001 : 1110 1001

FLDLG2 – Load log10(2) into ST(0) 11011 001 : 1110 1100

FLDLN2 – Load logε(2) into ST(0) 11011 001 : 1110 1101

FLDPI – Load π into ST(0) 11011 001 : 1110 1011

Table B-33. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-83

INSTRUCTION FORMATS AND ENCODINGS
FLDZ – Load +0.0 into ST(0) 11011 001 : 1110 1110

FMUL – Multiply

ST(0) ← ST(0) × 32-bit memory 11011 000 : mod 001 r/m

ST(0) ← ST(0) × 64-bit memory 11011 100 : mod 001 r/m

ST(d) ← ST(0) × ST(i) 11011 d00 : 1100 1 ST(i)

FMULP – Multiply

ST(i) ← ST(0) × ST(i) 11011 110 : 1100 1 ST(i)

FNOP – No Operation 11011 001 : 1101 0000

FPATAN – Partial Arctangent 11011 001 : 1111 0011

FPREM – Partial Remainder 11011 001 : 1111 1000

FPREM1 – Partial Remainder (IEEE) 11011 001 : 1111 0101

FPTAN – Partial Tangent 11011 001 : 1111 0010

FRNDINT – Round to Integer 11011 001 : 1111 1100

FRSTOR – Restore FPU State 11011 101 : mod 100 r/m

FSAVE – Store FPU State 11011 101 : mod 110 r/m

FSCALE – Scale 11011 001 : 1111 1101

FSIN – Sine 11011 001 : 1111 1110

FSINCOS – Sine and Cosine 11011 001 : 1111 1011

FSQRT – Square Root 11011 001 : 1111 1010

FST – Store Real

32-bit memory 11011 001 : mod 010 r/m

64-bit memory 11011 101 : mod 010 r/m

ST(i) 11011 101 : 11 010 ST(i)

FSTCW – Store Control Word 11011 001 : mod 111 r/m

FSTENV – Store FPU Environment 11011 001 : mod 110 r/m

FSTP – Store Real and Pop

32-bit memory 11011 001 : mod 011 r/m

64-bit memory 11011 101 : mod 011 r/m

80-bit memory 11011 011 : mod 111 r/m

ST(i) 11011 101 : 11 011 ST(i)

FSTSW – Store Status Word into AX 11011 111 : 1110 0000

FSTSW – Store Status Word into Memory 11011 101 : mod 111 r/m

Table B-33. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-84

INSTRUCTION FORMATS AND ENCODINGS
FSUB – Subtract

ST(0) ← ST(0) – 32-bit memory 11011 000 : mod 100 r/m

ST(0) ← ST(0) – 64-bit memory 11011 100 : mod 100 r/m

ST(d) ← ST(0) – ST(i) 11011 d00 : 1110 R ST(i)

FSUBP – Subtract and Pop

ST(0) ← ST(0) – ST(i) 11011 110 : 1110 1 ST(i)

FSUBR – Reverse Subtract

ST(0) ← 32-bit memory – ST(0) 11011 000 : mod 101 r/m

ST(0) ← 64-bit memory – ST(0) 11011 100 : mod 101 r/m

ST(d) ← ST(i) – ST(0) 11011 d00 : 1110 R ST(i)

FSUBRP – Reverse Subtract and Pop

ST(i) ← ST(i) – ST(0) 11011 110 : 1110 0 ST(i)

FTST – Test 11011 001 : 1110 0100

FUCOM – Unordered Compare Real 11011 101 : 1110 0 ST(i)

FUCOMP – Unordered Compare Real and Pop 11011 101 : 1110 1 ST(i)

FUCOMPP – Unordered Compare Real and Pop
Twice

11011 010 : 1110 1001

FUCOMI – Unorderd Compare Real and Set
EFLAGS

11011 011 : 11 101 ST(i)

FUCOMIP – Unorderd Compare Real, Set
EFLAGS, and Pop

11011 111 : 11 101 ST(i)

FXAM – Examine 11011 001 : 1110 0101

FXCH – Exchange ST(0) and ST(i) 11011 001 : 1100 1 ST(i)

FXTRACT – Extract Exponent and Significand 11011 001 : 1111 0100

FYL2X – ST(1) × log2(ST(0)) 11011 001 : 1111 0001

FYL2XP1 – ST(1) × log2(ST(0) + 1.0) 11011 001 : 1111 1001

FWAIT – Wait until FPU Ready 1001 1011

Table B-33. Floating-Point Instruction Formats and Encodings (Contd.)
Instruction and Format Encoding
Vol. 2B B-85

INSTRUCTION FORMATS AND ENCODINGS
B.12 VMX INSTRUCTIONS
Table B-34 describes virtual-machine extensions (VMX).

Table B-34. Encodings for VMX Instructions
Instruction and Format Encoding

VMCALL—Call to VM Monitor

Call VMM: causes VM exit. 00001111 00000001 11000001

VMCLEAR—Clear Virtual-Machine Control
Structure

mem32:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

mem64:VMCS_data_ptr 01100110 00001111 11000111: mod 110 r/m

VMLAUNCH—Launch Virtual Machine

Launch VM managed by Current_VMCS 00001111 00000001 11000010

VMRESUME—Resume Virtual Machine

Resume VM managed by Current_VMCS 00001111 00000001 11000011

VMPTRLD—Load Pointer to Virtual-Machine
Control Structure

mem32 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

mem64 to Current_VMCS_ptr 00001111 11000111: mod 110 r/m

VMPTRST—Store Pointer to Virtual-Machine
Control Structure

Current_VMCS_ptr to mem32 00001111 11000111: mod 111 r/m

Current_VMCS_ptr to mem64 00001111 11000111: mod 111 r/m

VMREAD—Read Field from Virtual-Machine
Control Structure

r32 (VMCS_fieldn) to r32
r32 (VMCS_fieldn) to mem32
r64 (VMCS_fieldn) to r64
r64 (VMCS_fieldn) to mem64

00001111 01111000: 11 reg2 reg1
00001111 01111000: mod r32 r/m
00001111 01111000: 11 reg2 reg1
00001111 01111000: mod r64 r/m

VMWRITE—Write Field to Virtual-Machine
Control Structure

r32 to r32 (VMCS_fieldn)
mem32 to r32 (VMCS_fieldn)
r64 to r64 (VMCS_fieldn)
mem64 to r64 (VMCS_fieldn)

00001111 01111001: 11 reg1 reg2
00001111 01111001: mod r32 r/m
00001111 01111001: 11 reg1 reg2
00001111 01111001: mod r64 r/m

VMXOFF—Leave VMX Operation

Leave VMX. 00001111 00000001 11000100

VMXON—Enter VMX Operation

Enter VMX. 11110011 000011111 11000111: mod 110 r/m
Vol. 2B B-86

C

Intel C/C++ Compiler
Intrinsics and
Functional
Equivalents

APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND

FUNCTIONAL EQUIVALENTS

The two tables in this appendix itemize the Intel C/C++ compiler intrinsics and functional equiv-
alents for the Intel MMX technology, SSE, SSE2, and SSE3 instructions.

There may be additional intrinsics that do not have an instruction equivalent. It is strongly rec-
ommended that the reader reference the compiler documentation for the complete list of sup-
ported intrinsics. Please refer to http://www.intel.com/support/performancetools/.

Table C-1 presents simple intrinsics and Table C-2 presents composite intrinsics. Some intrin-
sics are “composites” because they require more than one instruction to implement them.

Intel C/C++ Compiler intrinsic names reflect the following naming conventions:

mm<intrin_op>_<suffix>

where:

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition
and sub for subtraction

<suffix> Denotes the type of data operated on by the instruction. The first one
or two letters of each suffix denotes whether the data is packed (p),
extended packed (ep), or scalar (s). The remaining letters denote the
type:

s single-precision floating point

d double-precision floating point

i128 signed 128-bit integer

i64 signed 64-bit integer

u64 unsigned 64-bit integer

i32 signed 32-bit integer

u32 unsigned 32-bit integer

i16 signed 16-bit integer

u16 unsigned 16-bit integer
Vol. 2B C-1

http://www.intel.com/support/performancetools

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
i8 signed 8-bit integer

u8 unsigned 8-bit integer

The variable r is generally used for the intrinsic's return value. A number appended to a variable
name indicates the element of a packed object. For example, r0 is the lowest word of r.

The packed values are represented in right-to-left order, with the lowest value being used for
scalar operations. Consider the following example operation:
double a[2] = {1.0, 2.0};
__m128d t = _mm_load_pd(a);

The result is the same as either of the following:
__m128d t = _mm_set_pd(2.0, 1.0);
__m128d t = _mm_setr_pd(1.0, 2.0);

In other words, the XMM register that holds the value t will look as follows:

The “scalar” element is 1.0. Due to the nature of the instruction, some intrinsics require their
arguments to be immediates (constant integer literals).

To use an intrinsic in your code, insert a line with the following syntax:
data_type intrinsic_name (parameters)

Where:

data_type Is the return data type, which can be either void, int, __m64,
__m128, __m128d, or __m128i. Only the _mm_empty intrinsic re-
turns void.

intrinsic_name Is the name of the intrinsic, which behaves like a function that you
can use in your C/C++ code instead of in-lining the actual instruction.

parameters Represents the parameters required by each intrinsic.

0127 64 63

2.0 1.0
C-2 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1 SIMPLE INTRINSICS

Table C-1. Simple Intrinsics
Mnemonic Intrinsic Description

ADDPD __m128d _mm_add_pd(__m128d a, __m128d b) Adds the two DP FP (double-
precision, floating-point)
values of a and b.

ADDPS __m128 _mm_add_ps(__m128 a, __m128 b) Adds the four SP FP (single-
precision, floating-point)
values of a and b.

ADDSD __m128d _mm_add_sd(__m128d a, __m128d b) Adds the lower DP FP values
of a and b; the upper three DP
FP values are passed through
from a.

ADDSS __m128 _mm_add_ss(__m128 a, __m128 b) Adds the lower SP FP values
of a and b; the upper three SP
FP values are passed through
from a.

ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b) Add/Subtract packed DP FP
numbers from XMM2/Mem to
XMM1.

ADDSUBPS __m128 _mm_addsub_ps(__m128 a, __m128 b) Add/Subtract packed SP FP
numbers from XMM2/Mem to
XMM1.

ANDNPD __m128d _mm_andnot_pd(__m128d a, __m128d b) Computes the bitwise AND-
NOT of the two DP FP values
of a and b.

ANDNPS __m128 _mm_andnot_ps(__m128 a, __m128 b) Computes the bitwise AND-
NOT of the four SP FP values
of a and b.

ANDPD __m128d _mm_and_pd(__m128d a, __m128d b) Computes the bitwise AND of
the two DP FP values of a
and b.

ANDPS __m128 _mm_and_ps(__m128 a, __m128 b) Computes the bitwise AND of
the four SP FP values of a
and b.

CLFLUSH void _mm_clflush(void const *p) Cache line containing p is
flushed and invalidated from
all caches in the coherency
domain.

CMPPD __m128d _mm_cmpeq_pd(__m128d a, __m128d b) Compare for equality.

__m128d _mm_cmplt_pd(__m128d a, __m128d b) Compare for less-than.

__m128d _mm_cmple_pd(__m128d a, __m128d b) Compare for less-than-or-
equal.

__m128d _mm_cmpgt_pd(__m128d a, __m128d b) Compare for greater-than.
Vol. 2B C-3

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m128d _mm_cmpge_pd(__m128d a, __m128d b) Compare for greater-than-or-
equal.

__m128d _mm_cmpneq_pd(__m128d a, __m128d b) Compare for inequality.

__m128d _mm_cmpnlt_pd(__m128d a, __m128d b) Compare for not-less-than.

__m128d _mm_cmpngt_pd(__m128d a, __m128d b) Compare for not-greater-than.

__m128d _mm_cmpnge_pd(__m128d a, __m128d b) Compare for not-greater-
than-or-equal.

__m128d _mm_cmpord_pd(__m128d a, __m128d b) Compare for ordered.

__m128d _mm_cmpunord_pd(__m128d a,
__m128d b)

Compare for unordered.

__m128d _mm_cmpnle_pd(__m128d a, __m128d b) Compare for not-less-than-or-
equal.

CMPPS __m128 _mm_cmpeq_ps(__m128 a, __m128 b) Compare for equality.

__m128 _mm_cmplt_ps(__m128 a, __m128 b) Compare for less-than.

__m128 _mm_cmple_ps(__m128 a, __m128 b) Compare for less-than-or-
equal.

__m128 _mm_cmpgt_ps(__m128 a, __m128 b) Compare for greater-than.

__m128 _mm_cmpge_ps(__m128 a, __m128 b) Compare for greater-than-or-
equal.

__m128 _mm_cmpneq_ps(__m128 a, __m128 b) Compare for inequality.

__m128 _mm_cmpnlt_ps(__m128 a, __m128 b) Compare for not-less-than.

__m128 _mm_cmpngt_ps(__m128 a, __m128 b) Compare for not-greater-than.

__m128 _mm_cmpnge_ps(__m128 a, __m128 b) Compare for not-greater-
than-or-equal.

__m128 _mm_cmpord_ps(__m128 a, __m128 b) Compare for ordered.

__m128 _mm_cmpunord_ps(__m128 a, __m128 b) Compare for unordered.

__m128 _mm_cmpnle_ps(__m128 a, __m128 b) Compare for not-less-than-or-
equal.

CMPSD __m128d _mm_cmpeq_sd(__m128d a, __m128d b) Compare for equality.

__m128d _mm_cmplt_sd(__m128d a, __m128d b) Compare for less-than.

__m128d _mm_cmple_sd(__m128d a, __m128d b) Compare for less-than-or-
equal.

__m128d _mm_cmpgt_sd(__m128d a, __m128d b) Compare for greater-than.

__m128d _mm_cmpge_sd(__m128d a, __m128d b) Compare for greater-than-or-
equal.

__m128 _mm_cmpneq_sd(__m128d a, __m128d b) Compare for inequality.

__m128 _mm_cmpnlt_sd(__m128d a, __m128d b) Compare for not-less-than.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-4 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m128d _mm_cmpnle_sd(__m128d a, __m128d b) Compare for not-greater-than.

__m128d _mm_cmpngt_sd(__m128d a, __m128d b) Compare for not-greater-
than-or-equal.

__m128d _mm_cmpnge_sd(__m128d a, __m128d b) Compare for ordered.

__m128d _mm_cmpord_sd(__m128d a, __m128d b) Compare for unordered.

__m128d _mm_cmpunord_sd(__m128d a,
 __m128d b)

Compare for not-less-than-or-
equal.

CMPSS __m128 _mm_cmpeq_ss(__m128 a, __m128 b) Compare for equality.

__m128 _mm_cmplt_ss(__m128 a, __m128 b) Compare for less-than.

__m128 _mm_cmple_ss(__m128 a, __m128 b) Compare for less-than-or-
equal.

__m128 _mm_cmpgt_ss(__m128 a, __m128 b) Compare for greater-than.

__m128 _mm_cmpge_ss(__m128 a, __m128 b) Compare for greater-than-or-
equal.

__m128 _mm_cmpneq_ss(__m128 a, __m128 b) Compare for inequality.

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b) Compare for not-less-than.

__m128 _mm_cmpnle_ss(__m128 a, __m128 b) Compare for not-greater-than.

__m128 _mm_cmpngt_ss(__m128 a, __m128 b) Compare for not-greater-
than-or-equal.

__m128 _mm_cmpnge_ss(__m128 a, __m128 b) Compare for ordered.

__m128 _mm_cmpord_ss(__m128 a, __m128 b) Compare for unordered.

__m128 _mm_cmpunord_ss(__m128 a, __m128 b) Compare for not-less-than-or-
equal.

COMISD int _mm_comieq_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a equal to
b. If a and b are equal, 1 is
returned. Otherwise 0 is
returned.

int _mm_comilt_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a less
than b. If a is less than b, 1 is
returned. Otherwise 0 is
returned.

int _mm_comile_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a less
than or equal to b. If a is less
than or equal to b, 1 is
returned. Otherwise 0 is
returned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-5

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
int _mm_comigt_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a greater
than b. If a is greater than b
are equal, 1 is returned.
Otherwise 0 is returned.

int _mm_comige_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a greater
than or equal to b. If a is
greater than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_comineq_sd(__m128d a, __m128d b) Compares the lower SDP FP
value of a and b for a not
equal to b. If a and b are not
equal, 1 is returned.
Otherwise 0 is returned.

COMISS int _mm_comieq_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a equal to
b. If a and b are equal, 1 is
returned. Otherwise 0 is
returned.

int _mm_comilt_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a less
than b. If a is less than b, 1 is
returned. Otherwise 0 is
returned.

int _mm_comile_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a less
than or equal to b. If a is less
than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_comigt_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a greater
than b. If a is greater than b
are equal, 1 is returned.
Otherwise 0 is returned.

int _mm_comige_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a greater
than or equal to b. If a is
greater than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_comineq_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a not
equal to b. If a and b are not
equal, 1 is returned.
Otherwise 0 is returned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-6 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128i a) Convert the lower two 32-bit
signed integer values in
packed form in a to two DP
FP values.

CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a) Convert the four 32-bit signed
integer values in packed form
in a to four SP FP values.

CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a) Convert the two DP FP values
in a to two 32-bit signed
integer values.

CVTPD2PI __m64 _mm_cvtpd_pi32(__m128d a) Convert the two DP FP values
in a to two 32-bit signed
integer values.

CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a) Convert the two DP FP values
in a to two SP FP values.

CVTPI2PD __m128d _mm_cvtpi32_pd(__m64 a) Convert the two 32-bit integer
values in a to two DP FP
values

CVTPI2PS __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Convert the two 32-bit integer
values in packed form in b to
two SP FP values; the upper
two SP FP values are passed
through from a.

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a) Convert four SP FP values in
a to four 32-bit signed
integers according to the
current rounding mode.

CVTPS2PD __m128d _mm_cvtps_pd(__m128 a) Convert the lower two SP FP
values in a to DP FP values.

CVTPS2PI __m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

Convert the two lower SP FP
values of a to two 32-bit
integers according to the
current rounding mode,
returning the integers in
packed form.

CVTSD2SI int _mm_cvtsd_si32(__m128d a) Convert the lower DP FP
value in a to a 32-bit integer
value.

CVTSD2SS __m128 _mm_cvtsd_ss(__m128 a, __m128d b) Convert the lower DP FP
value in b to a SP FP value;
the upper three SP FP values
of a are passed through.

CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b) Convert the 32-bit integer
value b to a DP FP value; the
upper DP FP values are
passed through from a.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-7

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
CVTSI2SS __m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128a, int b)

Convert the 32-bit integer
value b to an SP FP value;
the upper three SP FP values
are passed through from a.

CVTSS2SD __m128d _mm_cvtss_sd(__m128d a, __m128 b) Convert the lower SP FP
value of b to DP FP value, the
upper DP FP value is passed
through from a.

CVTSS2SI int _mm_cvt_ss2si(__m128 a)
int _mm_cvtss_si32(__m128 a)

Convert the lower SP FP
value of a to a 32-bit integer.

CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a) Convert the two DP FP values
of a to two 32-bit signed
integer values with truncation,
the upper two integer values
are 0.

CVTTPD2PI __m64 _mm_cvttpd_pi32(__m128d a) Convert the two DP FP values
of a to 32-bit signed integer
values with truncation.

CVTTPS2DQ __m128i _mm_cvttps_epi32(__m128 a) Convert four SP FP values of
a to four 32-bit integer with
truncation.

CVTTPS2PI __m64 _mm_cvtt_ps2pi(__m128 a)
__m64 _mm_cvttps_pi32(__m128 a)

Convert the two lower SP FP
values of a to two 32-bit
integer with truncation,
returning the integers in
packed form.

CVTTSD2SI int _mm_cvttsd_si32(__m128d a) Convert the lower DP FP
value of a to a 32-bit signed
integer using truncation.

CVTTSS2SI int _mm_cvtt_ss2si(__m128 a)
int _mm_cvttss_si32(__m128 a)

Convert the lower SP FP
value of a to a 32-bit integer
according to the current
rounding mode.

__m64 _mm_cvtsi32_si64(int i) Convert the integer object i to
a 64-bit __m64 object. The
integer value is zero extended
to 64 bits.

int _mm_cvtsi64_si32(__m64 m) Convert the lower 32 bits of
the __m64 object m to an
integer.

DIVPD __m128d _mm_div_pd(__m128d a, __m128d b) Divides the two DP FP values
of a and b.

DIVPS __m128 _mm_div_ps(__m128 a, __m128 b) Divides the four SP FP values
of a and b.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-8 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
DIVSD __m128d _mm_div_sd(__m128d a, __m128d b) Divides the lower DP FP
values of a and b; the upper
three DP FP values are
passed through from a.

DIVSS __m128 _mm_div_ss(__m128 a, __m128 b) Divides the lower SP FP
values of a and b; the upper
three SP FP values are
passed through from a.

EMMS void _mm_empty() Clears the MMX technology
state.

HADDPD __m128d _mm_hadd_pd(__m128d a, __m128d b) Add horizontally packed DP
FP numbers from
XMM2/Mem to XMM1

HADDPS __m128 _mm_hadd_ps(__m128 a, __m128 b) Add horizontally packed SP
FP numbers from
XMM2/Mem to XMM1

HSUBPD __m128d _mm_hsub_pd(__m128d a, __m128d b) Subtract horizontally packed
DP FP numbers in
XMM2/Mem from XMM1.

HSUBPS __m128 _mm_hsub_ps(__m128 a, __m128 b) Subtract horizontally packed
SP FP numbers in
XMM2/Mem from XMM1.

LDDQU __m128i _mm_lddqu_si128(__m128i const *p) Load 128 bits from Mem to
XMM register.

LDMXCSR _mm_setcsr(unsigned int i) Sets the control register to the
value specified.

LFENCE void _mm_lfence(void) Guaranteed that every load
that proceeds, in program
order, the load fence
instruction is globally visible
before any load instruction
that follows the fence in
program order.

MASKMOVDQU void _mm_maskmoveu_si128(__m128i d, __m128i n,
 char *p)

Conditionally store byte
elements of d to address p.
The high bit of each byte in
the selector n determines
whether the corresponding
byte in d will be stored.

MASKMOVQ void _mm_maskmove_si64(__m64 d, __m64 n,
 char *p)

Conditionally store byte
elements of d to address p.
The high bit of each byte in
the selector n determines
whether the corresponding
byte in d will be stored.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-9

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MAXPD __m128d _mm_max_pd(__m128d a, __m128d b) Computes the maximums of
the two DP FP values of a
and b.

MAXPS __m128 _mm_max_ps(__m128 a, __m128 b) Computes the maximums of
the four SP FP values of a
and b.

MAXSD __m128d _mm_max_sd(__m128d a, __m128d b) Computes the maximum of
the lower DP FP values of a
and b; the upper DP FP
values are passed through
from a.

MAXSS __m128 _mm_max_ss(__m128 a, __m128 b) Computes the maximum of
the lower SP FP values of a
and b; the upper three SP FP
values are passed through
from a.

MFENCE void _mm_mfence(void) Guaranteed that every
memory access that
proceeds, in program order,
the memory fence instruction
is globally visible before any
memory instruction that
follows the fence in program
order.

MINPD __m128d _mm_min_pd(__m128d a, __m128d b) Computes the minimums of
the two DP FP values of a
and b.

MINPS __m128 _mm_min_ps(__m128 a, __m128 b) Computes the minimums of
the four SP FP values of a
and b.

MINSD __m128d _mm_min_sd(__m128d a, __m128d b) Computes the minimum of the
lower DP FP values of a and
b; the upper DP FP values
are passed through from a.

MINSS __m128 _mm_min_ss(__m128 a, __m128 b) Computes the minimum of the
lower SP FP values of a and
b; the upper three SP FP
values are passed through
from a.

MONITOR void _mm_monitor(void const *p, unsigned
extensions, unsigned hints)

Sets up a linear address
range to be monitored by
hardware and activates the
monitor. The address range
should be of a write-back
memory caching type.

MOVAPD __m128d _mm_load_pd(double * p) Loads two DP FP values. The
address p must be 16-byte-
aligned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-10 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
void_mm_store_pd(double *p, __m128d a) Stores two DP FP values to
address p. The address p
must be 16-byte-aligned.

MOVAPS __m128 _mm_load_ps(float * p) Loads four SP FP values. The
address p must be 16-byte-
aligned.

void_mm_store_ps(float *p, __m128 a) Stores four SP FP values.
The address p must be 16-
byte-aligned.

MOVD __m128i _mm_cvtsi32_si128(int a) Moves 32-bit integer a to the
lower 32-bit of the 128-bit
destination, while zero-
extending he upper bits.

int _mm_cvtsi128_si32(__m128i a) Moves lower 32-bit integer of
a to a 32-bit signed integer.

__m64 _mm_cvtsi32_si64(int a) Moves 32-bit integer a to the
lower 32-bit of the 64-bit
destination, while zero-
extending he upper bits.

int _mm_cvtsi64_si32(__m64 a) Moves lower 32-bit integer of
a to a 32-bit signed integer.

MOVDDUP __m128d _mm_movedup_pd(__m128d a)
__m128d _mm_loaddup_pd(double const * dp)

Move 64 bits representing the
lower DP data element from
XMM2/Mem to XMM1 register
and duplicate.

MOVDQA __m128i _mm_load_si128(__m128i * p) Loads 128-bit values from p.
The address p must be 16-
byte-aligned.

void_mm_store_si128(__m128i *p, __m128i a) Stores 128-bit value in a to
address p. The address p
must be 16-byte-aligned.

MOVDQU __m128i _mm_loadu_si128(__m128i * p) Loads 128-bit values from p.
The address p need not be
16-byte-aligned.

void_mm_storeu_si128(__m128i *p, __m128i a) Stores 128-bit value in a to
address p. The address p
need not be 16-byte-aligned.

MOVDQ2Q __m64 _mm_movepi64_pi64(__m128i a) Return the lower 64-bits in a
as __m64 type.

MOVHLPS __m128 _mm_movehl_ps(__m128 a, __m128 b) Moves the upper 2 SP FP
values of b to the lower 2 SP
FP values of the result. The
upper 2 SP FP values of a are
passed through to the result.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-11

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MOVHPD __m128d _mm_loadh_pd(__m128d a, double * p) Load a DP FP value from the
address p to the upper 64
bits of destination; the lower
64 bits are passed through
from a.

void _mm_storeh_pd(double * p, __m128d a) Stores the upper DP FP value
of a to the address p.

MOVHPS __m128 _mm_loadh_pi(__m128 a, __m64 * p) Sets the upper two SP FP
values with 64 bits of data
loaded from the address p;
the lower two values are
passed through from a.

void _mm_storeh_pi(__m64 * p, __m128 a) Stores the upper two SP FP
values of a to the address p.

MOVLPD __m128d _mm_loadl_pd(__m128d a, double * p) Load a DP FP value from the
address p to the lower 64 bits
of destination; the upper 64
bits are passed through
from a.

void _mm_storel_pd(double * p, __m128d a) Stores the lower DP FP value
of a to the address p.

MOVLPS __m128 _mm_loadl_pi(__m128 a, __m64 *p) Sets the lower two SP FP
values with 64 bits of data
loaded from the address p;
the upper two values are
passed through from a.

void_mm_storel_pi(__m64 * p, __m128 a) Stores the lower two SP FP
values of a to the address p.

MOVLHPS __m128 _mm_movelh_ps(__m128 a, __m128 b) Moves the lower 2 SP FP
values of b to the upper 2 SP
FP values of the result. The
lower 2 SP FP values of a are
passed through to the result.

MOVMSKPD int _mm_movemask_pd(__m128d a) Creates a 2-bit mask from the
sign bits of the two DP FP
values of a.

MOVMSKPS int _mm_movemask_ps(__m128 a) Creates a 4-bit mask from the
most significant bits of the
four SP FP values.

MOVNTDQ void_mm_stream_si128(__m128i * p, __m128i a) Stores the data in a to the
address p without polluting
the caches. If the cache line
containing p is already in the
cache, the cache will be
updated. The address must
be 16-byte-aligned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-12 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MOVNTPD void_mm_stream_pd(double * p, __m128d a) Stores the data in a to the
address p without polluting
the caches. The address
must be 16-byte-aligned.

MOVNTPS void_mm_stream_ps(float * p, __m128 a) Stores the data in a to the
address p without polluting
the caches. The address
must be 16-byte-aligned.

MOVNTI void_mm_stream_si32(int * p, int a) Stores the data in a to the
address p without polluting
the caches.

MOVNTQ void_mm_stream_pi(__m64 * p, __m64 a) Stores the data in a to the
address p without polluting
the caches.

MOVQ __m128i _mm_loadl_epi64(__m128i * p) Loads the lower 64 bits from p
into the lower 64 bits of
destination and zero-extend
the upper 64 bits.

void_mm_storel_epi64(_m128i * p, __m128i a) Stores the lower 64 bits of a to
the lower 64 bits at p.

__m128i _mm_move_epi64(__m128i a) Moves the lower 64 bits of a
to the lower 64 bits of
destination. The upper 64 bits
are cleared.

MOVQ2DQ __m128i _mm_movpi64_epi64(__m64 a) Move the 64 bits of a into the
lower 64-bits, while zero-
extending the upper bits.

MOVSD __m128d _mm_load_sd(double * p) Loads a DP FP value from p
into the lower DP FP value
and clears the upper DP FP
value. The address P need
not be 16-byte aligned.

void_mm_store_sd(double * p, __m128d a) Stores the lower DP FP value
of a to address p. The
address P need not be 16-
byte aligned.

__m128d _mm_move_sd(__m128d a, __m128d b) Sets the lower DP FP values
of b to destination. The upper
DP FP value is passed
through from a.

MOVSHDUP __m128 _mm_movehdup_ps(__m128 a) Move 128 bits representing
packed SP data elements
from XMM2/Mem to XMM1
register and duplicate high.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-13

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
MOVSLDUP __m128 _mm_moveldup_ps(__m128 a) Move 128 bits representing
packed SP data elements
from XMM2/Mem to XMM1
register and duplicate low.

MOVSS __m128 _mm_load_ss(float * p) Loads an SP FP value into
the low word and clears the
upper three words.

void_mm_store_ss(float * p, __m128 a) Stores the lower SP FP value.

__m128 _mm_move_ss(__m128 a, __m128 b) Sets the low word to the SP
FP value of b. The upper 3 SP
FP values are passed through
from a.

MOVUPD __m128d _mm_loadu_pd(double * p) Loads two DP FP values from
p. The address p need not be
16-byte-aligned.

void_mm_storeu_pd(double *p, __m128d a) Stores two DP FP values in a
to p. The address p need not
be 16-byte-aligned.

MOVUPS __m128 _mm_loadu_ps(float * p) Loads four SP FP values. The
address need not be 16-byte-
aligned.

void_mm_storeu_ps(float *p, __m128 a) Stores four SP FP values.
The address need not be 16-
byte-aligned.

MULPD __m128d _mm_mul_pd(__m128d a, __m128d b) Multiplies the two DP FP
values of a and b.

MULPS __m128 _mm_mul_ss(__m128 a, __m128 b) Multiplies the four SP FP
value of a and b.

MULSD __m128d _mm_mul_sd(__m128d a, __m128d b) Multiplies the lower DP FP
value of a and b; the upper
DP FP value are passed
through from a.

MULSS __m128 _mm_mul_ss(__m128 a, __m128 b) Multiplies the lower SP FP
value of a and b; the upper
three SP FP values are
passed through from a.

MWAIT void _mm_mwait(unsigned extensions, unsigned
hints)

A hint that allows the
processor to stop instruction
execution and enter an
implementation-dependent
optimized state until
occurrence of a class of
events.

ORPD __m128d _mm_or_pd(__m128d a, __m128d b) Computes the bitwise OR of
the two DP FP values of a
and b.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-14 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
ORPS __m128 _mm_or_ps(__m128 a, __m128 b) Computes the bitwise OR of
the four SP FP values of a
and b.

PACKSSWB __m128i _mm_packs_epi16(__m128i m1,
 __m128i m2)

Pack the eight 16-bit values
from m1 into the lower eight
8-bit values of the result with
signed saturation, and pack
the eight 16-bit values from
m2 into the upper eight 8-bit
values of the result with
signed saturation.

PACKSSWB __m64 _mm_packs_pi16(__m64 m1, __m64 m2) Pack the four 16-bit values
from m1 into the lower four 8-
bit values of the result with
signed saturation, and pack
the four 16-bit values from m2
into the upper four 8-bit
values of the result with
signed saturation.

PACKSSDW __m128i _mm_packs_epi32 (__m128i m1,
 __m128i m2)

Pack the four 32-bit values
from m1 into the lower four
16-bit values of the result with
signed saturation, and pack
the four 32-bit values from m2
into the upper four 16-bit
values of the result with
signed saturation.

PACKSSDW __m64 _mm_packs_pi32 (__m64 m1, __m64 m2) Pack the two 32-bit values
from m1 into the lower two
16-bit values of the result with
signed saturation, and pack
the two 32-bit values from m2
into the upper two 16-bit
values of the result with
signed saturation.

PACKUSWB __m128i _mm_packus_epi16(__m128i m1, __m128i
m2)

Pack the eight 16-bit values
from m1 into the lower eight
8-bit values of the result with
unsigned saturation, and pack
the eight 16-bit values from
m2 into the upper eight 8-bit
values of the result with
unsigned saturation.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-15

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PACKUSWB __m64 _mm_packs_pu16(__m64 m1, __m64 m2) Pack the four 16-bit values
from m1 into the lower four 8-
bit values of the result with
unsigned saturation, and pack
the four 16-bit values from m2
into the upper four 8-bit
values of the result with
unsigned saturation.

PADDB __m128i _mm_add_epi8(__m128i m1, __m128i m2) Add the 16 8-bit values in m1
to the 16 8-bit values in m2.

PADDB __m64 _mm_add_pi8(__m64 m1, __m64 m2) Add the eight 8-bit values in
m1 to the eight 8-bit values in
m2.

PADDW __m128i _mm_addw_epi16(__m128i m1,
 __m128i m2)

Add the 8 16-bit values in m1
to the 8 16-bit values in m2.

PADDW __m64 _mm_addw_pi16(__m64 m1, __m64 m2) Add the four 16-bit values in
m1 to the four 16-bit values in
m2.

PADDD __m128i _mm_add_epi32(__m128i m1,
 __m128i m2)

Add the 4 32-bit values in m1
to the 4 32-bit values in m2.

PADDD __m64 _mm_add_pi32(__m64 m1, __m64 m2) Add the two 32-bit values in
m1 to the two 32-bit values in
m2.

PADDQ __m128i _mm_add_epi64(__m128i m1,
 __m128i m2)

Add the 2 64-bit values in m1
to the 2 64-bit values in m2.

PADDQ __m64 _mm_add_si64(__m64 m1, __m64 m2) Add the 64-bit value in m1 to
the 64-bit value in m2.

PADDSB __m128i _mm_adds_epi8(__m128i m1, __m128i m2) Add the 16 signed 8-bit
values in m1 to the 16 signed
8-bit values in m2 and
saturate.

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2) Add the eight signed 8-bit
values in m1 to the eight
signed 8-bit values in m2 and
saturate.

PADDSW __m128i _mm_adds_epi16(__m128i m1,
 __m128i m2)

Add the 8 signed 16-bit
values in m1 to the 8 signed
16-bit values in m2 and
saturate.

PADDSW __m64 _mm_adds_pi16(__m64 m1, __m64 m2) Add the four signed 16-bit
values in m1 to the four
signed 16-bit values in m2
and saturate.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-16 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PADDUSB __m128i _mm_adds_epu8(__m128i m1,
 __m128i m2)

Add the 16 unsigned 8-bit
values in m1 to the 16
unsigned 8-bit values in m2
and saturate.

PADDUSB __m64 _mm_adds_pu8(__m64 m1, __m64 m2) Add the eight unsigned 8-bit
values in m1 to the eight
unsigned 8-bit values in m2
and saturate.

PADDUSW __m128i _mm_adds_epu16(__m128i m1,
 __m128i m2)

Add the 8 unsigned 16-bit
values in m1 to the 8
unsigned 16-bit values in m2
and saturate.

PADDUSW __m64 _mm_adds_pu16(__m64 m1, __m64 m2) Add the four unsigned 16-bit
values in m1 to the four
unsigned 16-bit values in m2
and saturate.

PAND __m128i _mm_and_si128(__m128i m1, __m128i m2) Perform a bitwise AND of the
128-bit value in m1 with the
128-bit value in m2.

PAND __m64 _mm_and_si64(__m64 m1, __m64 m2) Perform a bitwise AND of the
64-bit value in m1 with the 64-
bit value in m2.

PANDN __m128i _mm_andnot_si128(__m128i m1,
 __m128i m2)

Perform a logical NOT on the
128-bit value in m1 and use
the result in a bitwise AND
with the 128-bit value in m2.

PANDN __m64 _mm_andnot_si64(__m64 m1, __m64 m2) Perform a logical NOT on the
64-bit value in m1 and use the
result in a bitwise AND with
the 64-bit value in m2.

PAUSE void _mm_pause(void) The execution of the next
instruction is delayed by an
implementation-specific
amount of time. No
architectural state is modified.

PAVGB __m128i _mm_avg_epu8(__m128i a, __m128i b) Perform the packed average
on the 16 8-bit values of the
two operands.

PAVGB __m64 _mm_avg_pu8(__m64 a, __m64 b) Perform the packed average
on the eight 8-bit values of the
two operands.

PAVGW __m128i _mm_avg_epu16(__m128i a, __m128i b) Perform the packed average
on the 8 16-bit values of the
two operands.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-17

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PAVGW __m64 _mm_avg_pu16(__m64 a, __m64 b) Perform the packed average
on the four 16-bit values of
the two operands.

PCMPEQB __m128i _mm_cmpeq_epi8(__m128i m1,
 __m128i m2)

If the respective 8-bit values
in m1 are equal to the
respective 8-bit values in m2
set the respective 8-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPEQB __m64 _mm_cmpeq_pi8(__m64 m1, __m64 m2) If the respective 8-bit values
in m1 are equal to the
respective 8-bit values in m2
set the respective 8-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPEQW __m128i _mm_cmpeq_epi16 (__m128i m1,
 __m128i m2)

If the respective 16-bit values
in m1 are equal to the
respective 16-bit values in m2
set the respective 16-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPEQW __m64 _mm_cmpeq_pi16 (__m64 m1, __m64 m2) If the respective 16-bit values
in m1 are equal to the
respective 16-bit values in m2
set the respective 16-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPEQD __m128i _mm_cmpeq_epi32(__m128i m1,
 __m128i m2)

If the respective 32-bit values
in m1 are equal to the
respective 32-bit values in m2
set the respective 32-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPEQD __m64 _mm_cmpeq_pi32(__m64 m1, __m64 m2) If the respective 32-bit values
in m1 are equal to the
respective 32-bit values in m2
set the respective 32-bit
resulting values to all ones,
otherwise set them to all
zeroes.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-18 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PCMPGTB __m128i _mm_cmpgt_epi8 (__m128i m1,
 __m128i m2)

If the respective 8-bit values
in m1 are greater than the
respective 8-bit values in m2
set the respective 8-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPGTB __m64 _mm_cmpgt_pi8 (__m64 m1, __m64 m2) If the respective 8-bit values
in m1 are greater than the
respective 8-bit values in m2
set the respective 8-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPGTW __m128i _mm_cmpgt_epi16(__m128i m1,
 __m128i m2)

If the respective 16-bit values
in m1 are greater than the
respective 16-bit values in m2
set the respective 16-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPGTW __m64 _mm_cmpgt_pi16 (__m64 m1, __m64 m2) If the respective 16-bit values
in m1 are greater than the
respective 16-bit values in m2
set the respective 16-bit
resulting values to all ones,
otherwise set them to all
zeroes.

PCMPGTD __m128i _mm_cmpgt_epi32(__m128i m1,
 __m128i m2)

If the respective 32-bit values
in m1 are greater than the
respective 32-bit values in m2
set the respective 32-bit
resulting values to all ones,
otherwise set them all to
zeroes.

PCMPGTD __m64 _mm_cmpgt_pi32(__m64 m1, __m64 m2) If the respective 32-bit values
in m1 are greater than the
respective 32-bit values in m2
set the respective 32-bit
resulting values to all ones,
otherwise set them all to
zeroes.

PEXTRW int _mm_extract_epi16(__m128i a, int n) Extracts one of the 8 words of
a. The selector n must be an
immediate.

PEXTRW int _mm_extract_pi16(__m64 a, int n) Extracts one of the four words
of a. The selector n must be
an immediate.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-19

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PINSRW __m128i _mm_insert_epi16(__m128i a, int d, int n) Inserts word d into one of 8
words of a. The selector n
must be an immediate.

PINSRW __m64 _mm_insert_pi16(__m64 a, int d, int n) Inserts word d into one of four
words of a. The selector n
must be an immediate.

PMADDWD __m128i _mm_madd_epi16(__m128i m1
 __m128i m2)

Multiply 8 16-bit values in m1
by 8 16-bit values in m2
producing 8 32-bit
intermediate results, which
are then summed by pairs to
produce 4 32-bit results.

PMADDWD __m64 _mm_madd_pi16(__m64 m1, __m64 m2) Multiply four 16-bit values in
m1 by four 16-bit values in m2
producing four 32-bit
intermediate results, which
are then summed by pairs to
produce two 32-bit results.

PMAXSW __m128i _mm_max_epi16(__m128i a, __m128i b) Computes the element-wise
maximum of the 16-bit
integers in a and b.

PMAXSW __m64 _mm_max_pi16(__m64 a, __m64 b) Computes the element-wise
maximum of the words in a
and b.

PMAXUB __m128i _mm_max_epu8(__m128i a, __m128i b) Computes the element-wise
maximum of the unsigned
bytes in a and b.

PMAXUB __m64 _mm_max_pu8(__m64 a, __m64 b) Computes the element-wise
maximum of the unsigned
bytes in a and b.

PMINSW __m128i _mm_min_epi16(__m128i a, __m128i b) Computes the element-wise
minimum of the 16-bit
integers in a and b.

PMINSW __m64 _mm_min_pi16(__m64 a, __m64 b) Computes the element-wise
minimum of the words in a
and b.

PMINUB __m128i _mm_min_epu8(__m128i a, __m128i b) Computes the element-wise
minimum of the unsigned
bytes in a and b.

PMINUB __m64 _mm_min_pu8(__m64 a, __m64 b) Computes the element-wise
minimum of the unsigned
bytes in a and b.

PMOVMSKB int _mm_movemask_epi8(__m128i a) Creates an 16-bit mask from
the most significant bits of the
bytes in a.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-20 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PMOVMSKB int _mm_movemask_pi8(__m64 a) Creates an 8-bit mask from
the most significant bits of the
bytes in a.

PMULHUW __m128i _mm_mulhi_epu16(__m128i a, __m128i b) Multiplies the 8 unsigned
words in a and b, returning
the upper 16 bits of the eight
32-bit intermediate results in
packed form.

PMULHUW __m64 _mm_mulhi_pu16(__m64 a, __m64 b) Multiplies the 4 unsigned
words in a and b, returning
the upper 16 bits of the four
32-bit intermediate results in
packed form.

PMULHW __m128i _mm_mulhi_epi16(__m128i m1,
 __m128i m2)

Multiply 8 signed 16-bit
values in m1 by 8 signed 16-
bit values in m2 and produce
the high 16 bits of the 8
results.

PMULHW __m64 _mm_mulhi_pi16(__m64 m1, __m64 m2) Multiply four signed 16-bit
values in m1 by four signed
16-bit values in m2 and
produce the high 16 bits of
the four results.

PMULLW __m128i _mm_mullo_epi16(__m128i m1,
 __m128i m2)

Multiply 8 16-bit values in m1
by 8 16-bit values in m2 and
produce the low 16 bits of the
8 results.

PMULLW __m64 _mm_mullo_pi16(__m64 m1, __m64 m2) Multiply four 16-bit values in
m1 by four 16-bit values in m2
and produce the low 16 bits of
the four results.

PMULUDQ __m64 _mm_mul_su32(__m64 m1, __m64 m2) Multiply lower 32-bit unsigned
value in m1 by the lower 32-
bit unsigned value in m2 and
store the 64 bit results.

__m128i _mm_mul_epu32(__m128i m1,
 __m128i m2)

Multiply lower two 32-bit
unsigned value in m1 by the
lower two 32-bit unsigned
value in m2 and store the two
64 bit results.

POR __m64 _mm_or_si64(__m64 m1, __m64 m2) Perform a bitwise OR of the
64-bit value in m1 with the 64-
bit value in m2.

POR __m128i _mm_or_si128(__m128i m1, __m128i m2) Perform a bitwise OR of the
128-bit value in m1 with the
128-bit value in m2.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-21

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PREFETCHh void _mm_prefetch(char *a, int sel) Loads one cache line of data
from address p to a location
“closer” to the processor. The
value sel specifies the type of
prefetch operation.

PSADBW __m128i _mm_sad_epu8(__m128i a, __m128i b) Compute the absolute
differences of the16 unsigned
8-bit values of a and b; sum
the upper and lower 8
differences and store the two
16-bit result into the upper
and lower 64 bit.

PSADBW __m64 _mm_sad_pu8(__m64 a, __m64 b) Compute the absolute
differences of the 8 unsigned
8-bit values of a and b; sum
the 8 differences and store
the 16-bit result, the upper 3
words are cleared.

PSHUFD __m128i _mm_shuffle_epi32(__m128i a, int n) Returns a combination of the
four doublewords of a. The
selector n must be an
immediate.

PSHUFHW __m128i _mm_shufflehi_epi16(__m128i a, int n) Shuffle the upper four 16-bit
words in a as specified by n.
The selector n must be an
immediate.

PSHUFLW __m128i _mm_shufflelo_epi16(__m128i a, int n) Shuffle the lower four 16-bit
words in a as specified by n.
The selector n must be an
immediate.

PSHUFW __m64 _mm_shuffle_pi16(__m64 a, int n) Returns a combination of the
four words of a. The selector
n must be an immediate.

PSLLW __m128i _mm_sll_epi16(__m128i m, __m128i count) Shift each of 8 16-bit values in
m left the amount specified by
count while shifting in zeroes.

PSLLW __m128i _mm_slli_epi16(__m128i m, int count) Shift each of 8 16-bit values in
m left the amount specified by
count while shifting in zeroes.

PSLLW __m64 _mm_sll_pi16(__m64 m, __m64 count) Shift four 16-bit values in m
left the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-22 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m64 _mm_slli_pi16(__m64 m, int count) Shift four 16-bit values in m
left the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSLLD __m128i _mm_slli_epi32(__m128i m, int count) Shift each of 4 32-bit values in
m left the amount specified by
count while shifting in zeroes.

__m128i _mm_sll_epi32(__m128i m, __m128i count) Shift each of 4 32-bit values in
m left the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSLLD __m64 _mm_slli_pi32(__m64 m, int count) Shift two 32-bit values in m
left the amount specified by
count while shifting in zeroes.

__m64 _mm_sll_pi32(__m64 m, __m64 count) Shift two 32-bit values in m
left the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count) Shift the 64-bit value in m left
the amount specified by count
while shifting in zeroes.

__m64 _mm_slli_si64(__m64 m, int count) Shift the 64-bit value in m left
the amount specified by count
while shifting in zeroes. For
the best performance, count
should be a constant.

PSLLQ __m128i _mm_sll_epi64(__m128i m, __m128i count) Shift each of two 64-bit values
in m left by the amount
specified by count while
shifting in zeroes.

__m128i _mm_slli_epi64(__m128i m, int count) Shift each of two 64-bit values
in m left by the amount
specified by count while
shifting in zeroes. For the best
performance, count should be
a constant.

PSLLDQ __m128i _mm_slli_si128(__m128i m, int imm) Shift 128 bit in m left by imm
bytes while shifting in zeroes.

PSRAW __m128i _mm_sra_epi16(__m128i m, __m128i
count)

Shift each of 8 16-bit values in
m right the amount specified
by count while shifting in the
sign bit.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-23

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m128i _mm_srai_epi16(__m128i m, int count) Shift each of 8 16-bit values in
m right the amount specified
by count while shifting in the
sign bit. For the best
performance, count should be
a constant.

PSRAW __m64 _mm_sra_pi16(__m64 m, __m64 count) Shift four 16-bit values in m
right the amount specified by
count while shifting in the sign
bit.

__m64 _mm_srai_pi16(__m64 m, int count) Shift four 16-bit values in m
right the amount specified by
count while shifting in the sign
bit. For the best performance,
count should be a constant.

PSRAD __m128i _mm_sra_epi32 (__m128i m, __m128i
count)

Shift each of 4 32-bit values in
m right the amount specified
by count while shifting in the
sign bit.

__m128i _mm_srai_epi32 (__m128i m, int count) Shift each of 4 32-bit values in
m right the amount specified
by count while shifting in the
sign bit. For the best
performance, count should be
a constant.

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count) Shift two 32-bit values in m
right the amount specified by
count while shifting in the sign
bit.

__m64 _mm_srai_pi32 (__m64 m, int count) Shift two 32-bit values in m
right the amount specified by
count while shifting in the sign
bit. For the best performance,
count should be a constant.

PSRLW _m128i _mm_srl_epi16 (__m128i m, __m128i count) Shift each of 8 16-bit values in
m right the amount specified
by count while shifting in
zeroes.

__m128i _mm_srli_epi16 (__m128i m, int count) Shift each of 8 16-bit values in
m right the amount specified
by count while shifting in
zeroes.

__m64 _mm_srl_pi16 (__m64 m, __m64 count) Shift four 16-bit values in m
right the amount specified by
count while shifting in zeroes.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-24 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
__m64 _mm_srli_pi16(__m64 m, int count) Shift four 16-bit values in m
right the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSRLD __m128i _mm_srl_epi32 (__m128i m,
 __m128i count)

Shift each of 4 32-bit values in
m right the amount specified
by count while shifting in
zeroes.

__m128i _mm_srli_epi32 (__m128i m, int count) Shift each of 4 32-bit values in
m right the amount specified
by count while shifting in
zeroes. For the best
performance, count should be
a constant.

PSRLD __m64 _mm_srl_pi32 (__m64 m, __m64 count) Shift two 32-bit values in m
right the amount specified by
count while shifting in zeroes.

__m64 _mm_srli_pi32 (__m64 m, int count) Shift two 32-bit values in m
right the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSRLQ __m128i _mm_srl_epi64 (__m128i m,
 __m128i count)

Shift the 2 64-bit value in m
right the amount specified by
count while shifting in zeroes.

__m128i _mm_srli_epi64 (__m128i m, int count) Shift the 2 64-bit value in m
right the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count) Shift the 64-bit value in m
right the amount specified by
count while shifting in zeroes.

__m64 _mm_srli_si64 (__m64 m, int count) Shift the 64-bit value in m
right the amount specified by
count while shifting in zeroes.
For the best performance,
count should be a constant.

PSRLDQ __m128i _mm_srli_si128(__m128i m, int imm) Shift 128 bit in m right by imm
bytes while shifting in zeroes.

PSUBB __m128i _mm_sub_epi8(__m128i m1, __m128i m2) Subtract the 16 8-bit values in
m2 from the 16 8-bit values in
m1.

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2) Subtract the eight 8-bit values
in m2 from the eight 8-bit
values in m1.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-25

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PSUBW __m128i _mm_sub_epi16(__m128i m1, __m128i m2) Subtract the 8 16-bit values in
m2 from the 8 16-bit values in
m1.

PSUBW __m64 _mm_sub_pi16(__m64 m1, __m64 m2) Subtract the four 16-bit values
in m2 from the four 16-bit
values in m1.

PSUBD __m128i _mm_sub_epi32(__m128i m1, __m128i m2) Subtract the 4 32-bit values in
m2 from the 4 32-bit values in
m1.

PSUBD __m64 _mm_sub_pi32(__m64 m1, __m64 m2) Subtract the two 32-bit values
in m2 from the two 32-bit
values in m1.

PSUBQ __m128i _mm_sub_epi64(__m128i m1, __m128i m2) Subtract the 2 64-bit values in
m2 from the 2 64-bit values in
m1.

PSUBQ __m64 _mm_sub_si64(__m64 m1, __m64 m2) Subtract the 64-bit values in
m2 from the 64-bit values in
m1.

PSUBSB __m128i _mm_subs_epi8(__m128i m1, __m128i m2) Subtract the 16 signed 8-bit
values in m2 from the 16
signed 8-bit values in m1 and
saturate.

PSUBSB __m64 _mm_subs_pi8(__m64 m1, __m64 m2) Subtract the eight signed 8-bit
values in m2 from the eight
signed 8-bit values in m1 and
saturate.

PSUBSW __m128i _mm_subs_epi16(__m128i m1,
 __m128i m2)

Subtract the 8 signed 16-bit
values in m2 from the 8
signed 16-bit values in m1
and saturate.

PSUBSW __m64 _mm_subs_pi16(__m64 m1, __m64 m2) Subtract the four signed 16-
bit values in m2 from the four
signed 16-bit values in m1
and saturate.

PSUBUSB __m128i _mm_subs_epu8(__m128i m1, __m128i
m2)

Subtract the 16 unsigned 8-bit
values in m2 from the 16
unsigned 8-bit values in m1
and saturate.

PSUBUSB __m64 _mm_subs_pu8(__m64 m1, __m64 m2) Subtract the eight unsigned 8-
bit values in m2 from the eight
unsigned 8-bit values in m1
and saturate.

PSUBUSW __m128i _mm_subs_epu16(__m128i m1,
 __m128i m2)

Subtract the 8 unsigned 16-bit
values in m2 from the 8
unsigned 16-bit values in m1
and saturate.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-26 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PSUBUSW __m64 _mm_subs_pu16(__m64 m1, __m64 m2) Subtract the four unsigned
16-bit values in m2 from the
four unsigned 16-bit values in
m1 and saturate.

PUNPCKHBW __m64 _mm_unpackhi_pi8(__m64 m1, __m64 m2) Interleave the four 8-bit
values from the high half of
m1 with the four values from
the high half of m2 and take
the least significant element
from m1.

PUNPCKHBW __m128i _mm_unpackhi_epi8(__m128i m1,
 __m128i m2)

Interleave the 8 8-bit values
from the high half of m1 with
the 8 values from the high half
of m2.

PUNPCKHWD __m64 _mm_unpackhi_pi16(__m64 m1,__m64 m2) Interleave the two 16-bit
values from the high half of
m1 with the two values from
the high half of m2 and take
the least significant element
from m1.

PUNPCKHWD __m128i _mm_unpackhi_epi16(__m128i m1,
 __m128i m2)

Interleave the 4 16-bit values
from the high half of m1 with
the 4 values from the high half
of m2.

PUNPCKHDQ ___m64 _mm_unpackhi_pi32(__m64 m1,
 __m64 m2)

Interleave the 32-bit value
from the high half of m1 with
the 32-bit value from the high
half of m2 and take the least
significant element from m1.

PUNPCKHDQ __m128i _mm_unpackhi_epi32(__m128i m1,
 __m128i m2)

Interleave two 32-bit value
from the high half of m1 with
the two 32-bit value from the
high half of m2.

PUNPCKHQDQ __m128i _mm_unpackhi_epi64(__m128i m1,
 __m128i m2)

Interleave the 64-bit value
from the high half of m1 with
the 64-bit value from the high
half of m2.

PUNPCKLBW __m64 _mm_unpacklo_pi8 (__m64 m1, __m64 m2) Interleave the four 8-bit
values from the low half of m1
with the four values from the
low half of m2 and take the
least significant element from
m1.

PUNPCKLBW __m128i _mm_unpacklo_epi8 (__m128i m1,
 __m128i m2)

Interleave the 8 8-bit values
from the low half of m1 with
the 8 values from the low half
of m2.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-27

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
PUNPCKLWD __m64 _mm_unpacklo_pi16(__m64 m1, __m64 m2) Interleave the two 16-bit
values from the low half of m1
with the two values from the
low half of m2 and take the
least significant element from
m1.

PUNPCKLWD __m128i _mm_unpacklo_epi16(__m128i m1,
 __m128i m2)

Interleave the 4 16-bit values
from the low half of m1 with
the 4 values from the low half
of m2.

PUNPCKLDQ __m64 _mm_unpacklo_pi32(__m64 m1, __m64 m2) Interleave the 32-bit value
from the low half of m1 with
the 32-bit value from the low
half of m2 and take the least
significant element from m1.

PUNPCKLDQ __m128i _mm_unpacklo_epi32(__m128i m1,
 __m128i m2)

Interleave two 32-bit value
from the low half of m1 with
the two 32-bit value from the
low half of m2.

PUNPCKLQDQ __m128i _mm_unpacklo_epi64(__m128i m1,
 __m128i m2)

Interleave the 64-bit value
from the low half of m1 with
the 64-bit value from the low
half of m2.

PXOR __m64 _mm_xor_si64(__m64 m1, __m64 m2) Perform a bitwise XOR of the
64-bit value in m1 with the 64-
bit value in m2.

PXOR __m128i _mm_xor_si128(__m128i m1, __m128i m2) Perform a bitwise XOR of the
128-bit value in m1 with the
128-bit value in m2.

RCPPS __m128 _mm_rcp_ps(__m128 a) Computes the approximations
of the reciprocals of the four
SP FP values of a.

RCPSS __m128 _mm_rcp_ss(__m128 a) Computes the approximation
of the reciprocal of the lower
SP FP value of a; the upper
three SP FP values are
passed through.

RSQRTPS __m128 _mm_rsqrt_ps(__m128 a) Computes the approximations
of the reciprocals of the
square roots of the four SP
FP values of a.

RSQRTSS __m128 _mm_rsqrt_ss(__m128 a) Computes the approximation
of the reciprocal of the square
root of the lower SP FP value
of a; the upper three SP FP
values are passed through.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-28 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
SFENCE void_mm_sfence(void) Guarantees that every
preceding store is globally
visible before any subsequent
store.

SHUFPD __m128d _mm_shuffle_pd(__m128d a, __m128d b,
 unsigned int imm8)

Selects two specific DP FP
values from a and b, based
on the mask imm8. The mask
must be an immediate.

SHUFPS __m128 _mm_shuffle_ps(__m128 a, __m128 b,
 unsigned int imm8)

Selects four specific SP FP
values from a and b, based
on the mask imm8. The mask
must be an immediate.

SQRTPD __m128d _mm_sqrt_pd(__m128d a) Computes the square roots of
the two DP FP values of a.

SQRTPS __m128 _mm_sqrt_ps(__m128 a) Computes the square roots of
the four SP FP values of a.

SQRTSD __m128d _mm_sqrt_sd(__m128d a) Computes the square root of
the lower DP FP value of a;
the upper DP FP values are
passed through.

SQRTSS __m128 _mm_sqrt_ss(__m128 a) Computes the square root of
the lower SP FP value of a;
the upper three SP FP values
are passed through.

STMXCSR _mm_getcsr(void) Returns the contents of the
control register.

SUBPD __m128d _mm_sub_pd(__m128d a, __m128d b) Subtracts the two DP FP
values of a and b.

SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b) Subtracts the four SP FP
values of a and b.

SUBSD __m128d _mm_sub_sd(__m128d a, __m128d b) Subtracts the lower DP FP
values of a and b. The upper
DP FP values are passed
through from a.

SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b) Subtracts the lower SP FP
values of a and b. The upper
three SP FP values are
passed through from a.

UCOMISD int _mm_ucomieq_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a equal to
b. If a and b are equal, 1 is
returned. Otherwise 0 is
returned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-29

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
int _mm_ucomilt_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a less
than b. If a is less than b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomile_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a less
than or equal to b. If a is less
than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomigt_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a greater
than b. If a is greater than b
are equal, 1 is returned.
Otherwise 0 is returned.

int _mm_ucomige_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a greater
than or equal to b. If a is
greater than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomineq_sd(__m128d a, __m128d b) Compares the lower DP FP
value of a and b for a not
equal to b. If a and b are not
equal, 1 is returned.
Otherwise 0 is returned.

UCOMISS int _mm_ucomieq_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a equal to
b. If a and b are equal, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomilt_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a less
than b. If a is less than b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomile_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a less
than or equal to b. If a is less
than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomigt_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a greater
than b. If a is greater than b
are equal, 1 is returned.
Otherwise 0 is returned.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
C-30 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
int _mm_ucomige_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a greater
than or equal to b. If a is
greater than or equal to b, 1 is
returned. Otherwise 0 is
returned.

int _mm_ucomineq_ss(__m128 a, __m128 b) Compares the lower SP FP
value of a and b for a not
equal to b. If a and b are not
equal, 1 is returned.
Otherwise 0 is returned.

UNPCKHPD __m128d _mm_unpackhi_pd(__m128d a,
 __m128d b)

Selects and interleaves the
upper DP FP values from a
and b.

UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, __m128 b) Selects and interleaves the
upper two SP FP values from
a and b.

UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a,
 __m128d b)

Selects and interleaves the
lower DP FP values from a
and b.

UNPCKLPS __m128 _mm_unpacklo_ps(__m128 a, __m128 b) Selects and interleaves the
lower two SP FP values from
a and b.

XORPD __m128d _mm_xor_pd(__m128d a, __m128d b) Computes bitwise EXOR
(exclusive-or) of the two DP
FP values of a and b.

XORPS __m128 _mm_xor_ps(__m128 a, __m128 b) Computes bitwise EXOR
(exclusive-or) of the four SP
FP values of a and b.

Table C-1. Simple Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-31

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.2 COMPOSITE INTRINSICS

Table C-2. Composite Intrinsics
Mnemonic Intrinsic Description

(composite) __m128i _mm_set_epi64(__m64 q1, __m64 q0) Sets the two 64-bit values to the two
inputs.

(composite) __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) Sets the 4 32-bit values to the 4
inputs.

(composite) __m128i _mm_set_epi16(short w7,short w6,
 short w5, short w4, short w3, short w2,
 short w1,short w0)

Sets the 8 16-bit values to the 8
inputs.

(composite) __m128i _mm_set_epi8(char w15,char w14,
 char w13, char w12, char w11, char w10,
 char w9,char w8,char w7,char w6,char w5,
 char w4, char w3, char w2,char w1,char w0)

Sets the 16 8-bit values to the 16
inputs.

(composite) __m128i _mm_set1_epi64(__m64 q) Sets the 2 64-bit values to the input.

(composite) __m128i _mm_set1_epi32(int a) Sets the 4 32-bit values to the input.

(composite) __m128i _mm_set1_epi16(short a) Sets the 8 16-bit values to the input.

(composite) __m128i _mm_set1_epi8(char a) Sets the 16 8-bit values to the input.

(composite) __m128i _mm_setr_epi64(__m64 q1, __m64 q0) Sets the two 64-bit values to the two
inputs in reverse order.

(composite) __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0) Sets the 4 32-bit values to the 4
inputs in reverse order.

(composite) __m128i _mm_setr_epi16(short w7,short w6,
 short w5, short w4, short w3, short w2, short w,
 short w0)

Sets the 8 16-bit values to the 8
inputs in reverse order.

(composite) __m128i _mm_setr_epi8(char w15,char w14,
 char w13, char w12, char w11, char w10,
 char w9,char w8,char w7,char w6,char w5,
 char w4, char w3, char w2,char w1,char w0)

Sets the 16 8-bit values to the 16
inputs in reverse order.

(composite) __m128i _mm_setzero_si128() Sets all bits to 0.

(composite) __m128 _mm_set_ps1(float w)
__m128 _mm_set1_ps(float w)

Sets the four SP FP values to w.

(composite) __m128cmm_set1_pd(double w) Sets the two DP FP values to w.

(composite) __m128d _mm_set_sd(double w) Sets the lower DP FP values to w.

(composite) __m128d _mm_set_pd(double z, double y) Sets the two DP FP values to the
two inputs.

(composite) __m128 _mm_set_ps(float z, float y, float x, float w) Sets the four SP FP values to the
four inputs.

(composite) __m128d _mm_setr_pd(double z, double y) Sets the two DP FP values to the
two inputs in reverse order.
C-32 Vol. 2B

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
(composite) __m128 _mm_setr_ps(float z, float y, float x, float w) Sets the four SP FP values to the
four inputs in reverse order.

(composite) __m128d _mm_setzero_pd(void) Clears the two DP FP values.

(composite) __m128 _mm_setzero_ps(void) Clears the four SP FP values.

MOVSD +
shuffle

__m128d _mm_load_pd(double * p)
__m128d _mm_load1_pd(double *p)

Loads a single DP FP value,
copying it into both DP FP values.

MOVSS +
shuffle

__m128 _mm_load_ps1(float * p)
__m128 _mm_load1_ps(float *p)

Loads a single SP FP value, copying
it into all four words.

MOVAPD +
shuffle

__m128d _mm_loadr_pd(double * p) Loads two DP FP values in reverse
order. The address must be 16-byte-
aligned.

MOVAPS +
shuffle

__m128 _mm_loadr_ps(float * p) Loads four SP FP values in reverse
order. The address must be 16-byte-
aligned.

MOVSD +
shuffle

void _mm_store1_pd(double *p, __m128d a) Stores the lower DP FP value across
both DP FP values.

MOVSS +
shuffle

void _mm_store_ps1(float * p, __m128 a)
void _mm_store1_ps(float *p, __m128 a)

Stores the lower SP FP value across
four words.

MOVAPD +
shuffle

_mm_storer_pd(double * p, __m128d a) Stores two DP FP values in reverse
order. The address must be 16-byte-
aligned.

MOVAPS +
shuffle

_mm_storer_ps(float * p, __m128 a) Stores four SP FP values in reverse
order. The address must be 16-byte-
aligned.

Table C-2. Composite Intrinsics (Contd.)
Mnemonic Intrinsic Description
Vol. 2B C-33

INTEL C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C-34 Vol. 2B

Index

INDEX FOR VOLUME 2A & 2B
Numerics
64-bit mode

control and debug registers, 2-15
default operand size, 2-15
direct memory-offset MOVs, 2-14
general purpose encodings, B-22
immediates, 2-14
introduction, 2-9
machine instructions, B-1
reg (reg) field, B-4
REX prefixes, 2-9, B-2
RIP-relative addressing, 2-14
SIMD encodings, B-47
special instruction encodings, B-77
summary table notation, 3-6

A
AAA instruction, 3-18
AAD instruction, 3-20
AAM instruction, 3-22
AAS instruction, 3-24
Access rights, segment descriptor, 3-509
ADC instruction, 3-26, 3-538
ADD instruction, 3-18, 3-29, 3-251, 3-538
ADDPD instruction, 3-32
ADDPS instruction, 3-35
Addressing methods

RIP-relative, 2-14
Addressing, segments, 1-4
ADDSD instruction, 3-38
ADDSS instruction, 3-41
ADDSUBPD instruction, 3-44
ADDSUBPS instruction, 3-48
AND instruction, 3-52, 3-538
ANDNPD instruction, 3-59
ANDNPS instruction, 3-61
ANDPD instruction, 3-55
ANDPS instruction, 3-57
Arctangent, x87 FPU operation, 3-348
ARPL instruction, 3-63

B
B (default stack size) flag, segment descriptor,

4-180
Base (operand addressing), 2-4
BCD integers

packed, 3-251, 3-253, 3-286, 3-288
unpacked, 3-18, 3-20, 3-22, 3-24

Binary numbers, 1-4
Bit order, 1-2
BOUND instruction, 3-65
BOUND range exceeded exception (#BR), 3-65

Branch hints, 2-2
Brand information, 3-174

processor brand index, 3-178
processor brand string, 3-175

BSF instruction, 3-67
BSR instruction, 3-69
BSWAP instruction, 3-71
BT instruction, 3-73
BTC instruction, 3-76, 3-538
BTR instruction, 3-79, 3-538
BTS instruction, 3-82, 3-538
Byte order, 1-2

C
Cache and TLB information, 3-171
Caches, invalidating (flushing), 3-476, 4-359
CALL instruction, 3-85
CBW instruction, 3-102
CDQ instruction, 3-249
CDQE instruction, 3-102
CF (carry) flag, EFLAGS register, 3-29, 3-73, 3-76,

3-79, 3-82, 3-103, 3-112, 3-255, 3-450,
3-456, 3-682, 4-193, 4-244, 4-259,
4-262, 4-290, 4-304

CLC instruction, 3-103
CLD instruction, 3-104
CLFLUSH instruction, 3-105

CPUID flag, 3-170
CLI instruction, 3-107
CLTS instruction, 3-110
CMC instruction, 3-112
CMOVcc flag, 3-170
CMOVcc instructions, 3-113

CPUID flag, 3-170
CMP instruction, 3-119
CMPPD instruction, 3-122
CMPPS instruction, 3-127
CMPS instruction, 3-132, 4-213
CMPSB instruction, 3-132
CMPSD instruction, 3-132, 3-137
CMPSQ instruction, 3-132
CMPSS instruction, 3-141
CMPSW instruction, 3-132
CMPXCHG instruction, 3-145, 3-538
CMPXCHG16B instruction, 3-148

CPUID bit, 3-167
CMPXCHG8B instruction, 3-148

CPUID flag, 3-169
COMISD instruction, 3-151
COMISS instruction, 3-154
Compatibility mode

introduction, 2-9
see 64-bit mode
Vol. 2B INDEX-1

INDEX
summary table notation, 3-7
Compatibility, software, 1-3
Condition code flags, EFLAGS register, 3-113
Condition code flags, x87 FPU status word

flags affected by instructions, 3-14
setting, 3-399, 3-401, 3-404

Conditional jump, 3-491
Conforming code segment, 3-509
Constants (floating point), loading, 3-336
Control registers, moving values to and from, 3-593
Cosine, x87 FPU operation, 3-304, 3-374
CPL, 3-107, 4-354
CPUID instruction, 3-157, 3-170

36-bit page size extension, 3-170
APIC on-chip, 3-169
basic CPUID information, 3-158
cache and TLB characteristics, 3-158, 3-171
CLFLUSH flag, 3-170
CLFLUSH instruction cache line size, 3-165
CMPXCHG16B flag, 3-167
CMPXCHG8B flag, 3-169
CPL qualified debug store, 3-166
debug extensions, CR4.DE, 3-169
debug store supported, 3-170
deterministic cache parameters leaf, 3-159
extended function information, 3-161
feature information, 3-168
FPU on-chip, 3-169
FSAVE flag, 3-170
FXRSTOR flag, 3-170
HT technology flag, 3-170
IA-32e mode available, 3-161
input limits for EAX, 3-162
L1 Context ID, 3-166
local APIC physical ID, 3-165
machine check architecture, 3-169
machine check exception, 3-169
memory type range registers, 3-169
microcode update signature, 3-163
MONITOR feature information, 3-174
MONITOR/MWAIT flag, 3-166
MONITOR/MWAIT leaf, 3-159, 3-160
MWAIT feature information, 3-174
page attribute table, 3-170
page size extension, 3-169
performance monitoring features, 3-174
physical address bits, 3-162
physical address extension, 3-169
power management, 3-174
processor brand index, 3-165, 3-174
processor brand string, 3-161, 3-174
processor serial number, 3-158, 3-170
processor type field, 3-164
PTE global bit, 3-169
RDMSR flag, 3-169
returned in EBX, 3-165
returned in ECX & EDX, 3-165
self snoop, 3-170

SpeedStep technology, 3-166
SS2 extensions flag, 3-170
SSE extensions flag, 3-170
SSE3 extensions flag, 3-166
SYSENTER flag, 3-169
SYSEXIT flag, 3-169
thermal management, 3-174
thermal monitor, 3-166, 3-170
time stamp counter, 3-169
using CPUID, 3-157
vendor ID string, 3-162
version information, 3-158, 3-163, 3-174
virtual 8086 Mode flag, 3-169
virtual address bits, 3-162
WRMSR flag, 3-169

CQO instruction, 3-249
CR0 control register, 4-276
CS register, 3-86, 3-462, 3-480, 3-498, 3-588,

4-104
CVTDQ2PD instruction, 3-184
CVTDQ2PS instruction, 3-186
CVTPD2DQ instruction, 3-189
CVTPD2PI instruction, 3-192
CVTPD2PS instruction, 3-195
CVTPI2PD instruction, 3-198
CVTPI2PS instruction, 3-201
CVTPS2DQ instruction, 3-204
CVTPS2PD instruction, 3-207
CVTPS2PI instruction, 3-210
CVTSD2SI instruction, 3-213
CVTSD2SS instruction, 3-216
CVTSI2SD instruction, 3-219
CVTSI2SS instruction, 3-222
CVTSS2SD instruction, 3-225
CVTSS2SI instruction, 3-228
CVTTPD2DQ instruction, 3-234
CVTTPD2PI instruction, 3-231
CVTTPS2DQ instruction, 3-237
CVTTPS2PI instruction, 3-240
CVTTSD2SI instruction, 3-243
CVTTSS2SI instruction, 3-246
CWD instruction, 3-249
CWDE instruction, 3-102
C/C++ compiler intrinsics

compiler functional equivalents, C-1
composite, C-32
description of, 3-11
lists of, C-1
simple, C-3

D
D (default operation size) flag, segment descriptor,

4-104, 4-109, 4-180
DAA instruction, 3-251
DAS instruction, 3-253
Debug registers, moving value to and from, 3-596
DEC instruction, 3-255, 3-538
INDEX-2 Vol. 2B

INDEX
Denormalized finite number, 3-404
DF (direction) flag, EFLAGS register, 3-104, 3-133,

3-459, 3-541, 3-657, 4-18, 4-247, 4-291
Displacement (operand addressing), 2-4
DIV instruction, 3-257
Divide error exception (#DE), 3-257
DIVPD instruction, 3-261
DIVPS instruction, 3-264
DIVSD instruction, 3-267
DIVSS instruction, 3-270
DS register, 3-133, 3-519, 3-540, 3-656, 4-17

E
EDI register, 4-246, 4-291, 4-297
Effective address, 3-525
EFLAGS register

condition codes, 3-116, 3-295, 3-301
flags affected by instructions, 3-14
loading, 3-507
popping, 4-111
popping on return from interrupt, 3-480
pushing, 4-185
pushing on interrupts, 3-462
saving, 4-235
status flags, 3-119, 3-494, 4-253, 4-332

EIP register, 3-86, 3-462, 3-480, 3-498
EMMS instruction, 3-273
Encodings

See machine instructions, opcodes
ENTER instruction, 3-275
ES register, 3-519, 4-17, 4-246, 4-297
ESI register, 3-133, 3-540, 3-541, 3-656, 4-17,

4-291
ESP register, 3-86, 4-104
Exceptions

BOUND range exceeded (#BR), 3-65
notation, 1-5
overflow exception (#OF), 3-462
returning from, 3-480

Exponent, extracting from floating-point number,
3-420

Extract exponent and significand, x87 FPU
operation, 3-420

F
F2XM1 instruction, 3-278, 3-420
FABS instruction, 3-280
FADD instruction, 3-282
FADDP instruction, 3-282
Far call, CALL instruction, 3-86
Far pointer, loading, 3-519
Far return, RET instruction, 4-216
FBLD instruction, 3-286
FBSTP instruction, 3-288
FCHS instruction, 3-291
FCLEX instruction, 3-293

FCMOVcc instructions, 3-295
FCOM instruction, 3-297
FCOMI instruction, 3-301
FCOMIP instruction, 3-301
FCOMP instruction, 3-297
FCOMPP instruction, 3-297
FCOS instruction, 3-304
FDECSTP instruction, 3-306
FDIV instruction, 3-308
FDIVP instruction, 3-308
FDIVR instruction, 3-312
FDIVRP instruction, 3-312
Feature information, processor, 3-157
FFREE instruction, 3-316
FIADD instruction, 3-282
FICOM instruction, 3-317
FICOMP instruction, 3-317
FIDIV instruction, 3-308
FIDIVR instruction, 3-312
FILD instruction, 3-320
FIMUL instruction, 3-343
FINCSTP instruction, 3-322
FINIT instruction, 3-324
FINIT/FNINIT instructions, 3-365
FIST instruction, 3-326
FISTP instruction, 3-326
FISTTP instruction, 3-330
FISUB instruction, 3-391
FISUBR instruction, 3-395
FLD instruction, 3-333
FLD1 instruction, 3-336
FLDCW instruction, 3-338
FLDENV instruction, 3-340
FLDL2E instruction, 3-336
FLDL2T instruction, 3-336
FLDLG2 instruction, 3-336
FLDLN2 instruction, 3-336
FLDPI instruction, 3-336
FLDZ instruction, 3-336
Floating point instructions

machine encodings, B-80
Floating-point exceptions

SSE and SSE2 SIMD, 3-16
x87 FPU, 3-16

Flushing
caches, 3-476, 4-359
TLB entry, 3-478

FMUL instruction, 3-343
FMULP instruction, 3-343
FNCLEX instruction, 3-293
FNINIT instruction, 3-324
FNOP instruction, 3-347
FNSAVE instruction, 3-365
FNSTCW instruction, 3-382
FNSTENV instruction, 3-340, 3-385
FNSTSW instruction, 3-388
FPATAN instruction, 3-348
FPREM instruction, 3-351
Vol. 2B INDEX-3

INDEX
FPREM1 instruction, 3-354
FPTAN instruction, 3-357
FRNDINT instruction, 3-360
FRSTOR instruction, 3-362
FS register, 3-519
FSAVE instruction, 3-365
FSAVE/FNSAVE instructions, 3-362
FSCALE instruction, 3-369
FSIN instruction, 3-372
FSINCOS instruction, 3-374
FSQRT instruction, 3-377
FST instruction, 3-379
FSTCW instruction, 3-382
FSTENV instruction, 3-385
FSTP instruction, 3-379
FSTSW instruction, 3-388
FSUB instruction, 3-391
FSUBP instruction, 3-391
FSUBR instruction, 3-395
FSUBRP instruction, 3-395
FTST instruction, 3-399
FUCOM instruction, 3-401
FUCOMI instruction, 3-301
FUCOMIP instruction, 3-301
FUCOMP instruction, 3-401
FUCOMPP instruction, 3-401
FXAM instruction, 3-404
FXCH instruction, 3-406
FXRSTOR instruction, 3-408

CPUID flag, 3-170
FXSAVE instruction, 3-411

CPUID flag, 3-170
FXTRACT instruction, 3-369, 3-420
FYL2X instruction, 3-422
FYL2XP1 instruction, 3-424

G
GDT (global descriptor table), 3-531, 3-534
GDTR (global descriptor table register), 3-531,

4-256
General-purpose instructions

64-bit encodings, B-22
non-64-bit encodings, B-9

General-purpose registers
moving value to and from, 3-588
popping all, 4-109
pushing all, 4-183

GS register, 3-519

H
HADDPD instruction, 3-427, 3-428
HADDPS instruction, 3-431
Hexadecimal numbers, 1-4
HLT instruction, 3-435
HSUBPD instruction, 3-437
HSUBPS instruction, 3-441

Hyper-Threading Technology
CPUID flag, 3-170

I
IA-32e mode

CPUID flag, 3-161
introduction, 2-9
see 64-bit mode
see compability mode

IA32_SYSENTER_CS MSR, 4-325, 4-328
IA32_SYSENTER_EIP MSR, 4-325
IA32_SYSENTER_ESP MSR, 4-325
IDIV instruction, 3-445
IDT (interrupt descriptor table), 3-463, 3-531
IDTR (interrupt descriptor table register), 3-531,

4-271
IF (interrupt enable) flag, EFLAGS register, 3-107,

4-292
Immediate operands, 2-4
IMUL instruction, 3-449
IN instruction, 3-454
INC instruction, 3-456, 3-538
Index (operand addressing), 2-4
Initialization x87 FPU, 3-324
INS instruction, 3-458, 4-213
INSB instruction, 3-458
INSD instruction, 3-458
Instruction format

base field, 2-4
description of reference information, 3-1
displacement, 2-4
illustration of, 2-1
immediate, 2-4
index field, 2-4
Mod field, 2-4
ModR/M byte, 2-4
opcode, 2-3
operands, 1-4
prefixes, 2-2
reg/opcode field, 2-4
r/m field, 2-4
scale field, 2-4
SIB byte, 2-4
See also: machine instructions, opcodes

Instruction reference, nomenclature, 3-1
Instruction set, reference, 3-1
INSW instruction, 3-458
INT 3 instruction, 3-462
Integer, storing, x87 FPU data type, 3-326
Intel NetBurst microarchitecture, 1-1
Intel Xeon processor, 1-1
Inter-privilege level

call, CALL instruction, 3-86
return, RET instruction, 4-216

Interrupts
interrupt vector 4, 3-462
returning from, 3-480
INDEX-4 Vol. 2B

INDEX
software, 3-462
INTn instruction, 3-462
INTO instruction, 3-462
Intrinsics

compiler functional equivalents, C-1
composite, C-32
description of, 3-11
list of, C-1
simple, C-3

INVD instruction, 3-476
INVLPG instruction, 3-478
IOPL (I/O privilege level) field, EFLAGS register,

3-107, 4-185, 4-292
IRET instruction, 3-480
IRETD instruction, 3-480

J
Jcc instructions, 3-491
JMP instruction, 3-497
Jump operation, 3-497

L
L1 Context ID, 3-166
LAHF instruction, 3-507
LAR instruction, 3-509
LDDQU instruction, 3-513
LDMXCSR instruction, 3-516
LDS instruction, 3-519
LDT (local descriptor table), 3-534
LDTR (local descriptor table register), 3-534, 4-274
LEA instruction, 3-525
LEAVE instruction, 3-528
LES instruction, 3-519
LFENCE instruction, 3-530
LFS instruction, 3-519
LGDT instruction, 3-531
LGS instruction, 3-519
LIDT instruction, 3-531
LLDT instruction, 3-534
LMSW instruction, 3-536
Load effective address operation, 3-525
LOCK prefix, 3-27, 3-30, 3-52, 3-76, 3-79, 3-82,

3-145, 3-255, 3-456, 3-538, 4-2, 4-6, 4-9,
4-244, 4-304, 4-363, 4-365, 4-371

Locking operation, 3-538
LODS instruction, 3-540, 4-213
LODSB instruction, 3-540
LODSD instruction, 3-540
LODSQ instruction, 3-540
LODSW instruction, 3-540
Log epsilon, x87 FPU operation, 3-422
Log (base 2), x87 FPU operation, 3-424
LOOP instructions, 3-543
LOOPcc instructions, 3-543
LSL instruction, 3-546
LSS instruction, 3-519

LTR instruction, 3-550

M
Machine check architecture

CPUID flag, 3-169
description, 3-169

Machine instructions
64-bit mode, B-1
condition test (tttn) field, B-7
direction bit (d) field, B-8
floating-point instruction encodings, B-80
general description, B-1
general-purpose encodings, B-9–B-46
legacy prefixes, B-2
MMX encodings, B-48–B-52
opcode fields, B-2
operand size (w) bit, B-5
P6 family encodings, B-52
Pentium processor family encodings, B-47
reg (reg) field, B-3, B-4
REX prefixes, B-2
segment register (sreg) field, B-6
sign-extend (s) bit, B-5
SIMD 64-bit encodings, B-47
special 64-bit encodings, B-77
special fields, B-2
special-purpose register (eee) field, B-7
SSE encodings, B-53–B-60
SSE2 encodings, B-61–B-74
SSE3 encodings, B-75–B-76
See also: opcodes

Machine status word, CR0 register, 3-536, 4-276
MASKMOVDQU instruction, 3-553
MASKMOVQ instruction, 3-556
MAXPD instruction, 3-559
MAXPS instruction, 3-562
MAXSD instruction, 3-565
MAXSS instruction, 3-568
MFENCE instruction, 3-571
Microcode update signature, 3-163
MINPD instruction, 3-572
MINPS instruction, 3-575
MINSD instruction, 3-578
MINSS instruction, 3-581
MMX instructions

CPUID flag for technology, 3-170
encodings, B-48

Mod field, instruction format, 2-4
Model & family information, 3-163, 3-174
ModR/M byte, 2-4

16-bit addressing forms, 2-6
32-bit addressing forms of, 2-7
description of, 2-4
format of, 2-1

MONITOR instruction, 3-584
CPUID flag, 3-166
feature data, 3-174
Vol. 2B INDEX-5

INDEX
MOV instruction, 3-587
MOV instruction (control registers), 3-593
MOV instruction (debug registers), 3-596
MOVAPD instruction, 3-598
MOVAPS instruction, 3-601
MOVD instruction, 3-604
MOVDDUP instruction, 3-608
MOVDQ2Q instruction, 3-615
MOVDQA instruction, 3-611
MOVDQU instruction, 3-613
MOVHLPS instruction, 3-617
MOVHPD instruction, 3-619
MOVHPS instruction, 3-622
MOVLHP instruction, 3-625
MOVLHPS instruction, 3-625
MOVLPD instruction, 3-627
MOVLPS instruction, 3-630
MOVMSKPD instruction, 3-633
MOVMSKPS instruction, 3-635
MOVNTDQ instruction, 3-637
MOVNTI instruction, 3-640
MOVNTPD instruction, 3-642
MOVNTPS instruction, 3-645
MOVNTQ instruction, 3-648
MOVQ instruction, 3-604, 3-651
MOVQ2DQ instruction, 3-654
MOVS instruction, 3-656, 4-213
MOVSB instruction, 3-656
MOVSD instruction, 3-656, 3-660
MOVSHDUP instruction, 3-663
MOVSLDUP instruction, 3-666
MOVSQ instruction, 3-656
MOVSS instruction, 3-669
MOVSW instruction, 3-656
MOVSX instruction, 3-672
MOVSXD instruction, 3-672
MOVUPD instruction, 3-674
MOVUPS instruction, 3-677
MOVZX instruction, 3-680
MSRs (model specific registers)

reading, 4-203
writing, 4-361

MUL instruction, 3-22, 3-682
MULPD instruction, 3-685
MULPS instruction, 3-688
MULSD instruction, 3-691
MULSS instruction, 3-694
Multi-byte no operation, 4-4, B-15
MWAIT instruction, 3-697

CPUID flag, 3-166
feature data, 3-174

N
NaN. testing for, 3-399
Near

call, CALL instruction, 3-85
return, RET instruction, 4-216

NEG instruction, 3-538, 4-2
NetBurst microarchitecture (see Intel NetBurst

microarchitecture)
No operation, 4-4, B-15
Nomenclature, used in instruction reference pages,

3-1
NOP instruction, 4-4
NOT instruction, 3-538, 4-6
Notation

bit and byte order, 1-2
exceptions, 1-5
hexadecimal and binary numbers, 1-4
instruction operands, 1-4
reserved bits, 1-3
segmented addressing, 1-4

Notational conventions, 1-2
NT (nested task) flag, EFLAGS register, 3-480

O
OF (carry) flag, EFLAGS register, 3-450
OF (overflow) flag, EFLAGS register, 3-29, 3-462,

3-682, 4-244, 4-259, 4-262, 4-304
Opcode format, 2-3
Opcodes

addressing method codes for, A-2
extensions, A-19
extensions tables, A-20
group numbers, A-19
integers

one-byte opcodes, A-9
two-byte opcodes, A-11

key to abbreviations, A-2
look-up examples, A-4, A-19, A-22
ModR/M byte, A-19
one-byte opcodes, A-4, A-9
opcode maps, A-1
operand type codes for, A-3
register codes for, A-4
superscripts in tables, A-7
two-byte opcodes, A-5, A-6, A-11
VMX instructions, B-86
x87 ESC instruction opcodes, A-22

Operands, 1-4
OR instruction, 3-538, 4-8
ORPD instruction, 4-11
ORPS instruction, 4-13
OUT instruction, 4-15
OUTS instruction, 4-17, 4-213
OUTSB instruction, 4-17
OUTSD instruction, 4-17
OUTSW instruction, 4-17
Overflow exception (#OF), 3-462

P
P6 family processors

description of, 1-1
INDEX-6 Vol. 2B

INDEX
machine encodings, B-52
PACKSSDW instruction, 4-22
PACKSSWB instruction, 4-22
PACKUSWB instruction, 4-26
PADDB instruction, 4-30
PADDD instruction, 4-30
PADDQ instruction, 4-34
PADDSB instruction, 4-37
PADDSW instruction, 4-37
PADDUSB instruction, 4-41
PADDUSW instruction, 4-41
PADDW instruction, 4-30
PAND instruction, 4-45
PANDN instruction, 4-48
PAUSE instruction, 4-51
PAVGB instruction, 4-52
PAVGW instruction, 4-52
PCE flag, CR4 register, 4-206
PCMPEQB instruction, 4-55
PCMPEQD instruction, 4-55
PCMPEQW instruction, 4-55
PCMPGTB instruction, 4-59
PCMPGTD instruction, 4-59
PCMPGTW instruction, 4-59
PE (protection enable) flag, CR0 register, 3-536
Pending break enable, 3-170
Pentium 4 processor, 1-1
Pentium II processor, 1-1
Pentium III processor, 1-1
Pentium M processor, 1-1
Pentium Pro processor, 1-1
Pentium processor, 1-1
Pentium processor family processors

machine encodings, B-47
Performance-monitoring counters

CPUID inquiry for, 3-174
reading, 4-205

PEXTRW instruction, 4-64
Pi, 3-336
PINSRW instruction, 4-67
PMADDWD instruction, 4-70
PMAXSW instruction, 4-74
PMAXUB instruction, 4-77
PMINSW instruction, 4-80
PMINUB instruction, 4-83
PMOVMSKB instruction, 4-86
PMULHUW instruction, 4-88
PMULHW instruction, 4-92
PMULLW instruction, 4-96
PMULUDQ instruction, 4-100
POP instruction, 4-103
POPA instruction, 4-109
POPAD instruction, 4-109
POPF instruction, 4-111
POPFD instruction, 4-111
POPFQ instruction, 4-111
POR instruction, 4-115
PREFETCHh instruction, 4-118

Prefixes
Address-size override prefix, 2-2
Branch hints, 2-2
branch hints, 2-2
instruction, description of, 2-2
legacy prefix encodings, B-2
LOCK, 2-2, 3-538
Operand-size override prefix, 2-2
REP or REPE/REPZ, 2-2
REPNE/REPNZ, 2-2
REP/REPE/REPZ/REPNE/REPNZ, 4-211
REX prefix encodings, B-2
Segment override prefixes, 2-2

PSADBW instruction, 4-120
Pseudo-functions

VMfail, 5-2
VMfailInvalid, 5-2
VMfailValid, 5-2
VMsucceed, 5-2

PSHUFD instruction, 4-124
PSHUFHW instruction, 4-127
PSHUFLW instruction, 4-130
PSHUFW instruction, 4-133
PSLLD instruction, 4-138
PSLLDQ instruction, 4-136
PSLLQ instruction, 4-138
PSLLW instruction, 4-138
PSRAD instruction, 4-143
PSRAW instruction, 4-143
PSRLD instruction, 4-149
PSRLDQ instruction, 4-147
PSRLQ instruction, 4-149
PSRLW instruction, 4-149
PSUBB instruction, 4-154
PSUBD instruction, 4-154
PSUBQ instruction, 4-158
PSUBSB instruction, 4-161
PSUBSW instruction, 4-161
PSUBUSB instruction, 4-165
PSUBUSW instruction, 4-165
PSUBW instruction, 4-154
PUNPCKHBW instruction, 4-169
PUNPCKHDQ instruction, 4-169
PUNPCKHQDQ instruction, 4-169
PUNPCKHWD instruction, 4-169
PUNPCKLBW instruction, 4-174
PUNPCKLDQ instruction, 4-174
PUNPCKLQDQ instruction, 4-174
PUNPCKLWD instruction, 4-174
PUSH instruction, 4-179
PUSHA instruction, 4-183
PUSHAD instruction, 4-183
PUSHF instruction, 4-185
PUSHFD instruction, 4-185
PXOR instruction, 4-188
Vol. 2B INDEX-7

INDEX
R
RC (rounding control) field, x87 FPU control word,

3-327, 3-336, 3-379
RCL instruction, 4-191
RCPPS instruction, 4-197
RCPSS instruction, 4-200
RCR instruction, 4-191
RDMSR instruction, 4-203, 4-206, 4-209

CPUID flag, 3-169
RDPMC instruction, 4-205
RDTSC instruction, 4-209
Reg/opcode field, instruction format, 2-4
Related literature, 1-7
Remainder, x87 FPU operation, 3-354
REP/REPE/REPZ/REPNE/REPNZ prefixes, 3-133,

3-459, 4-18, 4-211
Reserved

use of reserved bits, 1-3
RET instruction, 4-216
REX prefixes

addressing modes, 2-11
and INC/DEC, 2-10
encodings, 2-10, B-2
field names, 2-11
ModR/M byte, 2-10
overview, 2-9
REX.B, 2-10
REX.R, 2-10
REX.W, 2-10
special encodings, 2-13

RIP-relative addressing, 2-14
ROL instruction, 4-191
ROR instruction, 4-191
Rounding, round to integer, x87 FPU operation,

3-360
RPL field, 3-63
RSM instruction, 4-227
RSQRTPS instruction, 4-229
RSQRTSS instruction, 4-232
R/m field, instruction format, 2-4

S
SAL instruction, 4-237
SAR instruction, 4-237
SBB instruction, 3-538, 4-243
Scale (operand addressing), 2-4
Scale, x87 FPU operation, 3-369
Scan string instructions, 4-246
SCAS instruction, 4-213, 4-246
SCASB instruction, 4-246
SCASD instruction, 4-246
SCASW instruction, 4-246
Segment

descriptor, segment limit, 3-546
limit, 3-546
registers, moving values to and from, 3-588
selector, RPL field, 3-63

Segmented addressing, 1-4
Self Snoop, 3-170
SETcc instructions, 4-251
SF (sign) flag, EFLAGS register, 3-29
SFENCE instruction, 4-255
SGDT instruction, 4-256
SHAF instruction, 4-235
Shift instructions, 4-237
SHL instruction, 4-237
SHLD instruction, 4-259
SHR instruction, 4-237
SHRD instruction, 4-262
SHUFPD instruction, 4-265
SHUFPS instruction, 4-268
SIB byte, 2-4

32-bit addressing forms of, 2-8
description of, 2-4
format of, 2-1

SIDT instruction, 4-256, 4-271
Significand, extracting from floating-point number,

3-420
SIMD floating-point exceptions, unmasking, effects

of, 3-516
Sine, x87 FPU operation, 3-372, 3-374
SLDT instruction, 4-274
SMSW instruction, 4-276
SpeedStep technology, 3-166
SQRTPD instruction, 4-278
SQRTPS instruction, 4-281
SQRTSD instruction, 4-284
SQRTSS instruction, 4-287
Square root, Fx87 PU operation, 3-377
SS register, 3-519, 3-588, 4-104
SS3 extensions

event mgmt instruction encodings, B-76
floating-point instruction encodings, B-75

SSE extensions
cacheability instruction encodings, B-60
CPUID flag, 3-170
floating-point encodings, B-53
instruction encodings, B-53
integer instruction encodings, B-59
memory ordering encodings, B-60

SSE2 extensions
cacheability instruction encodings, B-74
CPUID flag, 3-170
floating-point encodings, B-61
integer instruction encodings, B-68

SSE3 extensions
CPUID extended function information, 3-163
CPUID flag, 3-166
integer instruction encodings, B-76

Stack, pushing values on, 4-180
Status flags, EFLAGS register, 3-116, 3-119,

3-295, 3-301, 3-494, 4-253, 4-332
STC instruction, 4-290
STD instruction, 4-291
Stepping information, 3-163, 3-174
INDEX-8 Vol. 2B

INDEX
STI instruction, 4-292
STMXCSR instruction, 4-295
STOS instruction, 4-213, 4-297
STOSB instruction, 4-297
STOSD instruction, 4-297
STOSQ instruction, 4-297
STOSW instruction, 4-297
STR instruction, 4-301
String instructions, 3-132, 3-458, 3-540, 3-656,

4-17, 4-246, 4-297
SUB instruction, 3-24, 3-253, 3-538, 4-303
SUBPD instruction, 4-306
SUBSS instruction, 4-315
Summary table notation, 3-7
SWAPGS instruction, 4-318
SYSCALL instruction, 4-320
SYSENTER instruction, 4-322

CPUID flag, 3-169
SYSEXIT instruction, 4-326

CPUID flag, 3-169
SYSRET instruction, 4-330

T
Tangent, x87 FPU operation, 3-357
Task register

loading, 3-550
storing, 4-301

Task switch
CALL instruction, 3-86
return from nested task, IRET instruction, 3-480

TEST instruction, 4-332
Thermal Monitor

CPUID flag, 3-170
Thermal Monitor 2, 3-166

CPUID flag, 3-166
Time Stamp Counter, 3-169
Time-stamp counter, reading, 4-209
TLB entry, invalidating (flushing), 3-478
TS (task switched) flag, CR0 register, 3-110
TSD flag, CR4 register, 4-209
TSS, relationship to task register, 4-301

U
UCOMISD instruction, 4-335
UCOMISS instruction, 4-338
UD2 instruction, 4-341
Undefined, format opcodes, 3-399
Unordered values, 3-297, 3-399, 3-401
UNPCKHPD instruction, 4-342
UNPCKHPS instruction, 4-345
UNPCKLPD instruction, 4-348
UNPCKLPS instruction, 4-351

V
VERR instruction, 4-354
Version information, processor, 3-157

VERW instruction, 4-354
VM (virtual 8086 mode) flag, EFLAGS register,

3-480
VMCALL instruction, 5-1
VMCLEAR instruction, 5-1
VMLAUNCH instruction, 5-1
VMPTRLD instruction, 5-1
VMPTRST instruction, 5-1
VMREAD instruction, 5-1
VMRESUME instruction, 5-1
VMWRITE instruction, 5-1
VMXOFF instruction, 5-1
VMXON instruction, 5-2

W
WAIT/FWAIT instructions, 4-357
WBINVD instruction, 4-359
Write-back and invalidate caches, 4-359
WRMSR instruction, 4-361

CPUID flag, 3-169

X
x87 FPU

checking for pending x87 FPU exceptions,
4-357

constants, 3-336
initialization, 3-324
instruction opcodes, A-22

x87 FPU control word
loading, 3-338, 3-340
RC field, 3-327, 3-336, 3-379
restoring, 3-362
saving, 3-365, 3-385
storing, 3-382

x87 FPU data pointer, 3-340, 3-362, 3-365, 3-385
x87 FPU instruction pointer, 3-340, 3-362, 3-365,

3-385
x87 FPU last opcode, 3-340, 3-362, 3-365, 3-385
x87 FPU status word

condition code flags, 3-297, 3-317, 3-399,
3-401, 3-404

loading, 3-340
restoring, 3-362
saving, 3-365, 3-385, 3-388
TOP field, 3-322
x87 FPU flags affected by instructions, 3-14

x87 FPU tag word, 3-340, 3-362, 3-365, 3-385
XADD instruction, 3-538, 4-363
XCHG instruction, 3-538, 4-365
XLAB instruction, 4-368
XLAT instruction, 4-368
XOR instruction, 3-538, 4-370
XORPD instruction, 4-373
XORPS instruction, 4-375
Vol. 2B INDEX-9

INDEX
Z
ZF (zero) flag, EFLAGS register, 3-145, 3-509,

3-543, 3-546, 4-213, 4-354
INDEX-10 Vol. 2B

INTEL SALES OFFICES

ASIA PACIFIC
Australia
Intel Corp.
Level 2
448 St Kilda Road
Melbourne VIC
3004
Australia
Fax:613-9862 5599

China
Intel Corp.
Rm 709, Shaanxi
Zhongda Int'l Bldg
No.30 Nandajie Street
Xian AX710002
China
Fax:(86 29) 7203356

Intel Corp.
Rm 2710, Metropolian
Tower
68 Zourong Rd
Chongqing CQ
400015
China

Intel Corp.
C1, 15 Flr, Fujian
Oriental Hotel
No. 96 East Street
Fuzhou FJ
350001
China

Intel Corp.
Rm 5803 CITIC Plaza
233 Tianhe Rd
Guangzhou GD
510613
China

Intel Corp.
Rm 1003, Orient Plaza
No. 235 Huayuan Street
Nangang District
Harbin HL
150001
China

Intel Corp.
Rm 1751 World Trade
Center, No 2
Han Zhong Rd
Nanjing JS
210009
China

Intel Corp.
Hua Xin International
Tower
215 Qing Nian St.
ShenYang LN
110015
China

Intel Corp.
Suite 1128 CITIC Plaza
Jinan
150 Luo Yuan St.
Jinan SN
China

Intel Corp.
Suite 412, Holiday Inn
Crowne Plaza
31, Zong Fu Street
Chengdu SU
610041
China
Fax:86-28-6785965

Intel Corp.
Room 0724, White Rose
Hotel
No 750, MinZhu Road
WuChang District
Wuhan UB
430071
China

India
Intel Corp.
Paharpur Business
Centre
21 Nehru Place
New Delhi DH
110019
India

Intel Corp.
Hotel Rang Sharda, 6th
Floor
Bandra Reclamation
Mumbai MH
400050
India
Fax:91-22-6415578

Intel Corp.
DBS Corporate Club
31A Cathedral Garden
Road
Chennai TD
600034
India

Intel Corp.
DBS Corporate Club
2nd Floor, 8 A.A.C. Bose
Road
Calcutta WB
700017
India

Japan
Intel Corp.
Kokusai Bldg 5F, 3-1-1,
Marunouchi
Chiyoda-Ku, Tokyo
1000005
Japan

Intel Corp.
2-4-1 Terauchi
Toyonaka-Shi
Osaka
5600872
Japan

Malaysia
Intel Corp.
Lot 102 1/F Block A
Wisma Semantan
12 Jalan Gelenggang
Damansara Heights
Kuala Lumpur SL
50490
Malaysia

Thailand
Intel Corp.
87 M. Thai Tower, 9th Fl.
All Seasons Place,
Wireless Road
Lumpini, Patumwan
Bangkok
10330
Thailand

Viet Nam
Intel Corp.
Hanoi Tung Shing
Square, Ste #1106
2 Ngo Quyen St
Hoan Kiem District
Hanoi
Viet Nam

EUROPE & AFRICA
Belgium
Intel Corp.
Woluwelaan 158
Diegem
1831
Belgium

Czech Rep
Intel Corp.
Nahorni 14
Brno
61600
Czech Rep

Denmark
Intel Corp.
Soelodden 13
Maaloev
DK2760
Denmark

Germany
Intel Corp.
Sandstrasse 4
Aichner
86551
Germany

Intel Corp.
Dr Weyerstrasse 2
Juelich
52428
Germany

Intel Corp.
Buchenweg 4
Wildberg
72218
Germany

Intel Corp.
Kemnader Strasse 137
Bochum
44797
Germany

Intel Corp.
Klaus-Schaefer Strasse
16-18
Erfstadt NW
50374
Germany

Intel Corp.
Heldmanskamp 37
Lemgo NW
32657
Germany

Italy
Intel Corp Italia Spa
Milanofiori Palazzo E/4
Assago
Milan
20094
Italy
Fax:39-02-57501221

Netherland
Intel Corp.
Strausslaan 31
Heesch
5384CW
Netherland

Poland
Intel Poland
Developments, Inc
Jerozolimskie Business
Park
Jerozolimskie 146c
Warsaw
2305
Poland
Fax:+48-22-570 81 40

Portugal
Intel Corp.
PO Box 20
Alcabideche
2765
Portugal

Spain
Intel Corp.
Calle Rioja, 9
Bajo F Izquierda
Madrid
28042
Spain

South Africa
Intel SA Corporation
Bldg 14, South Wing,
2nd Floor
Uplands, The Woodlands
Western Services Road
Woodmead
2052
Sth Africa
Fax:+27 11 806 4549

Intel Corp.
19 Summit Place,
Halfway House
Cnr 5th and Harry
Galaun Streets
Midrad
1685
Sth Africa

United Kingdom
Intel Corp.
The Manse
Silver Lane
Needingworth CAMBS
PE274SL
UK

Intel Corp.
2 Cameron Close
Long Melford SUFFK
CO109TS
UK

Israel
Intel Corp.
MTM Industrial Center,
P.O.Box 498
Haifa
31000
Israel
Fax:972-4-8655444

LATIN AMERICA &
CANADA
Argentina
Intel Corp.
Dock IV - Bldg 3 - Floor 3
Olga Cossettini 240
Buenos Aires
C1107BVA
Argentina

Brazil
Intel Corp.
Rua Carlos Gomez
111/403
Porto Alegre
90480-003
Brazil

Intel Corp.
Av. Dr. Chucri Zaidan
940 - 10th Floor
San Paulo
04583-904
Brazil

Intel Corp.
Av. Rio Branco,
1 - Sala 1804
Rio de Janeiro
20090-003
Brazil

Columbia
Intel Corp.
Carrera 7 No. 71021
Torre B, Oficina 603
Santefe de Bogota
Columbia

Mexico
Intel Corp.
Av. Mexico No. 2798-9B,
S.H.
Guadalajara
44680
Mexico

Intel Corp.
Torre Esmeralda II,
7th Floor
Blvd. Manuel Avila
Comacho #36
Mexico Cith DF
11000
Mexico

Intel Corp.
Piso 19, Suite 4
Av. Batallon de San
Patricio No 111
Monterrey, Nuevo le
66269
Mexico

Canada
Intel Corp.
168 Bonis Ave, Suite 202
Scarborough
MIT3V6
Canada
Fax:416-335-7695

Intel Corp.
3901 Highway #7,
Suite 403
Vaughan
L4L 8L5
Canada
Fax:905-856-8868

Intel Corp.
999 CANADA PLACE,
Suite 404,#11
Vancouver BC
V6C 3E2
Canada
Fax:604-844-2813

Intel Corp.
2650 Queensview Drive,
Suite 250
Ottawa ON
K2B 8H6
Canada
Fax:613-820-5936

Intel Corp.
190 Attwell Drive,
Suite 500
Rexcdale ON
M9W 6H8
Canada
Fax:416-675-2438

Intel Corp.
171 St. Clair Ave. E,
Suite 6
Toronto ON
Canada

Intel Corp.
1033 Oak Meadow Road
Oakville ON
L6M 1J6
Canada

USA
California
Intel Corp.
551 Lundy Place
Milpitas CA
95035-6833
USA
Fax:408-451-8266

Intel Corp.
1551 N. Tustin Avenue,
Suite 800
Santa Ana CA
92705
USA
Fax:714-541-9157

Intel Corp.
Executive Center del Mar
12230 El Camino Real
Suite 140
San Diego CA
92130
USA
Fax:858-794-5805

Intel Corp.
1960 E. Grand Avenue,
Suite 150
El Segundo CA
90245
USA
Fax:310-640-7133

Intel Corp.
23120 Alicia Parkway,
Suite 215
Mission Viejo CA
92692
USA
Fax:949-586-9499

Intel Corp.
30851 Agoura Road
Suite 202
Agoura Hills CA
91301
USA
Fax:818-874-1166

Intel Corp.
28202 Cabot Road,
Suite #363 & #371
Laguna Niguel CA
92677
USA

Intel Corp.
657 S Cendros Avenue
Solana Beach CA
90075
USA

Intel Corp.
43769 Abeloe Terrace
Fremont CA
94539
USA

Intel Corp.
1721 Warburton, #6
Santa Clara CA
95050
USA

Colorado
Intel Corp.
600 S. Cherry Street,
Suite 700
Denver CO
80222
USA
Fax:303-322-8670

Connecticut
Intel Corp.
Lee Farm Corporate Pk
83 Wooster Heights
Road
Danbury CT
6810
USA
Fax:203-778-2168

Florida
Intel Corp.
7777 Glades Road
Suite 310B
Boca Raton FL
33434
USA
Fax:813-367-5452

Georgia
Intel Corp.
20 Technology Park,
Suite 150
Norcross GA
30092
USA
Fax:770-448-0875

Intel Corp.
Three Northwinds Center
2500 Northwinds
Parkway, 4th Floor
Alpharetta GA
30092
USA
Fax:770-663-6354

Idaho
Intel Corp.
910 W. Main Street, Suite
236
Boise ID
83702
USA
Fax:208-331-2295

Illinois
Intel Corp.
425 N. Martingale Road
Suite 1500
Schaumburg IL
60173
USA
Fax:847-605-9762

Intel Corp.
999 Plaza Drive
Suite 360
Schaumburg IL
60173
USA

Intel Corp.
551 Arlington Lane
South Elgin IL
60177
USA

Indiana
Intel Corp.
9465 Counselors Row,
Suite 200
Indianapolis IN
46240
USA
Fax:317-805-4939

Massachusetts
Intel Corp.
125 Nagog Park
Acton MA
01720
USA
Fax:978-266-3867

Intel Corp.
59 Composit Way
suite 202
Lowell MA
01851
USA

Intel Corp.
800 South Street,
Suite 100
Waltham MA
02154
USA

Maryland
Intel Corp.
131 National Business
Parkway, Suite 200
Annapolis Junction MD
20701
USA
Fax:301-206-3678

Michigan
Intel Corp.
32255 Northwestern
Hwy., Suite 212
Farmington Hills MI
48334
USA
Fax:248-851-8770

MInnesota
Intel Corp.
3600 W 80Th St
Suite 450
Bloomington MN
55431
USA
Fax:952-831-6497

North Carolina
Intel Corp.
2000 CentreGreen Way,
Suite 190
Cary NC
27513
USA
Fax:919-678-2818

New Hampshire
Intel Corp.
7 Suffolk Park
Nashua NH
03063
USA

New Jersey
Intel Corp.
90 Woodbridge Center
Dr, Suite. 240
Woodbridge NJ
07095
USA
Fax:732-602-0096

New York
Intel Corp.
628 Crosskeys Office Pk
Fairport NY
14450
USA
Fax:716-223-2561

Intel Corp.
888 Veterans Memorial
Highway
Suite 530
Hauppauge NY
11788
USA
Fax:516-234-5093

Ohio
Intel Corp.
3401 Park Center Drive
Suite 220
Dayton OH
45414
USA
Fax:937-890-8658

Intel Corp.
56 Milford Drive
Suite 205
Hudson OH
44236
USA
Fax:216-528-1026

Oregon
Intel Corp.
15254 NW Greenbrier
Parkway, Building B
Beaverton OR
97006
USA
Fax:503-645-8181

Pennsylvania
Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell PA
19422
USA
Fax:215-641-0785

Intel Corp.
7500 Brooktree
Suite 213
Wexford PA
15090
USA
Fax:714-541-9157

Texas
Intel Corp.
5000 Quorum Drive,
Suite 750
Dallas TX
75240
USA
Fax:972-233-1325

Intel Corp.
20445 State Highway
249, Suite 300
Houston TX
77070
USA
Fax:281-376-2891

Intel Corp.
8911 Capital of Texas
Hwy, Suite 4230
Austin TX
78759
USA
Fax:512-338-9335

Intel Corp.
7739 La Verdura Drive
Dallas TX
75248
USA

Intel Corp.
77269 La Cabeza Drive
Dallas TX
75249
USA

Intel Corp.
3307 Northland Drive
Austin TX
78731
USA

Intel Corp.
15190 Prestonwood
Blvd. #925
Dallas TX
75248
USA
Intel Corp.

Washington
Intel Corp.
2800 156Th Ave. SE
Suite 105
Bellevue WA
98007
USA
Fax:425-746-4495

Intel Corp.
550 Kirkland Way
Suite 200
Kirkland WA
98033
USA

Wisconsin
Intel Corp.
405 Forest Street
Suites 109/112
Oconomowoc Wi
53066
USA

	IA-32 Intel® Architecture Software Developer’s Manual
	Disclaimer
	CHAPTER 4 Instruction Set Reference, N-Z
	4.1 Instructions (N-Z)
	NEG-Two's Complement Negation
	NOP-No Operation
	NOT-One's Complement Negation
	OR-Logical Inclusive OR
	ORPD-Bitwise Logical OR of Double-Precision Floating-Point Values
	ORPS-Bitwise Logical OR of Single-Precision Floating-Point Values
	OUT-Output to Port
	OUTS/OUTSB/OUTSW/OUTSD-Output String to Port
	PACKSSWB/PACKSSDW-Pack with Signed Saturation
	PACKUSWB-Pack with Unsigned Saturation
	PADDB/PADDW/PADDD-Add Packed Integers
	PADDQ-Add Packed Quadword Integers
	PADDSB/PADDSW-Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW-Add Packed Unsigned Integers with Unsigned Saturation
	PAND-Logical AND
	PANDN-Logical AND NOT
	PAUSE-Spin Loop Hint
	PAVGB/PAVGW-Average Packed Integers
	PCMPEQB/PCMPEQW/PCMPEQD- Compare Packed Data for Equal
	PCMPGTB/PCMPGTW/PCMPGTD-Compare Packed Signed Integers for Greater Than
	PEXTRW-Extract Word
	PINSRW-Insert Word
	PMADDWD-Multiply and Add Packed Integers
	PMAXSW-Maximum of Packed Signed Word Integers
	PMAXUB-Maximum of Packed Unsigned Byte Integers
	PMINSW-Minimum of Packed Signed Word Integers
	PMINUB-Minimum of Packed Unsigned Byte Integers
	PMOVMSKB-Move Byte Mask
	PMULHUW-Multiply Packed Unsigned Integers and Store High Result
	PMULHW-Multiply Packed Signed Integers and Store High Result
	PMULLW-Multiply Packed Signed Integers and Store Low Result
	PMULUDQ-Multiply Packed Unsigned Doubleword Integers
	POP-Pop a Value from the Stack
	POPA/POPAD-Pop All General-Purpose Registers
	POPF/POPFD/POPFQ-Pop Stack into EFLAGS Register
	POR-Bitwise Logical OR
	PREFETCHh-Prefetch Data Into Caches
	PSADBW-Compute Sum of Absolute Differences
	PSHUFD-Shuffle Packed Doublewords
	PSHUFHW-Shuffle Packed High Words
	PSHUFLW-Shuffle Packed Low Words
	PSHUFW-Shuffle Packed Words
	PSLLDQ-Shift Double Quadword Left Logical
	PSLLW/PSLLD/PSLLQ-Shift Packed Data Left Logical
	PSRAW/PSRAD-Shift Packed Data Right Arithmetic
	PSRLDQ-Shift Double Quadword Right Logical
	PSUBB/PSUBW/PSUBD-Subtract Packed Integers
	PSUBQ-Subtract Packed Quadword Integers
	PSUBSB/PSUBSW-Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW-Subtract Packed Unsigned Integers with Unsigned Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ- Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ- Unpack Low Data
	PUSH-Push Word, Doubleword or Quadword Onto the Stack
	PUSHA/PUSHAD-Push All General-Purpose Registers
	PUSHF/PUSHFD-Push EFLAGS Register onto the Stack
	PXOR-Logical Exclusive OR
	RCL/RCR/ROL/ROR--Rotate
	RCPPS-Compute Reciprocals of Packed Single-Precision Floating-Point Values
	RCPSS-Compute Reciprocal of Scalar Single-Precision Floating- Point Values
	RDMSR-Read from Model Specific Register
	RDPMC-Read Performance-Monitoring Counters
	RDTSC-Read Time-Stamp Counter
	REP/REPE/REPZ/REPNE/REPNZ-Repeat String Operation Prefix
	RET-Return from Procedure
	RSM-Resume from System Management Mode
	RSQRTPS-Compute Reciprocals of Square Roots of Packed Single-Precision Floating-Point Values
	RSQRTSS-Compute Reciprocal of Square Root of Scalar Single- Precision Floating-Point Value
	SAHF-Store AH into Flags
	SAL/SAR/SHL/SHR-Shift
	SBB-Integer Subtraction with Borrow
	SCAS/SCASB/SCASW/SCASD-Scan String
	SETcc-Set Byte on Condition
	SFENCE-Store Fence
	SGDT-Store Global Descriptor Table Register
	SHLD-Double Precision Shift Left
	SHRD-Double Precision Shift Right
	SHUFPD-Shuffle Packed Double-Precision Floating-Point Values
	SHUFPS-Shuffle Packed Single-Precision Floating-Point Values
	SIDT-Store Interrupt Descriptor Table Register
	SLDT-Store Local Descriptor Table Register
	SMSW-Store Machine Status Word
	SQRTPS-Compute Square Roots of Packed Single-Precision Floating-Point Values
	SQRTSD-Compute Square Root of Scalar Double-Precision Floating-Point Value
	SQRTSS-Compute Square Root of Scalar Single-Precision Floating-Point Value
	STC-Set Carry Flag
	STD-Set Direction Flag
	STI-Set Interrupt Flag
	STMXCSR-Store MXCSR Register State
	STOS/STOSB/STOSW/STOSD/STOSQ-Store String
	STR-Store Task Register
	SUB-Subtract
	SUBPD-Subtract Packed Double-Precision Floating-Point Values
	SUBPS-Subtract Packed Single-Precision Floating-Point Values
	SUBSD-Subtract Scalar Double-Precision Floating-Point Values
	SUBSS-Subtract Scalar Single-Precision Floating-Point Values
	SWAPGS-Swap GS Base Register
	SYSCALL-Fast System Call
	SYSENTER-Fast System Call
	SYSEXIT-Fast Return from Fast System Call
	SYSRET-Return From Fast System Call
	TEST-Logical Compare
	UCOMISD-Unordered Compare Scalar Double-Precision Floating- Point Values and Set EFLAGS
	UCOMISS-Unordered Compare Scalar Single-Precision Floating- Point Values and Set EFLAGS
	UD2-Undefined Instruction
	UNPCKHPD-Unpack and Interleave High Packed Double- Precision Floating-Point Values
	UNPCKHPS-Unpack and Interleave High Packed Single-Precision Floating-Point Values
	UNPCKLPD-Unpack and Interleave Low Packed Double-Precision Floating-Point Values
	UNPCKLPS-Unpack and Interleave Low Packed Single-Precision Floating-Point Values
	VERR/VERW-Verify a Segment for Reading or Writing
	WAIT/FWAIT-Wait
	WBINVD-Write Back and Invalidate Cache
	WRMSR-Write to Model Specific Register
	XADD-Exchange and Add
	XCHG-Exchange Register/Memory with Register
	XLAT/XLATB-Table Look-up Translation
	XOR-Logical Exclusive OR
	XORPD-Bitwise Logical XOR for Double-Precision Floating-Point Values
	XORPS-Bitwise Logical XOR for Single-Precision Floating-Point Values

	CHAPTER 5 VMX Instruction Reference
	5.1 Overview
	5.2 Conventions
	5.3 VMX Instructions
	VMCALL-Call to VM Monitor
	VMCLEAR-Clear Virtual-Machine Control Structure
	VMLAUNCH/VMRESUME-Launch/Resume Virtual Machine
	VMPTRLD-Load Pointer to Virtual-Machine Control Structure
	VMPTRST-Store Pointer to Virtual-Machine Control Structure
	VMREAD-Read Field from Virtual-Machine Control Structure
	VMRESUME-Resume Virtual Machine
	VMWRITE-Write Field to Virtual-Machine Control Structure
	VMXOFF-Leave VMX Operation
	VMXON-Enter VMX Operation

	APPENDIX A Opcode Map
	A.1 Using Opcode Tables
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.2.3 Register Codes
	A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
	A.2.4.1 One-Byte Opcode Instructions
	A.2.4.2 Two-Byte Opcode Instructions
	A.2.4.3 Three-Byte Opcode Instructions

	A.2.5 Superscripts Utilized in Opcode Tables

	A.3 One, Two, and THREE-Byte Opcode Maps
	A.4 Opcode Extensions For One-Byte And Two-byte Opcodes
	A.4.1 Opcode Look-up Examples Using Opcode Extensions
	A.4.2 Opcode Extension Tables

	A.5 Escape Opcode Instructions
	A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
	A.5.2 Escape Opcode Instruction Tables
	A.5.2.1 Escape Opcodes with D8 as First Byte
	A.5.2.2 Escape Opcodes with D9 as First Byte
	A.5.2.3 Escape Opcodes with DA as First Byte
	A.5.2.4 Escape Opcodes with DB as First Byte
	A.5.2.5 Escape Opcodes with DC as First Byte
	A.5.2.6 Escape Opcodes with DD as First Byte
	A.5.2.7 Escape Opcodes with DE as First Byte
	A.5.2.8 Escape Opcodes with DF As First Byte

	APPENDIX B Instruction Formats and Encodings
	B.1 Machine Instruction Format
	B.1.1 Legacy Prefixes
	B.1.2 REX Prefixes
	B.1.3 Opcode Fields
	B.1.4 Special Fields
	B.1.4.1 Reg Field (reg) for Non-64-Bit Modes
	B.1.4.2 Reg Field (reg) for 64-Bit Mode
	B.1.4.3 Encoding of Operand Size (w) Bit
	B.1.4.4 Sign-Extend (s) Bit
	B.1.4.5 Segment Register (sreg) Field
	B.1.4.6 Special-Purpose Register (eee) Field
	B.1.4.7 Condition Test (tttn) Field
	B.1.4.8 Direction (d) Bit

	B.1.5 Other Notes

	B.2 General-Purpose Instruction Formats and Encodings for Non-64-Bit Modes
	B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode

	B.3 Pentium® Processor Family Instruction Formats and Encodings
	B.4 64-bit Mode Instruction Encodings for SIMD Instruction Extensions
	B.5 MMX Instruction Formats and Encodings
	B.5.1 Granularity Field (gg)
	B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg)
	B.5.3 MMX Instruction Formats and Encodings Table

	B.6 P6 Family INstruction Formats and Encodings
	B.7 SSE Instruction Formats and Encodings
	B.8 SSE2 Instruction Formats and Encodings
	B.8.1 Granularity Field (gg)

	B.9 SSE3 Formats and Encodings Table
	B.10 Special Encodings for 64-Bit Mode
	B.11 Floating-Point Instruction Formats and Encodings
	B.12 VMX Instructions

	APPENDIX C Intel® C/C++ Compiler Intrinsics and Functional Equivalents
	C.1 Simple Intrinsics
	C.2 Composite Intrinsics

	INDEX FOR VOLUME 2A & 2B

