intel.

|IA-32 Intel’ Architecture
Software Developer’'s Manual

Volume 2B:
Instruction Set Reference, N-Z

NOTE: The IA-32 Intel Architecture Software Developer’s Manual consists
of five volumes: Basic Architecture, Order Number 253665; Instruction
Set Reference A-M, Order Number 253666; Instruction Set Reference N-Z,
Order Number 253667; System Programming Guide, Part 1, Order
Number 253668; System Programming Guide, Part 2, Order Number
253669. Refer to all five volumes when evaluating your design needs.

Order Number: 253667-020US
June 2006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EX-
PRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RE-
LATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FIT-
NESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE
SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Improper use of reserved or undefined features or instructions may cause unpredictable behavior or failure in developer's
software code when running on an Intel processor. Intel reserves these features or instructions for future definition and shall
have no responsibility whatsoever for conflicts or incompatibilities arising from their unauthorized use.

The Intel® IA-32 architecture processors (e.g., Pentium® 4 and Pentium Il processors) may contain design defects or errors
known as errata. Current characterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 processor supporting Hyper-Threading
Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use. See http://www.intel.com/techtrends/technologies/hyperthreading.htm for more in-
formation including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary de-
pending on hardware and software configurations and may require a BIOS update. Software applications may not be com-
patible with all operating systems. Please check with your application vendor.

Intel® Extended Memory 64 Technology (Intel® EM®64T) requires a computer system with a processor, chipset, BIOS, OS,
device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) with-
out an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. Intel
EM64T-enabled OS, BIOS, device drivers and applications may not be available. Check with your vendor for more
information.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Pentium D, Itanium, MMX, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel's website at http://www.intel.com

Copyright © 1997-2006 Intel Corporation

http://www.intel.com/techtrends/technologies/hyperthreading.htm
http://www.intel.com

Instruction Set
Reference, N-Z

CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z

4.1 INSTRUCTIONS (N-2)

Chapter 4 continues the alphabetical discussion of 1A-32 instructions (N-Z). See also: Chapter 3,
“Instruction Set Reference, A-M,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A.

Vol. 2B 4-1

INSTRUCTION SET REFERENCE, N-Z

NEG—Two's Complement Negation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F6 /3 NEG r/m8 Valid Valid Two's complement negate r/m8.
REX + F6 /3 NEG r/m8* Valid N.E. Two's complement negate r/m8.
F71/3 NEG r/m16 Valid Valid Two's complement negate r/m16.
F71/3 NEG r/m32 Valid Valid Two's complement negate r/m32.
REX.W + F7 /3 NEG r/m64 Valid N.E. Two's complement negate r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IFDEST=0
THEN CF « 0;
ELSE CF « 1;

FI,

DEST « [- (DEST)]

Flags Affected

The CF flag set to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF, and
PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

4-2 Vol. 2B NEG—Two's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

NEG—Two's Complement Negation Vol. 2B 4-3

INSTRUCTION SET REFERENCE, N-Z

NOP—No Operation

Compat/
Opcode Instruction 64-Bit Mode Leg Mode Description
920 NOP Valid Valid One byte no-operation instruction.
OF 1F /0 NOP r/m16 Valid Valid Multi-byte no-operation instruction.
OF 1F /0 NOP r/m32 Valid Valid Multi-byte no-operation instruction.

Description

This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up space
in the instruction stream but does not impact machine context, except for the EIP register.

The multi-byte form of NOP is available on processors with model encoding:
¢ CPUID.01H.EAX[Bytes 11:8] = 0110B or 1111B

The multi-byte NOP instruction does not alter the content of a register and will not issue a
memory operation. The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
The one-byte NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

The multi-byte NOP instruction performs no operation on supported processors and generates
undefined opcode exception on processors that do not support the multi-byte NOP instruction.

The memory operand form of the instruction allows software to create a byte sequence of “no
operation” as one instruction. For situations where multiple-byte NOPs are needed, the recom-
mended operations (32-bit mode and 64-bit mode) are:

Table 4-1. Recommended Multi-Byte Sequence of NOP Instruction

Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H

3 bytes NOP DWORD ptr [EAX] OF 1F 00H

4 bytes NOP DWORD ptr [EAX + 00H] OF 1F 40 00H

5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] OF 1F 44 00 00H

6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 OF 1F 44 00 00H

7 bytes NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 OOH

8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] OF 1F 84 00 00 00 00 00H

9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 OF 1F 84 00 00 00 00 00H

4-4 Vol. 2B NOP—No Operation

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Exceptions (All Operating Modes)
None.

NOP—No Operation Vol. 2B 4-5

INSTRUCTION SET REFERENCE, N-Z

NOT—One's Complement Negation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F6 /2 NOT r/m8 Valid Valid Reverse each bit of r/m8.
REX + F6 /2 NOT r/m8* Valid N.E. Reverse each bit of r/m8.
F712 NOT r/m16 Valid Valid Reverse each bit of r/m16.
F712 NOT r/m32 Valid Valid Reverse each bit of /m32.
REX.W + F7/2 NOT r/m64 Valid N.E. Reverse each bit of /m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise NOT operation (each 1 is set to 0, and each 0 is set to 1) on the destination
operand and stores the result in the destination operand location. The destination operand can be
a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST « NOT DEST,

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-6 Vol. 2B NOT—One's Complement Negation

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made
while the current privilege level is 3.

NOT—One's Complement Negation Vol. 2B 4-7

INSTRUCTION SET REFERENCE, N-Z

OR—Logical Inclusive OR

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

0Cib OR AL, imm8 Valid Valid AL OR imm8.

0D iw OR AX, imm16 Valid Valid AX OR imm16.

oD id OR EAX, imm32 Valid Valid EAX OR imm32.

REX.W + 0D id OR RAX, imm32 Valid N.E. RAX OR imm32 (sign-
extended).

80/1ib OR r/m8, imm8 Valid Valid r/m8 OR imm8.

REX +80/1ib OR r/m8*, imm8 Valid N.E. r/m8 OR imm8.

81/1iw OR r/m16, imm16 Valid Valid r/m16 OR imm16.

81/1id OR r/m32, imm32 Valid Valid r/m32 OR imm32.

REX.W +81/1id OR r/m64, imm32 Valid N.E. r/m64 OR imm32 (sign-
extended).

83/1ib OR r/m16, imm8 Valid Valid r/m16 OR imm8 (sign-
extended).

83/1ib OR r/m32, imm8 Valid Valid r/m32 OR imm8 (sign-
extended).

REX.W +83/1ib OR r/m64, imm8 Valid N.E. r/m64 OR imm8 (sign-
extended).

08 /r OR r/m8, 8 Valid Valid r/m8 OR r8.

REX + 08 /r OR r/m8*, r8* Valid N.E. r/m8 OR r8.

09 /r OR r/m16, r16 Valid Valid r/m16 OR r16.

09 /r OR r/m32, r32 Valid Valid r/m32 OR r32.

REX.W + 09 /r OR r/m64, r64 Valid N.E. r/mé64 OR r64.

OA Ir OR 18, r/m8 Valid Valid r8 OR r/m8.

REX + OA Ir OR r8*, r/m8* Valid N.E. r8 OR r/m8.

0B /r OR r16, r/m16 Valid Valid r16 OR r/m16.

OB Ir OR r32, r/m32 Valid Valid r32 OR r/m32.

REX.W + 0B /r OR r64, r/m64 Valid N.E. r64 OR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise inclusive OR operation between the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result of the OR instruction is set to 0 if both corresponding bits of the first and second

operands are 0; otherwise, each bit is set to 1.

4-8 Vol. 2B

OR—Luogical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST « DEST OR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

OR—Logical Inclusive OR Vol. 2B 4-9

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-10 Vol. 2B OR—Luogical Inclusive OR

INSTRUCTION SET REFERENCE, N-Z

ORPD—-Bitwise Logical OR of Double-Precision Floating-Point
Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 56 /r ORPD xmm1, xmm2/m128 Valid Valid Bitwise OR of xmm2/m128
and xmm1.
Description

Performs a bitwise logical OR of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] < DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPD _m128d _mm_or_pd(__m128d a, _ m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values Vol. 2B 4-11

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-12 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

ORPS—Bitwise Logical OR of Single-Precision Floating-Point
Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 56 /r ORPS xmm1, xmm2/m128 Valid Valid Bitwise OR of
xmm2/m128 and
xmm1.

Description

Performs a bitwise logical OR of the four packed single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand), and stores the
result in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] <~ DEST[127:0] BitwiseOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
ORPS _ml128 _mm_or_ps(_ m128a, __m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values Vol. 2B 4-13

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-14 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

ORPS—RBitwise Logical OR of Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

OUT—Output to Port

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

E6 ib OUT imm8, AL Valid Valid Output byte in AL to I/O port
address imm8.

E7ib OUT imm8, AX Valid Valid Output word in AX to I/O port
address imm8.

E7ib OUT imm8, EAX Valid Valid Output doubleword in EAX to I/O
port address imm8.

EE OUT DX, AL Valid Valid Output byte in AL to I/O port
address in DX.

EF OUT DX, AX Valid Valid Output word in AX to I/O port
address in DX.

EF OUT DX, EAX Valid Valid Output doubleword in EAX to I1/O

port address in DX.

NOTES:
* See IA-32 Architecture Compatibility section below.

Description

Copies the value from the second operand (source operand) to the I/O port specified with the
destination operand (first operand). The source operand can be register AL, AX, or EAX,
depending on the size of the port being accessed (8, 16, or 32 bits, respectively); the destination
operand can be a byte-immediate or the DX register. Using a byte immediate allows 1/0O port
addresses 0 to 255 to be accessed; using the DX register as a source operand allows 1/0O ports
from 0 to 65,535 to be accessed.

The size of the 1/0 port being accessed is determined by the opcode for an 8-bit 1/0 port or by
the operand-size attribute of the instruction for a 16- or 32-bit 1/0 port.

At the machine code level, 1/O instructions are shorter when accessing 8-bit 1/O ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/0 ports located in the processor’s 1/O address
space. See Chapter 13, “Input/Output,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for more information on accessing 1/0 ports in the I/O address space.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

OUT—Output to Port Vol. 2B 4-15

INSTRUCTION SET REFERENCE, N-Z

IA-32 Architecture Compatibility

After executing an OUT instruction, the Pentium processor insures that the EWBE# pin has been
sampled active before it begins to execute the next instruction. (Note that the instruction can be
prefetched if EWBE# is not active, but it will not be executed until the EWBE# pin is sampled
active.) Only the Pentium processor family has the EWBE# pin; the other |A-32 processors do
not.

Operation

IF ((PE =1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any 1/0 Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE (* I/0O operation is allowed *)
DEST « SRC; (* Writes to selected I/O port *)
FI;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST <« SRC; (* Writes to selected I/O port *)
FI;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the 1/O privilege level (IOPL)
and any of the corresponding 1/0 permission bits in TSS for the 1/0 port
being accessed is 1.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the I/O permission bits in the TSS for the I/O port being accessed
is 1.
#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same as protected mode exceptions.

64-Bit Mode Exceptions
Same as protected mode exceptions.

4-16 Vol. 2B OUT—Output to Port

INSTRUCTION SET REFERENCE, N-Z

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

64-Bit Compat/
Opcode* Instruction Mode Leg Mode Description
6E OUTS DX, m8 Valid Valid Output byte from memory

location specified in DS:(E)SI or
RSI to I/O port specified in DX**,

6F OUTS DX, m16 Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**,

6F OUTS DX, m32 Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**,

6E OuUTSB Valid Valid Output byte from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**,

6F OUTSW Valid Valid Output word from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**.

6F OUTSD Valid Valid Output doubleword from memory
location specified in DS:(E)SI or
RSI to I/O port specified in DX**,

NOTES:

* See IA-32 Architecture Compatibility section below.

** |n 64-bit mode, only 64-bit (RSI) and 32-bit (ESI) address sizes are supported. In non-64-bit mode,
only 32-bit (ESI) and 16-bit (Sl) address sizes are supported.

Description

Copies data from the source operand (second operand) to the 1/O port specified with the desti-
nation operand (first operand). The source operand is a memory location, the address of which
is read from either the DS:SI, DS:ESI or the RSI registers (depending on the address-size
attribute of the instruction, 16, 32 or 64, respectively). (The DS segment may be overridden with
a segment override prefix.) The destination operand is an 1/0 port address (from 0 to 65,535)
that is read from the DX register. The size of the 1/O port being accessed (that is, the size of the
source and destination operands) is determined by the opcode for an 8-bit 1/0 port or by the
operand-size attribute of the instruction for a 16- or 32-bit 1/O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the OUTS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand should be a symbol that indicates the size of the 1/O port and the source address,
and the destination operand must be DX. This explicit-operands form is provided to allow docu-
mentation; however, note that the documentation provided by this form can be misleading. That
is, the source operand symbol must specify the correct type (size) of the operand (byte, word,
or doubleword), but it does not have to specify the correct location. The location is always spec-
ified by the DS:(E)SI or RSI registers, which must be loaded correctly before the OUTS instruc-
tion is executed.

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port Vol. 2B 4-17

INSTRUCTION SET REFERENCE, N-Z

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
OUTS instructions. Here also DS:(E)SI is assumed to be the source operand and DX is assumed
to be the destination operand. The size of the 1/0 port is specified with the choice of mnemonic:
OUTSB (byte), OUTSW (word), or OUTSD (doubleword).

After the byte, word, or doubleword is transferred from the memory location to the 1/O port, the
SI/ESI/RSI register is incremented or decremented automatically according to the setting of the
DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incremented,; if the DF
flag is 1, the SI/ESI/RSI register is decremented.) The SI/ESI/RSI register is incremented or
decremented by 1 for byte operations, by 2 for word operations, and by 4 for doubleword oper-
ations.

The OUTS, OUTSB, OUTSW, and OUTSD instructions can be preceded by the REP prefix for
block input of ECX bytes, words, or doublewords. See “REP/REPE/REPZ
/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP
prefix. This instruction is only useful for accessing 1/0 ports located in the processor’s 1/O
address space. See Chapter 13, “Input/Output,” in the 1A-32 Intel® Architecture Software Devel-
oper’s Manual, Volume 1, for more information on accessing 1/0 ports in the I/O address space.

In 64-bit mode, the default operand size is 32 bits; operand size is not promoted by the use of
REX.W. In 64-bit mode, the default address size is 64 bits, and 64-bit address is specified using
RSI by default. 32-bit address using ESI is support using the prefix 67H, but 16-bit address is
not supported in 64-bit mode.

IA-32 Architecture Compatibility

After executing an OUTS, OUTSB, OUTSW, or OUTSD instruction, the Pentium processor
insures that the EWBE# pin has been sampled active before it begins to execute the next instruc-
tion. (Note that the instruction can be prefetched if EWBE# is not active, but it will not be
executed until the EWBE# pin is sampled active.) Only the Pentium processor family has the
EWBE# pin; the other IA-32 processors do not. For the Pentium 4, Intel® Xeon®, and P6
processor family, upon execution of an OUTS, OUTSB, OUTSW, or OUTSD instruction, the
processor will not execute the next instruction until the data phase of the transaction is complete.

4-18 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z

Operation

IF ((PE =1) and ((CPL > IOPL) or (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for 1/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE (* /O operation is allowed *)
DEST « SRC; (* Writes to I/O port *)
Fl;
ELSE (Real Mode or Protected Mode or 64-Bit Mode with CPL < IOPL *)
DEST « SRC; (* Writes to I/O port *)
FI;

Byte transfer:

IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI < RSIRSI + 1;
ELSE RSI < RSl or-1;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI « ESI +1;
ELSE ESI<« ESI-1;
Fl;
Fl;
ELSE
IFDF=0

THEN (E)SI « (E)SI + 1;
ELSE (E)SI « (E)SI - 1;

Fl;
Fl;
Word transfer:
IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI <« RSIRSI + 2;
ELSE RSI <~ RSl or - 2;
Fl,
ELSE (* 32-Bit Address Size *)
IFDF=0

THEN ESI « ESI + 2;
ELSE ESI « ESI-2;

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port Vol. 2B 4-19

INSTRUCTION SET REFERENCE, N-Z

Fl,
Fl,
ELSE
IFDF=0
THEN (E)SI « (E)SI + 2;
ELSE (E)SI « (E)SI - 2;
Fl;
Fl,
Doubleword transfer:
IF 64-bit mode
Then
IF 64-Bit Adress Size
THEN
IFDF=0
THEN RSI < RSI RSI + 4;
ELSE RSI «<- RSl or — 4;
Fl;
ELSE (* 32-Bit Address Size *)
IFDF=0
THEN ESI « ESI + 4;
ELSE ESI <« ESI-4;
Fl;
Fl;
ELSE
IFDF=0
THEN (E)SI < (E)SI + 4;
ELSE (E)SI « (E)SI — 4;
FI,
FI,

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding 1/0 permission bits in TSS for the 1/0 port
being accessed is 1.

If a memory operand effective address is outside the limit of the CS, DS,
ES, FS, or GS segment.

If the segment register contains a NULL segment selector.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-20 Vol. 2B OUTS/OUTSB/OUTSW/OUTSD—Output String to Port

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If any of the 1/0 permission bits in the TSS for the I/0 port being accessed
is 1.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a hon-canonical
form.

If the CPL is greater than (has less privilege) the I/O privilege level (IOPL)
and any of the corresponding I/O permission bits in TSS for the 1/0 port
being accessed is 1.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

OUTS/OUTSB/OUTSW/OUTSD—Output String to Port Vol. 2B 4-21

INSTRUCTION SET REFERENCE, N-Z

PACKSSWB/PACKSSDW—Pack with Signed Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 63 /r PACKSSWB mm1, Valid Valid Converts 4 packed signed word
mm2/m64 integers from mm1 and from

mm2/m64 into 8 packed signed byte
integers in mm1 using signed

saturation.
66 OF 63 /r PACKSSWB xmm1, Valid Valid Converts 8 packed signed word
xmmz2/m128 integers from xmm1 and from

xxm2/m128 into 16 packed signed
byte integers in xxm1 using signed

saturation.
OF 6B /r PACKSSDW mm1, Valid Valid Converts 2 packed signed
mm2/m64 doubleword integers from mm1 and

from mm2/m64 into 4 packed signed
word integers in mm1 using signed

saturation.
66 OF 6B /r PACKSSDW xmm1, Valid Valid Converts 4 packed signed
xmmz2/m128 doubleword integers from xmm1 and

from xxm2/m128 into 8 packed
signed word integers in xxm1 using
signed saturation.

Description

Converts packed signed word integers into packed signed byte integers (PACKSSWB) or
converts packed signed doubleword integers into packed signed word integers (PACKSSDW),
using saturation to handle overflow conditions. See Figure 4-1 for an example of the packing
operation.

64-Bit SRC 64-Bit DEST
D C B A
olcle|a
64-Bit DEST

Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands

4-22 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

The PACKSSWB instruction converts 4 or 8 signed word integers from the destination operand
(first operand) and 4 or 8 signed word integers from the source operand (second operand) into
8 or 16 signed byte integers and stores the result in the destination operand. If a signed word
integer value is beyond the range of a signed byte integer (that is, greater than 7FH for a positive
integer or greater than 80H for a negative integer), the saturated signed byte integer value of 7FH
or 80H, respectively, is stored in the destination.

The PACKSSDW instruction packs 2 or 4 signed doublewords from the destination operand
(first operand) and 2 or 4 signed doublewords from the source operand (second operand) into 4
or 8 signed words in the destination operand (see Figure 4-1). If a signed doubleword integer
value is beyond the range of a signed word (that is, greater than 7FFFH for a positive integer or
greater than 8000H for a negative integer), the saturated signed word integer value of 7FFFH or
8000H, respectively, is stored into the destination.

The PACKSSWB and PACKSSDW instructions operate on either 64-bit or 128-bit operands.
When operating on 64-bit operands, the destination operand must be an MMX technology
register and the source operand can be either an MMX technology register or a 64-bit memory
location. When operating on 128-bit operands, the destination operand must be an XMM
register and the source operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PACKSSWB instruction with 64-bit operands:
DEST([7:0] « SaturateSignedWordToSignedByte DEST[15:0];
DESTI[15:8] « SaturateSignedWordToSignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToSignedByte DEST[47:32];
DEST[31:24] <« SaturateSignedWordToSignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToSignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToSignedByte SRC[31:16];
DESTI[55:48] « SaturateSignedWordToSignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToSignedByte SRC[63:48];

PACKSSDW instruction with 64-bit operands:
DEST[15:0] « SaturateSignedDoublewordToSignedWord DEST[31:0];
DEST[31:16] « SaturateSignedDoublewordToSignedWord DEST[63:32];
DESTI[47:32] « SaturateSignedDoublewordToSignedWord SRC[31:0];
DEST[63:48] « SaturateSignedDoublewordToSignedWord SRC[63:32];

PACKSSWSB instruction with 128-bit operands:
DEST[7:0] <« SaturateSignedWordToSignedByte (DEST[15:0]);
DESTI[15:8] « SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToSignedByte (DEST[47:32));
DEST[31:24] <« SaturateSignedWordToSignedByte (DEST[63:48));
DEST[39:32] <« SaturateSignedWordToSignedByte (DEST[79:64));
DEST[47:40] « SaturateSignedWordToSignedByte (DEST[95:80]);
DESTI[55:48] « SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToSignedByte (DEST[127:112]);

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol. 2B 4-23

INSTRUCTION SET REFERENCE, N-Z

DEST[71:64] « SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] « SaturateSignedWordToSignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToSignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToSignedByte (SRC[127:112]);

PACKSSDW instruction with 128-bit operands:
DEST[15:0] « SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] <« SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] « SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] « SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] < SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] « SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] « SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] « SaturateSignedDwordToSignedWord (SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalents
PACKSSWB __m64 _mm_packs_pil6(__m64 ml, __m64 m2)
PACKSSDW _ m64 _mm_packs_pi32 (__m64 ml, _ m64 m2)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-24 Vol. 2B PACKSSWB/PACKSSDW—Pack with Signed Saturation

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from

0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PACKSSWB/PACKSSDW—Pack with Signed Saturation Vol. 2B 4-25

INSTRUCTION SET REFERENCE, N-Z

PACKUSWB—Pack with Unsigned Saturation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 67 Ir PACKUSWB mm, Valid Valid Converts 4 signed word integers
mm/m64 from mm and 4 signed word integers
from mm/m64 into 8 unsigned byte
integers in mm using unsigned
saturation.
66 OF 67 Ir PACKUSWB xmm1, Valid Valid Converts 8 signed word integers
xmm2/m128 from xmm1 and 8 signed word

integers from xmm2/m128 into 16
unsigned byte integers in xmm1
using unsigned saturation.

Description

Converts 4 or 8 signed word integers from the destination operand (first operand) and 4 or 8
signed word integers from the source operand (second operand) into 8 or 16 unsigned byte inte-
gers and stores the result in the destination operand. (See Figure 4-1 for an example of the
packing operation.) If a signed word integer value is beyond the range of an unsigned byte
integer (that is, greater than FFH or less than 00H), the saturated unsigned byte integer value of
FFH or 00H, respectively, is stored in the destination.

The PACKUSWB instruction operates on either 64-bit or 128-bit operands. When operating on
64-bit operands, the destination operand must be an MMX technology register and the source
operand can be either an MMX technology register or a 64-bit memory location. When oper-
ating on 128-bit operands, the destination operand must be an XMM register and the source
operand can be either an XMM register or a 128-bit memory location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PACKUSWB instruction with 64-bit operands:
DEST[7:0] « SaturateSignedWordToUnsignedByte DEST[15:0];
DEST[15:8] « SaturateSignedWordToUnsignedByte DEST[31:16];
DEST[23:16] « SaturateSignedWordToUnsignedByte DEST[47:32];
DEST[31:24] « SaturateSignedWordToUnsignedByte DEST[63:48];
DEST[39:32] « SaturateSignedWordToUnsignedByte SRC[15:0];
DEST[47:40] « SaturateSignedWordToUnsignedByte SRC[31:16];
DEST[55:48] < SaturateSignedWordToUnsignedByte SRC[47:32];
DEST[63:56] « SaturateSignedWordToUnsignedByte SRC[63:48];

PACKUSWB instruction with 128-bit operands:
DEST[7:0] <« SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] « SaturateSignedWordToUnsignedByte (DEST[47:32]);

4-26 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

DEST[31:24] « SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] <« SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] « SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] <« SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] « SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] « SaturateSignedWordToUnsignedByte (SRC[15:0]);
DEST[79:72] « SaturateSignedWordToUnsignedByte (SRC[31:16]);
DEST[87:80] «— SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] «— SaturateSignedWordToUnsignedByte (SRC[63:48]);
DEST[103:96] « SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] « SaturateSignedWordToUnsignedByte (SRC[95:80]);
DEST[119:112] « SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] « SaturateSignedWordToUnsignedByte (SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent
PACKUSWB _ m64 _mm_packs_pul6(__m64 ml, _ m64 m2)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PACKUSWB—Pack with Unsigned Saturation Vol. 2B 4-27

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-28 Vol. 2B PACKUSWB—Pack with Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PACKUSWB—Pack with Unsigned Saturation Vol. 2B 4-29

INSTRUCTION SET REFERENCE, N-Z

PADDB/PADDW/PADDD—Add Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OFFCIr PADDB mm, Valid Valid Add packed byte integers from mm/m64
mm/m64 and mm.

66 OF FC /r PADDB xmm1, Valid Valid Add packed byte integers from
xmm2/m128 xmm2/m128 and xmm1.

OFFD /Ir PADDW mm, Valid Valid Add packed word integers from
mm/m64 mm/m64 and mm.

66 OF FD /r PADDW xmm1, Valid Valid Add packed word integers from
xmm2/m128 xmm2/m128 and xmm1.

OF FE Ir PADDD mm, Valid Valid Add packed doubleword integers from
mm/m64 mm/m64 and mm.

66 OF FE /r PADDD xmm1, Valid Valid Add packed doubleword integers from
xmm2/m128 xmm2/m128 and xmm1.

Description

Performs an SIMD add of the packed integers from the source operand (second operand) and
the destination operand (first operand), and stores the packed integer results in the destination
operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD operation. Overflow is handled with wraparound, as
described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too large to be
represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to
the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written
to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits
are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values operated on.

4-30 Vol. 2B PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access

additional registers (XMM8-XMM15).

Operation

PADDB instruction with 64-bit operands:
DEST([7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 7th byte *)
DEST[63:56] < DEST[63:56] + SRC[63:56];

PADDB instruction with 128-bit operands:
DEST([7:0] « DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] + SRC[127:120];

PADDW instruction with 64-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd and 3th word *)
DEST[63:48] < DEST[63:48] + SRC[63:48];

PADDW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112] «- DEST[127:112] + SRC[127:112];

PADDD instruction with 64-bit operands:
DEST[31:0] < DEST[31:0] + SRC[31:0];
DEST[63:32] «— DEST[63:32] + SRC[63:32];
PADDD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] « DEST[127:96] + SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PADDB __m64 _mm_add_pi8(_m64 ml, __m64 m2)
PADDB __m128i_mm_add_epi8 (__m128ia,_ _m128ib)
PADDW __m64 _mm_addw_pil6(__m64 ml, __m64 m2)
PADDW _m128i _mm_add_epil6 (__m128ia, __m128ib)
PADDD __m64 _mm_add_pi32(_m64 ml, __m64 m2)
PADDD _m128i _mm_add_epi32 (_m128ia, __m128ib)

Flags Affected
None.

PADDB/PADDW/PADDD—Add Packed Integers

Vol. 2B 4-31

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE?2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

#AC(0)

4-32 Vol. 2B

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

PADDB/PADDW/PADDD—Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDB/PADDW/PADDD—Add Packed Integers Vol. 2B 4-33

INSTRUCTION SET REFERENCE, N-Z

PADDQ—Add Packed Quadword Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D4 Ir PADDQ mm1, Valid Valid Add quadword integer
mm2/m64 mm2/m64 to mm1.
66 OF D4 /r PADDQ xmm1, Valid Valid Add packed quadword integers
xmm2/m128 xmm2/m128 to xmm1.
Description

Adds the first operand (destination operand) to the second operand (source operand) and stores
the result in the destination operand. The source operand can be a quadword integer stored in an
MMX technology register or a 64-bit memory location, or it can be two packed quadword inte-
gers stored in an XMM register or an 128-bit memory location. The destination operand can be
a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD add is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PADDQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values operated on.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PADDQ instruction with 64-Bit operands:
DEST[63:0] «~ DEST[63:0] + SRC[63:0];

PADDQ instruction with 128-Bit operands:
DEST[63:0] < DEST[63:0] + SRC[63:0];
DEST[127:64] « DEST[127:64] + SRC[127:64];
Intel C/C++ Compiler Intrinsic Equivalents
PADDQ __m64 _mm_add_si64 (__m64 a, __m64 b)
PADDQ __m128i _mm_add_epi64 (_m128ia, __ m128ib)

Flags Affected
None.

4-34 Vol. 2B PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

PADDQ—Add Packed Quadword Integers Vol. 2B 4-35

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-36 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDQ—Add Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF EC Ir PADDSB mm, Valid Valid Add packed signed byte integers
mm/m6é4 from mm/m64 and mm and
saturate the results.
66 OF EC Ir PADDSB xmm1, Valid Valid Add packed signed byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OF ED /r PADDSW mm, Valid Valid Add packed signed word integers
mm/mé4 from mm/m64 and mm and
saturate the results.
66 OF ED /r PADDSW xmm1, Valid Valid Add packed signed word integers
xmm2/m128 from xmm2/m128 and xmm1 and

saturate the results.

Description

Performs an SIMD add of the packed signed integers from the source operand (second operand)
and the destination operand (first operand), and stores the packed integer results in the destina-
tion operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD operation. Overflow is handled with signed saturation,
as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte result is
beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.

The PADDSW instruction adds packed signed word integers. When an individual word result is
beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the
saturated value of 7FFFH or 8000H, respectively, is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PADDSB/PADDSW—Add Packed Signed Integers with Signed Vol. 2B 4-37
Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] < SaturateToSignedByte(DEST[63:56] + SRC[63:56]);

PADDSB instruction with 128-bit operands:
DEST[7:0] «SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] + SRC[127:120]);

PADDSW instruction with 64-bit operands
DEST[15:0] < SaturateToSignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord(DEST[63:48] + SRC[63:48]);

PADDSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDSB __m64 _mm_adds_pi8(_m64 ml, __m64 m2)
PADDSB __m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW __m64 _mm_adds_pil6(__m64 ml, __m64 m2)
PADDSW __ml128i _mm_adds_epil6 (__m128ia, __m128ib)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

4-38 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.
#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

PADDSB/PADDSW—Add Packed Signed Integers with Signed Vol. 2B 4-39
Saturation

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-40 Vol. 2B PADDSB/PADDSW—Add Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z

PADDUSB/PADDUSW—Add Packed Unsigned Integers with
Unsigned Saturation

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DC /Ir PADDUSB mm, Valid Valid Add packed unsigned byte integers
mm/m64 from mm/m64 and mm and saturate
the results.
66 OF DC /r PADDUSB xmm1, Valid Valid Add packed unsigned byte integers
xmm2/m128 from xmm2/m128 and xmm1
saturate the results.
OF DD Ir PADDUSW mm, Valid Valid Add packed unsigned word integers
mm/m64 from mm/m64 and mm and saturate
the results.
66 OF DD /r PADDUSW xmm1, Valid Valid Add packed unsigned word integers
xmm2/m128 from xmm2/m128 to xmm1 and
saturate the results.

Description

Performs an SIMD add of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the packed integer results in the
destination operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled with unsigned
saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PADDUSB instruction adds packed unsigned byte integers. When an individual byte result
is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value
of FFH is written to the destination operand.

The PADDUSW instruction adds packed unsigned word integers. When an individual word
result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the satu-
rated value of FFFFH is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Vol. 2B 4-41
Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PADDUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte(DEST[7:0] + SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] < SaturateToUnsignedByte(DEST[63:56] + SRC[63:56]

PADDUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] + SRC[127:120));

PADDUSW instruction with 64-bit operands:
DEST[15:0] < SaturateToUnsignedWord(DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord(DEST[63:48] + SRC[63:48]);

PADDUSW instruction with 128-bit operands:
DEST[15:0] < SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToUnSignedWord (DEST[127:112] + SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PADDUSB __m64 _mm_adds_pu8(_m64 ml1l, __m64 m2)
PADDUSW __m64 _mm_adds_pul6(__m64 ml, _m64 m2)
PADDUSB __m128i _mm_adds_epu8 (__ml28ia, __m128ib)
PADDUSW __m128i _mm_adds_epul6 (__ml28ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

4-42 Vol. 2B PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Vol. 2B 4-43
Saturation

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-44 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned
Saturation

INSTRUCTION SET REFERENCE, N-Z

PAND—Logical AND

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DB /Ir PAND mm, mm/m64 Valid Valid Bitwise AND mm/m64 and
mm.
66 OF DB /r PAND xmm1, xmm2/m128 Valid Valid Bitwise AND of xmm2/m128
and xmm1.
Description

Performs a bitwise logical AND operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if the corresponding bits of the first
and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « (DEST AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PAND __m64 _mm_and_si64 (__m64 m1, __m64 m2)
PAND __m128i _mm_and_sil28 (__ml128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

PAND—Logical AND Vol. 2B 4-45

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-46 Vol. 2B PAND—Logical AND

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

PAND—Logical AND

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Vol. 2B 4-47

INSTRUCTION SET REFERENCE, N-Z

PANDN—Logical AND NOT

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF DF Ir PANDN mm, mm/m64 Valid Valid Bitwise AND NOT of
mm/m64 and mm.
66 OF DF /r PANDN xmm1, xmm2/m128 Valid Valid Bitwise AND NOT of
xmm2/m128 and
xmm1.

Description

Performs a bitwise logical NOT of the destination operand (first operand), then performs a
bitwise logical AND of the source operand (second operand) and the inverted destination
operand. The result is stored in the destination operand. The source operand can be an MMX
technology register or a 64-bit memory location or it can be an XMM register or a 128-bit
memory location. The destination operand can be an MMX technology register or an XMM
register. Each bit of the result is set to 1 if the corresponding bit in the first operand is 0 and the
corresponding bit in the second operand is 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « ((NOT DEST) AND SRC);

Intel C/C++ Compiler Intrinsic Equivalent
PANDN __m64 _mm_andnot_si64 (__m64 ml, __m64 m2)
PANDN ~m128i _mm_andnot_si128 (__m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

4-48 Vol. 2B PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

PANDN—Logical AND NOT Vol. 2B 4-49

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-50 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PANDN—Logical AND NOT

INSTRUCTION SET REFERENCE, N-Z

PAUSE—Spin Loop Hint

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

F3 90 PAUSE Valid Valid Gives hint to processor that improves
performance of spin-wait loops.

Description

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” a Pentium 4
or Intel Xeon processor suffers a severe performance penalty when exiting the loop because it
detects a possible memory order violation. The PAUSE instruction provides a hint to the
processor that the code sequence is a spin-wait loop. The processor uses this hint to avoid the
memory order violation in most situations, which greatly improves processor performance. For
this reason, it is recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a
Pentium 4 processor while executing a spin loop. The Pentium 4 processor can execute a spin-
wait loop extremely quickly, causing the processor to consume a lot of power while it waits
for the resource it is spinning on to become available. Inserting a pause instruction in a spin-
wait loop greatly reduces the processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with
all 1A-32 processors. In earlier 1A-32 processors, the PAUSE instruction operates like a NOP
instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE instruction as a
pre-defined delay. The delay is finite and can be zero for some processors. This instruction does
not change the architectural state of the processor (that is, it performs essentially a delaying
no-op operation).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
Execute_Next_Instruction(DELAY);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
None.

PAUSE—Spin Loop Hint Vol. 2B 4-51

INSTRUCTION SET REFERENCE, N-Z

PAVGB/PAVGW—Average Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF EO /r PAVGB mm1, Valid Valid Average packed unsigned byte integers
mm2/m64 from mm2/m64 and mm1 with rounding.
66 OF EO, /r PAVGB xmm1, Valid Valid Average packed unsigned byte integers
xmm2/m128 from xmm2/m128 and xmm1 with
rounding.
OF E3/r PAVGW mm1, Valid Valid Average packed unsigned word integers
mm2/m64 from mm2/m64 and mm1 with rounding.
66 OF E3 /r PAVGW xmm1, Valid Valid Average packed unsigned word integers
xmmz2/m128 from xmm2/m128 and xmm1 with
rounding.
Description

Performs an SIMD average of the packed unsigned integers from the source operand (second
operand) and the destination operand (first operand), and stores the results in the destination
operand. For each corresponding pair of data elements in the first and second operands, the
elements are added together, a 1 is added to the temporary sum, and that result is shifted right
one bit position. The source operand can be an MMX technology register or a 64-bit memory
location or it can be an XMM register or a 128-bit memory location. The destination operand
can be an MMX technology register or an XMM register.

The PAVGB instruction operates on packed unsigned bytes and the PAVGW instruction operates
on packed unsigned words.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PAVGB instruction with 64-bit operands:
SRCJ[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 6 *)
SRC[63:56) < (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 64-bit operands:
SRC[15:0) « (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 and 3 *)
SRC[63:48) « (SRC[63:48) + DEST[63:48) + 1) >> 1;

PAVGB instruction with 128-bit operands:
SRCJ[7:0) « (SRC[7:0) + DEST[7:0) + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 14 *)
SRC[63:56) < (SRC[63:56) + DEST[63:56) + 1) >> 1;

PAVGW instruction with 128-bit operands:

4-52 Vol. 2B PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

SRC[15:0) « (SRC[15:0) + DEST[15:0) + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 6 *)
SRC[127:48) < (SRC[127:112) + DEST[127:112) + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

PAVGB __m64_mm_avg_pu8 (__m64 a, _ m64 b)

PAVGW __m64_mm_avg_pul6 (__m64 a, _ m64 b)
PAVGB _ ml128i _mm_avg_epu8 (__ml128ia, _ m1l28ib)
PAVGW _ m128i _mm_avg_epul6 (__ml28ia, __ml28ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

PAVGB/PAVGW—Average Packed Integers Vol. 2B 4-53

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-54 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PAVGB/PAVGW—Average Packed Integers

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for
Equal

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 74 Ir PCMPEQB mm, Valid Valid Compare packed bytes in
mm/mé64 mm/m64 and mm for equality.
66 OF 74 Ir PCMPEQB xmm1, Valid Valid Compare packed bytes in
xmmz2/m128 xmm2/m128 and xmm1 for
equality.
OF 75 /Ir PCMPEQW mm, Valid Valid Compare packed words in
mm/m64 mm/m64 and mm for equality.
66 OF 75 /r PCMPEQW xmm1, Valid Valid Compare packed words in
xmm2/m128 xmm2/m128 and xmm1 for
equality.
OF 76 Ir PCMPEQD mm, Valid Valid Compare packed doublewords
mm/m64 in mm/m64 and mm for equality.
66 OF 76 Ir PCMPEQD xmm1, Valid Valid Compare packed doublewords
xmm2/m128 in xmm2/m128 and xmm1 for
equality.
Description

Performs an SIMD compare for equality of the packed bytes, words, or doublewords in the desti-
nation operand (first operand) and the source operand (second operand). If a pair of data
elements is equal, the corresponding data element in the destination operand is set to all 1s;
otherwise, it is set to all 0s. The source operand can be an MMX technology register or a 64-bit
memory location, or it can be an XMM register or a 128-bit memory location. The destination
operand can be an MMX technology register or an XMM register.

The PCMPEQB instruction compares the corresponding bytes in the destination and source
operands; the PCMPEQW instruction compares the corresponding words in the destination and
source operands; and the PCMPEQD instruction compares the corresponding doublewords in
the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PCMPEQB instruction with 64-bit operands:
IF DEST[7:0] = SRCJ[7:0]
THEN DEST([7:0) < FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] «— FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol. 2B 4-55

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]
THEN DESTI[7:0) « FFH;
ELSE DESTI[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] = SRC[63:56]
THEN DEST[63:56] <« FFH;
ELSE DEST[63:56] « O; FI;

PCMPEQW instruction with 64-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DEST[15:0] < FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST[63:48] <~ FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]
THEN DESTI[15:0] « FFFFH;
ELSE DEST[15:0] « 0; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] = SRC[63:48]
THEN DEST([63:48] «— FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPEQD instruction with 64-bit operands:
IF DEST[31:0] = SRCI[31.0]
THEN DEST([31:0] < FFFFFFFFH;
ELSE DEST[31:0] « O; FI;
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]
THEN DEST[31:0] «- FFFFFFFFH;
ELSE DEST[31:0] «- O; FI,
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[63:32] = SRC[63:32]
THEN DEST[63:32] < FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPEQB __m64 _mm_cmped_pi8 (_m64 ml, __m64 m2)
PCMPEQW __m64 _mm_cmpeq_pil6 (__m64 ml, __m64 m2)
PCMPEQD __m64 _mm_cmpeq_pi32 (__m64 ml, __m64 m2)

4-56 Vol. 2B PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

PCMPEQB __m128i _mm_cmpeq_epi8 (__m128ia, _ m128ib)
PCMPEQW __m128i _mm_cmpeq_epil6 (__m128ia, _ m128ib)
PCMPEQD _ m128i _mm_cmpeq_epi32 (__m128ia, _ m128ib)

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.
128-hit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal Vol. 2B 4-57

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-58 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal

INSTRUCTION SET REFERENCE, N-Z

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed
Integers for Greater Than

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 64 Ir PCMPGTB mm, Valid Valid Compare packed signed byte
mm/m64 integers in mm and mm/m64 for
greater than.
66 OF 64 /r PCMPGTB xmm1, Valid Valid Compare packed signed byte
xmmz2/m128 integers in xmm1 and
xmm2/m128 for greater than.
OF 65 /Ir PCMPGTW mm, Valid Valid Compare packed signed word
mm/m64 integers in mm and mm/mé64 for
greater than.
66 OF 65 /r PCMPGTW xmm1, Valid Valid Compare packed signed word
xmmz2/m128 integers in xmm1 and
xmm2/m128 for greater than.
OF 66 /r PCMPGTD mm, Valid Valid Compare packed signed
mm/m64 doubleword integers in mm and
mm/m64 for greater than.
66 OF 66 /r PCMPGTD xmm1, Valid Valid Compare packed signed
Xxmmz2/m128 doubleword integers in xmm1 and

xmm2/m128 for greater than.

Description

Performs an SIMD signed compare for the greater value of the packed byte, word, or double-
word integers in the destination operand (first operand) and the source operand (second
operand). If a data element in the destination operand is greater than the corresponding date
element in the source operand, the corresponding data element in the destination operand is set
to all 1s; otherwise, it is set to all 0s. The source operand can be an MMX technology register
or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location. The
destination operand can be an MMX technology register or an XMM register.

The PCMPGTB instruction compares the corresponding signed byte integers in the destination
and source operands; the PCMPGTW instruction compares the corresponding signed word inte-
gers in the destination and source operands; and the PCMPGTD instruction compares the corre-
sponding signed doubleword integers in the destination and source operands.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers Vol. 2B 4-59
for Greater Than

INSTRUCTION SET REFERENCE, N-Z

Operation

PCMPGTB instruction with 64-bit operands:
IF DEST[7:0] > SRCJ[7:0]
THEN DEST([7:0) « FFH;
ELSE DEST[7:0] « O; FI;
(* Continue comparison of 2nd through 7th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] « FFH;
ELSE DEST[63:56] « O; FI;

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]
THEN DEST([7:0) « FFH;
ELSE DESTI[7:0] « O; FI;
(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[63:56] > SRC[63:56]
THEN DEST[63:56] <« FFH;
ELSE DEST[63:56] « O; FI;

PCMPGTW instruction with 64-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DEST[15:0] < FFFFH;
ELSE DEST[15:0] « O; FI;
(* Continue comparison of 2nd and 3rd words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST[63:48] <~ FFFFH;
ELSE DEST[63:48] « 0; FI;

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]
THEN DESTI[15:0] « FFFFH;
ELSE DEST[15:0] « 0; FI;
(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[63:48]
THEN DEST([63:48] «— FFFFH;
ELSE DEST[63:48] « O; FI;

PCMPGTD instruction with 64-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST([31:0] < FFFFFFFFH;
ELSE DEST[31:0] « O; FI,
IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] « O; FI;

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]
THEN DEST[31:0] «- FFFFFFFFH;
ELSE DEST[31:0] «- O; FI,
(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)

4-60 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers
for Greater Than

INSTRUCTION SET REFERENCE, N-Z

IF DEST[63:32] > SRC[63:32]
THEN DEST[63:32] « FFFFFFFFH;
ELSE DEST[63:32] < O; FI;

Intel C/C++ Compiler Intrinsic Equivalents

PCMPGTB
PCMPGTW
DCMPGTD
PCMPGTB
PCMPGTW
DCMPGTD

Flags Affected

None.

__m64 _mm_cmpgt_pi8 (__m64 ml, _ m64 m2)
__m64 _mm_pcmpgt_pil6 (__m64 ml, __m64 m2)
__m64 _mm_pcmpgt_pi32 (__m64 ml, __m64 m2)
_m128i _mm_cmpgt_epi8 (_m128ia, _ m128ib
__m128i _mm_cmpgt_epil6 (_m128ia, __ ml28ib
__m128i _mm_cmpgt_epi32 (_m128ia, __ml28ib

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers Vol. 2B 4-61

for Greater Than

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
4-62 Vol. 2B PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers

for Greater Than

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers Vol. 2B 4-63
for Greater Than

INSTRUCTION SET REFERENCE, N-Z

PEXTRW—Extract Word

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFC5/rib PEXTRW r32, Valid Valid Extract the word specified by
mm, imm8 imm8 from mm and move it to
r32, bits 15-0. Zero-extend the
result.
REX.W +0F C5/rib PEXTRW r64, Valid N.E. Extract the word specified by
mm, imm8 imm8 from mm and move it to
r64, bits 15-0. Zero-extend the
result.
66 OF C5/rib PEXTRW r32, Valid Valid Extract the word specified by
xmm, imm8 imm8 from xmm and move it to
r32, bits 15-0. Zero-extend the
result.
REX.W + 66 OF C5 PEXTRW r64, Valid N.E. Extract the word specified by
Irib Xxmm, imm8 imm8 from xmm and move it to
r64, bits 15-0. Zero-extend the
result.
Description

Copies the word in the source operand (second operand) specified by the count operand (third
operand) to the destination operand (first operand). The source operand can be an MMX tech-
nology register or an XMM register. The destination operand is the low word of a general-
purpose register. The count operand is an 8-bit immediate. When specifying a word location in
an MMX technology register, the 2 least-significant bits of the count operand specify the loca-
tion; for an XMM register, the 3 least-significant bits specify the location. The high word of the
destination operand is cleared (set to all 0s).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64-bit general
purpose registers.

4-64 Vol. 2B PEXTRW—Extract Word

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (64-Bit Mode and REX.W used and 64-bit register selected)
THEN
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL «~ COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] <« ZERO_FILL; };

FOR (PEXTRW instruction with 128-bit source operand)

{ SEL «- COUNT AND 7H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r64[15:0] « TEMP[15:0];
r64[63:16] « ZERO_FILL; }

ELSE
FOR (PEXTRW instruction with 64-bit source operand)

{ SEL <« COUNT AND 3H;
TEMP « (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] «- TEMP[15:0];
r32[31:16] « ZERO_FILL; };
FOR (PEXTRW instruction with 128-bit source operand)

{ SEL <« COUNT AND 7H;
TEMP <« (SRC >> (SEL * 16)) AND FFFFH;
r32[15:0] « TEMP[15:0];
r32[31:16] <~ ZERO_FILL; };
Fl;

Intel C/C++ Compiler Intrinsic Equivalent
PEXTRW int_mm_extract_pil6 (__m64 a, int n)
PEXTRW int_mm_extract_epil6 (__m128i a, intimm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment
limit.

PEXTRW—Extract Word Vol. 2B 4-65

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to FFFFH.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-66 Vol. 2B PEXTRW—Extract Word

PINSRW—Insert Word

INSTRUCTION SET REFERENCE, N-Z

Opcode
OF C4/rib

REX.W +0F C4 /rib

66 OF C4 Irib

REX.W + 66 OF C4 /r ib

Instruction

PINSRW mm,
r32/m16, imm8

PINSRW mm,
r64/m16, imm8

PINSRW xmm,
r32/m16, imm8

PINSRW xmm,
r64/m16, imm8

64-Bit
Mode

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid

N.E.

Valid

N.E.

Description

Insert the low word from
r32 or from m16 into mm at
the word position specified
by imm8

Insert the low word from
r64 or from m16 into mm at
the word position specified
by imm8

Move the low word of r32 or
from m16 into xmm at the
word position specified by
imm8.

Move the low word of r64 or
from m16 into xmm at the
word position specified by
imma8.

Description

Copies a word from the source operand (second operand) and inserts it in the destination
operand (first operand) at the location specified with the count operand (third operand). (The
other words in the destination register are left untouched.) The source operand can be a general-
purpose register or a 16-bit memory location. (When the source operand is a general-purpose
register, the low word of the register is copied.) The destination operand can be an MMX tech-
nology register or an XMM register. The count operand is an 8-bit immediate. When specifying
aword location in an MMX technology register, the 2 least-significant bits of the count operand
specify the location; for an XMM register, the 3 least-significant bits specify the location.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general

purpose registers.

Operation

PINSRW instruction with 64-bit source operand:
SEL <~ COUNT AND 3H;

CASE (Determine word position) OF

SEL « 0:
SEL « 1:
SEL « 2:
SEL « 3:

MASK « 000000000000FFFFH;
MASK <« 00000000FFFFO000H;
MASK « 0000FFFFO0000000H;
MASK « FFFF000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

PINSRW instruction with 128-bit source operand:
SEL <~ COUNT AND 7H;

PINSRW—Insert Word

Vol. 2B 4-67

INSTRUCTION SET REFERENCE, N-Z

CASE (Determine word position) OF
SEL <« 0: MASK « 0000000000000000000000000000FFFFH;
SEL« 1: MASK « 000000000000000000000000FFFFO000H;
SEL <+~ 2: MASK « 00000000000000000000FFFF00000000H;
SEL « 3: MASK « 0000000000000000FFFF000000000000H;
SEL « 4: MASK « 000000000000FFFF0000000000000000H;
SEL «5: MASK « 00000000FFFF00000000000000000000H;
SEL < 6: MASK « 0000FFFF000000000000000000000000H;
SEL <« 7: MASK « FFFF0000000000000000000000000000H;
DEST « (DEST AND NOT MASK) OR (((SRC << (SEL * 16)) AND MASK);

Intel C/C++ Compiler Intrinsic Equivalent
PINSRW __m64 _mm_insert_pil6 (__m64 a, int d, int n)
PINSRW __m128i _mm_insert_epil6 (__m128ia, int b, intimm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to FFFFH.

4-68 Vol. 2B PINSRW—Insert Word

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

PINSRW—Insert Word

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Vol. 2B 4-69

INSTRUCTION SET REFERENCE, N-Z

PMADDWD—Multiply and Add Packed Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF F5 /r PMADDWD mm, Valid Valid Multiply the packed words in mm by
mm/m64 the packed words in mm/m64, add
adjacent doubleword results, and
store in mm.
66 OF F5 /r PMADDWD xmm1, Valid Valid Multiply the packed word integers in
xmm2/m128 xmm1 by the packed word integers
in xmm2/m128, add adjacent
doubleword results, and store in
xmm1.

Description

Multiplies the individual signed words of the destination operand (first operand) by the corre-
sponding signed words of the source operand (second operand), producing temporary signed,
doubleword results. The adjacent doubleword results are then summed and stored in the desti-
nation operand. For example, the corresponding low-order words (15-0) and (31-16) in the
source and destination operands are multiplied by one another and the doubleword results are
added together and stored in the low doubleword of the destination register (31-0). The same
operation is performed on the other pairs of adjacent words. (Figure 4-2 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

The PMADDWD instruction wraps around only in one situation: when the 2 pairs of words
being operated on in a group are all 8000H. In this case, the result wraps around to 80000000H.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-70 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP X3 * Y3 X2 * Y2 X1 * Y1 X0 * YO
DEST (X3%Y3) + (X2+Y2)| (X1#Y1) + (X0*YO)

Figure 4-2. PMADDWD Execution Model Using 64-bit Operands

Operation

PMADDWD instruction with 64-bit operands:
DEST[31:0] < (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);

PMADDWD instruction with 128-bit operands:
DEST[31:0] < (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16]);
DEST[63:32] « (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48]);
DEST[95:64] « (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80]);
DEST[127:96] « (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalent

PMADDWD __m64 _mm_madd_pil6(__m64 ml, __m64 m2)

PMADDWD _m128i _mm_madd_epil6 (__m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

PMADDWD—Multiply and Add Packed Integers Vol. 2B 4-71

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-72 Vol. 2B PMADDWD—Multiply and Add Packed Integers

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMADDWD—Multiply and Add Packed Integers Vol. 2B 4-73

INSTRUCTION SET REFERENCE, N-Z

PMAXSW—Maximum of Packed Signed Word Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EE Ir PMAXSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mm2/m64 and mm1 and return
maximum values.
66 OF EE /r PMAXSW xmm1, Valid Valid Compare signed word integers in
xmm2/m128 xmm2/m128 and xmm1 and return
maximum values.

Description

Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the maximum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMAXSW instruction for 64-bit operands:
IF DEST[15:0] > SRCJ[15:0]) THEN
DEST[15:0] «- DEST[15:0];
ELSE
DEST[15:0] < SRCI[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] > SRC[63:48]) THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] «— SRC[63:48]; FI;

PMAXSW instruction for 128-bit operands:
IF DEST[15:0] > SRCJ[15:0]) THEN
DEST[15:0] «~ DEST[15:0];
ELSE
DEST[15:0] < SRCI[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] > SRC[127:112]) THEN
DEST[127:112] «- DEST[127:112];
ELSE
DEST[127:112] « SRC[127:112]; FI;

4-74 Vol. 2B PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMAXSW __m64 _mm_max_pil6(__m64 a, __m64 b)
PMAXSW _ m128i _mm_max_epil6 (__m128ia, __ ml128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PMAXSW—Maximum of Packed Signed Word Integers Vol. 2B 4-75

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-76 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMAXSW—Maximum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMAXUB—Maximum of Packed Unsigned Byte Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DE /r PMAXUB mm1, Valid Valid Compare unsigned byte integers
mm2/m64 in mm2/m64 and mm1 and
returns maximum values.
66 OF DE /r PMAXUB xmm1, Valid Valid Compare unsigned byte integers
xmm2/m128 in xmm2/m128 and xmm1 and

returns maximum values.

Description

Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the maximum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMAXUB instruction for 64-bit operands:
IF DESTI[7:0] > SRC[17:0]) THEN
DEST[7:0] < DEST[7:0];
ELSE
DESTI[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] > SRC[63:56]) THEN
DEST[63:56] «- DEST[63:56];
ELSE
DEST[63:56] «— SRC[63:56]; FI;

PMAXUB instruction for 128-bit operands:
IF DESTI[7:0] > SRC[17:0]) THEN
DEST[7:0] < DEST[7:0];
ELSE
DESTI[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] > SRC[127:120]) THEN
DEST[127:120] «~ DEST[127:120];
ELSE
DEST[127:120] « SRC[127:120]; FI;

PMAXUB—Maximum of Packed Unsigned Byte Integers Vol. 2B 4-77

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMAXUB __m64 _mm_max_pu8(_m64 a, __m64 b)
PMAXUB _ m128i _mm_max_epu8 (__ml128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-78 Vol. 2B PMAXUB—Maximum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMAXUB—Maximum of Packed Unsigned Byte Integers Vol. 2B 4-79

INSTRUCTION SET REFERENCE, N-Z

PMINSW—Minimum of Packed Signed Word Integers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EA/r PMINSW mm1, Valid Valid Compare signed word integers in
mm2/m64 mm2/m64 and mm1 and return minimum
values.
66 OF EA/r PMINSW xmml1, Valid Valid Compare signed word integers in
xmm2/m128 xmm2/m128 and xmm1 and return
minimum values.

Description

Performs an SIMD compare of the packed signed word integers in the destination operand (first
operand) and the source operand (second operand), and returns the minimum value for each pair
of word integers to the destination operand. The source operand can be an MMX technology
register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory location.
The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMINSW instruction for 64-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] «— DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd and 3rd words in source and destination operands *)
IF DEST[63:48] < SRC[63:48] THEN
DEST[63:48] «— DEST[63:48];
ELSE
DEST[63:48] < SRC[63:48]; FI;

PMINSW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] < DEST[15:0];
ELSE
DEST[15:0] < SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC/m64[127:112] THEN
DEST[127:112] «— DEST[127:112];
ELSE
DEST[127:112] « SRC[127:112]; FI;

4-80 Vol. 2B PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMINSW __m64 _mm_min_pil6 (__m64 a, _ m64 b)
PMINSW _ m128i _mm_min_epil6 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

PMINSW—Minimum of Packed Signed Word Integers Vol. 2B 4-81

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-82 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMINSW—Minimum of Packed Signed Word Integers

INSTRUCTION SET REFERENCE, N-Z

PMINUB—Minimum of Packed Unsigned Byte Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF DA Ir PMINUB mm1, Valid Valid Compare unsigned byte integers in
mm2/m64 mm2/m64 and mm1 and returns
minimum values.
66 OF DA /r PMINUB xmm1, Valid Valid Compare unsigned byte integers in
xmm2/m128 xmm2/m128 and xmm1 and returns

minimum values.

Description

Performs an SIMD compare of the packed unsigned byte integers in the destination operand
(first operand) and the source operand (second operand), and returns the minimum value for
each pair of byte integers to the destination operand. The source operand can be an MMX tech-
nology register or a 64-bit memory location, or it can be an XMM register or a 128-bit memory
location. The destination operand can be an MMX technology register or an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PMINUB instruction for 64-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] < DEST[7:0];
ELSE
DESTI[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 7th bytes in source and destination operands *)
IF DEST[63:56] < SRC[63:56] THEN
DEST[63:56] «- DEST[63:56];
ELSE
DEST[63:56] «— SRC[63:56]; FI;

PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[17:0] THEN
DEST[7:0] < DEST[7:0];
ELSE
DESTI[7:0] < SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] «~ DEST[127:120];
ELSE
DEST[127:120] « SRC[127:120]; FI;

PMINUB—Minimum of Packed Unsigned Byte Integers Vol. 2B 4-83

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
PMINUB __m64 _m_min_pu8 (__m64 a, __m64 b)
PMINUB _ m128i _mm_min_epu8 (__m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-84 Vol. 2B PMINUB—Minimum of Packed Unsigned Byte Integers

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMINUB—Minimum of Packed Unsigned Byte Integers Vol. 2B 4-85

INSTRUCTION SET REFERENCE, N-Z

PMOVMSKB—Move Byte Mask

64-Bit Compat/

Opcode Instruction Mode Leg Mode
OF D7 Ir PMOVMSKB Valid Valid

r32, mm
REX.W + OF D7 /r PMOVMSKB Valid N.E.

64, mm
66 OF D7 /r PMOVMSKB Valid Valid

r32, xmm
REX.W + 66 OF D7 /r PMOVMSKB Valid N.E.

r64, xmm

Description

Move a byte mask of mm to
r32.

Move a byte mask of mm to
the lower 32-bits of r64 and
zero-fill the upper 32-bits.
Move a byte mask of xmm to
r32.

Move a byte mask of xmm to
the lower 32-bits of r64 and
zero-fill the upper 32-bits.

Description

Creates a mask made up of the most significant bit of each byte of the source operand (second
operand) and stores the result in the low byte or word of the destination operand (first operand).
The source operand is an MMX technology register or an XMM register; the destination
operand is a general-purpose register. When operating on 64-bit operands, the byte mask is
8 bits; when operating on 128-bit operands, the byte mask is 16-bits.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15, R8-15). Use of REX.W permits the use of 64 bit general

purpose registers.

Operation

PMOVMSKB instruction with 64-bit source operand and r32:
r32[0] « SRC[7];
r32[1] «- SRC[15];
(* Repeat operation for bytes 2 through 6 *)
r32[7] « SRC[63];
r32[31:8] «+ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] « SRCI7];
r32[1] « SRC[15];
(* Repeat operation for bytes 2 through 14 *)
r32[15] < SRC[127];
r32[31:16] <~ ZERO_FILL;

PMOVMSKB instruction with 64-bit source operand and r64:
r64[0] « SRCI7];
ré4[1] « SRC[15];
(* Repeat operation for bytes 2 through 6 *)
ré4[7] « SRC[63];

4-86 Vol. 2B

PMOVMSKB—Move Byte Mask

INSTRUCTION SET REFERENCE, N-Z

r64[63:8] «~ ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r64:
r64[0] «— SRC[7];
r64[1] « SRCJ[15];
(* Repeat operation for bytes 2 through 14 *)
r64[15] < SRC[127];
r64[63:16] < ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent
PMOVMSKB int_mm_movemask_pi8(__m64 a)
PMOVMSKB int_mm_movemask_epi8 (__m128i a)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

PMOVMSKB—Move Byte Mask Vol. 2B 4-87

INSTRUCTION SET REFERENCE, N-Z

PMULHUW—Multiply Packed Unsigned Integers and Store High
Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFE4 /I PMULHUW mm1, Valid Valid Multiply the packed unsigned word
mm2/m64 integers in mm1 register and

mm2/m64, and store the high 16
bits of the results in mm1.

66 OF E4 Ir PMULHUW xmm1, Valid Valid Multiply the packed unsigned word
xmmz2/m128 integers in xmm21 and
xmmz2/m128, and store the high
16 bits of the results in xmm1.

Description

Performs an SIMD unsigned multiply of the packed unsigned word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each 32-bit intermediate results in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a
64-bit memory location, or it can be an XMM register or a 128-bit memory location. The desti-
nation operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP | Z3=X3#*Y3 72 =X2 % Y2 Z1=X1#*Y1 Z0=X0 * YO
DEST 73[31:16] | Z2[31:16] | Z1[31:16] | ZO[31:16]

Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands

Operation

PMULHUW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];

4-88 Vol. 2B PMULHUW—Multiply Packed Unsigned Integers and Store High Result

DEST[15:0] «

DEST[31:16] «
DEST[47:32]
DEST[63:48] <

INSTRUCTION SET REFERENCE, N-Z

TEMPO[31:16];
TEMP1[31:16];
TEMP2[31:16];
TEMP3[31:16];

PMULHUW instruction with 128-bit operands:

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMPA4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «

DEST[31:16] «
DEST[47:32] «
DEST[63:48] <
DEST[79:64] «
DEST[95:80] «

DEST[15:0] * SRC[15:0]; (* Unsigned multiplication *)
DEST[31:16] * SRC[31:16];
DEST[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[31:16];

TEMP1[31:16];

TEMP2[31:16];

TEMP3[31:16];

TEMP4[31:16];

TEMP5[31:16];

DEST[111:96] «- TEMP6[31:16];
DEST[127:112] «- TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHUW __m64 _mm_mulhi_pul6(__m64 a, __m64 b)
PMULHUW __m128i _mm_mulhi_epul6 (_m128ia, __ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol. 2B 4-89

INSTRUCTION SET REFERENCE, N-Z

#NM

#MF
#PF(fault-code)
#AC(0)

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

4-90 Vol. 2B

PMULHUW—Multiply Packed Unsigned Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULHUW—Multiply Packed Unsigned Integers and Store High Result Vol. 2B 4-91

INSTRUCTION SET REFERENCE, N-Z

PMULHW—Multiply Packed Signed Integers and Store High Result

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OFE5 /Ir PMULHW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and

mm2/m64, and store the high 16 bits
of the results in mm1.

66 OF E5 /r PMULHW xmm1, Valid Valid Multiply the packed signed word
Xxmm2/m128 integers in xmm1 and xmm2/m128,
and store the high 16 bits of the
results in xmm1.

Description

Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the high 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation

PMULHW instruction with 64-bit operands:

TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];

TEMP2[31:0] « DEST[47:32] * SRC[47:32];

TEMP3[31:0] « DEST[63:48] * SRC[63:48];

DEST[15:0] « TEMPO[31:16];

DEST[31:16] « TEMP1[31:16];

DEST[47:32] < TEMP2[31:16];

DEST[63:48] « TEMP3[31:16];

PMULHW instruction with 128-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DEST[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
TEMP4[31:0] « DEST[79:64] * SRC[79:64];
TEMP5[31:0] « DEST[95:80] * SRC[95:80];
TEMP6[31:0] « DEST[111:96] * SRC[111:96];
TEMP7[31:0] « DEST[127:112] * SRC[127:112];
DEST[15:0] < TEMPO[31:16];
DEST[31:16] « TEMP1[31:16];

4-92 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

DEST[47:32]
DEST[63:48] <
DEST[79:64] <
DEST[95:80] <

INSTRUCTION SET REFERENCE, N-Z

TEMP2[31:16];
TEMP3[31:16];
TEMP4[31:16];
TEMP5[31:16];

DEST[111:96] «- TEMP6[31:16];
DEST[127:112] < TEMP7[31:16];

Intel C/C++ Compiler Intrinsic Equivalent
PMULHW __m64 _mm_mulhi_pil6 (__m64 m1, _ m64 m2)
PMULHW _ m128i _mm_mulhi_epil6 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result Vol. 2B 4-93

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-94 Vol. 2B PMULHW—Multiply Packed Signed Integers and Store High Result

INSTRUCTION SET REFERENCE, N-Z

#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULHW—Multiply Packed Signed Integers and Store High Result Vol. 2B 4-95

INSTRUCTION SET REFERENCE, N-Z

PMULLW—Multiply Packed Signed Integers and Store Low Result

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D5 /r PMULLW mm, Valid Valid Multiply the packed signed word
mm/m64 integers in mm1 register and
mm2/m64, and store the low 16 bits
of the results in mm1.
66 OF D5 /r PMULLW xmm1, Valid Valid Multiply the packed signed word
xmm2/m128 integers in xmm1 and xmm2/m128,
and store the low 16 bits of the
results in xmm1.

Description

Performs an SIMD signed multiply of the packed signed word integers in the destination
operand (first operand) and the source operand (second operand), and stores the low 16 bits of
each intermediate 32-bit result in the destination operand. (Figure 4-3 shows this operation
when using 64-bit operands.) The source operand can be an MMX technology register or a 64-
bit memory location, or it can be an XMM register or a 128-bit memory location. The destina-
tion operand can be an MMX technology register or an XMM register.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

SRC X3 X2 X1 X0
DEST Y3 Y2 Y1 YO

TEMP | Z3=X3#Y3 Z2=X2*Y2 Z1=X1%Y1 Z0=X0 * Y0
DEST Z3[15:0] | z2[15:0] | Z1[15:0] | ZO[15:0]

Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands

Operation

PMULLW instruction with 64-bit operands:
TEMPO[31:0] « DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
TEMP1[31:0] « DEST[31:16] * SRC[31:16];
TEMP2[31:0] « DESTI[47:32] * SRC[47:32];
TEMP3[31:0] « DEST[63:48] * SRC[63:48];
DEST[15:0] « TEMPO[15:0];

4-96 Vol. 2B PMULLW—Multiply Packed Signed Integers and Store Low Result

DEST[31:16] <
DEST[47:32] «
DEST[63:48] <

INSTRUCTION SET REFERENCE, N-Z

TEMP1[15:0];
TEMP2[15:0];
TEMP3[15:0];

PMULLW instruction with 64-bit operands:

TEMPO[31:0] «
TEMP1[31:0] «
TEMP2[31:0] «
TEMP3[31:0] «
TEMPA4[31:0] «
TEMP5[31:0] «
TEMP6[31:0] «
TEMP7[31:0] «
DEST[15:0] «

DEST[31:16] <
DEST[47:32] «
DEST[63:48] <
DEST[79:64] <
DEST[95:80] «

DEST[15:0] * SRC[15:0]; (* Signed multiplication *)
DEST[31:16] * SRC[31:16];
DESTI[47:32] * SRC[47:32];
DEST[63:48] * SRC[63:48];
DEST[79:64] * SRC[79:64];
DEST[95:80] * SRC[95:80];
DEST[111:96] * SRC[111:96];
DEST[127:112] * SRC[127:112];
TEMPO[15:0];

TEMP1[15:0];

TEMP2[15:0];

TEMP3[15:0];

TEMPA4[15:0];

TEMP5[15:0];

DEST[111:96] «- TEMP6[15:0];
DEST[127:112] <~ TEMP7[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PMULLW __m64 _mm_mullo_pil6(__m64 ml, _ m64 m2)
PMULLW _ m128i _mm_mullo_epil6 (__m128ia, _ m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol. 2B 4-97

INSTRUCTION SET REFERENCE, N-Z

#NM

#MF
#PF(fault-code)
#AC(0)

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

4-98 Vol. 2B

PMULLW—Multiply Packed Signed Integers and Store Low Result

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PMULLW—Multiply Packed Signed Integers and Store Low Result Vol. 2B 4-99

INSTRUCTION SET REFERENCE, N-Z

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F4 Ir PMULUDQ mm1, Valid Valid Multiply unsigned doubleword integer
mm2/m64 in mm1 by unsigned doubleword

integer in mm2/m64, and store the
quadword result in mm1.

66 OF F4 Ir PMULUDQ xmm1, Valid Valid Multiply packed unsigned
xmm2/m128 doubleword integers in xmmZ1 by
packed unsigned doubleword
integers in xmm2/m128, and store
the quadword results in xmmZ1.

Description

Multiplies the first operand (destination operand) by the second operand (source operand) and
stores the result in the destination operand. The source operand can be an unsigned doubleword
integer stored in the low doubleword of an MMX technology register or a 64-bit memory loca-
tion, or it can be two packed unsigned doubleword integers stored in the first (low) and third
doublewords of an XMM register or an 128-bit memory location. The destination operand can
be an unsigned doubleword integer stored in the low doubleword an MMX technology register
or two packed doubleword integers stored in the first and third doublewords of an XMM
register. The result is an unsigned quadword integer stored in the destination an MMX tech-
nology register or two packed unsigned quadword integers stored in an XMM register. When a
quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around
and the low 64 bits are written to the destination element (that is, the carry is ignored).

For 64-bit memory operands, 64 bits are fetched from memory, but only the low doubleword is
used in the computation; for 128-bit memory operands, 128 bits are fetched from memory, but
only the first and third doublewords are used in the computation.

n 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access addi-
tional registers (XMM8-XMM15).

Operation

PMULUDQ instruction with 64-Bit operands:
DEST[63:0] «- DEST[31:0] * SRC[31:0];

PMULUDQ instruction with 128-Bit operands:
DEST[63:0] « DEST[31:0] * SRC[31:0];
DEST[127:64] «— DEST[95:64] * SRC[95:64];

Intel C/C++ Compiler Intrinsic Equivalent
PMULUDQ __m64 _mm_mul_su32 (__m64 a, __m64 b)
PMULUDQ __m128i _mm_mul_epu32 (_m128ia, __m128ib)

4-100 Vol. 2B PMULUDQ—Multiply Packed Unsigned Doubleword Integers

Flags Affected

None.

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

PMULUDQ—Multiply Packed Unsigned Doubleword Integers Vol. 2B 4-101

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-102 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is

PMULUDQ—Multiply Packed Unsigned Doubleword Integers

INSTRUCTION SET REFERENCE, N-Z

POP—Pop a Value from the Stack

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

8F /0 POP r/m16 Valid Valid Pop top of stack into m16; increment stack
pointer.

8F /0 POP r/m32 N.E. Valid Pop top of stack into m32; increment stack
pointer.

8F /0 POP r/m64 Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.

58+ rw POP r16 Valid Valid Pop top of stack into r16; increment stack
pointer.

58+ rd POP r32 N.E. Valid Pop top of stack into r32; increment stack
pointer.

58+ rd POP r64 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.

1F POP DS Invalid Valid Pop top of stack into DS; increment stack
pointer.

07 POP ES Invalid Valid Pop top of stack into ES; increment stack
pointer.

17 POP SS Invalid Valid Pop top of stack into SS; increment stack
pointer.

OF A1 POP FS Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.

OF A1 POP FS N.E. Valid Pop top of stack into FS; increment stack
pointer by 32 bits.

OF A1 POP FS Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.

OF A9 POP GS Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.

OF A9 POP GS N.E. Valid Pop top of stack into GS; increment stack
pointer by 32 bits.

OF A9 POP GS Valid N.E. Pop top of stack into GS; increment stack

pointer by 64 bits.

Description

Loads the value from the top of the stack to the location specified with the destination operand
(or explicit opcode) and then increments the stack pointer. The destination operand can be a
general-purpose register, memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16, 32, 64 bits)
and the operand-size attribute of the current code segment determines the amount the stack
pointer is incremented (2, 4, 8 bytes).

For example, if the address- and operand-size attributes are 32, the 32-bit ESP register (stack
pointer) is incremented by 4; if they are 16, the 16-bit SP register is incremented by 2. (The
B flag in the stack segment’s segment descriptor determines the stack’s address-size attribute,

POP—Pop a Value from the Stack Vol. 2B 4-103

INSTRUCTION SET REFERENCE, N-Z

and the D flag in the current code segment’s segment descriptor, along with prefixes, determines
the operand-size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing
a general protection fault. However, any subsequent attempt to reference a segment whose
corresponding segment register is loaded with a NULL value causes a general protection excep-
tion (#GP). In this situation, no memory reference occurs and the saved value of the segment
register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to OH as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt®. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). When in 64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS,
ES, SS are not valid. See the summary chart at the beginning of this section for encoding data
and limits.

1. If a code instruction breakpoint (for debug) is placed on an instruction located immediately after a POP
SS instruction, the breakpoint may not be triggered. However, in a sequence of instructions that POP the
SS register, only the first instruction in the sequence is guaranteed to delay an interrupt.

In the following sequence, interrupts may be recognized before POP ESP executes:
POP SS

POP SS

POP ESP

4-104 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

Operation

IF StackAddrSize = 32
THEN
IF OperandSize = 32

THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;

ELSE (* OperandSize = 16*)
DEST « SS:ESP; (* Copy a word *)

ESP « ESP + 2;
FI;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
DEST « SS:RSP; (* Copy quadword *)
RSP <« RSP + 8;
ELSE (* OperandSize = 16*)
DEST « SS:RSP; (* Copy a word *)
RSP < RSP + 2;
Fl;
Fl;
ELSE StackAddrSize = 16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP « SP + 2;
ELSE (* OperandSize = 32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
FI;

Fl;

Loading a segment register while in protected mode results in special actions, as described in
the following listing. These checks are performed on the segment selector and the segment
descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);

POP—Pop a Value from the Stack Vol. 2B 4-105

INSTRUCTION SET REFERENCE, N-Z

IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;

Fl;
Fl;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded,;
THEN
IF segment selector is NULL
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
or segment selector's RPL = CPL
or segment is not a writable data segment
or DPL # CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;
Fl;
Fl;

IF DS, ES, FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))
THEN #GP(selector);
FI;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;

4-106 Vol. 2B POP—Pop a Value from the Stack

FI;
Fl;

INSTRUCTION SET REFERENCE, N-Z

IF DS, ES, FS, or GS is loaded with a NULL selector

THEN

SegmentRegister «— segment selector;
SegmentRegister «— segment descriptor;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)

#SS(selector)
#NP

#PF(fault-code)
#AC(0)

If attempt is made to load SS register with NULL segment selector.
If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

If the SS register is being loaded and the segment pointed to is marked not
present.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

If a page fault occurs.

If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

POP—Pop a Value from the Stack Vol. 2B 4-107

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a page fault occurs.

If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(U)
#GP(selector)

#AC(0)

#PF(fault-code)
#NP

4-108 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not
a data or readable code segment.

If the FS or GS register is being loaded and the segment pointed to is a data
or nonconforming code segment, but both the RPL and the CPL are greater
than the DPL.

If an unaligned memory reference is made while alignment checking is
enabled.

If a page fault occurs.

If the FS or GS register is being loaded and the segment pointed to is
marked not present.

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, N-Z

POPA/POPAD—Pop All General-Purpose Registers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
61 POPA Invalid Valid Pop DI, SI, BP, BX, DX, CX, and AX.
61 POPAD Invalid Valid Pop EDI, ESI, EBP, EBX, EDX, ECX,

and EAX.

Description

Pops doublewords (POPAD) or words (POPA) from the stack into the general-purpose registers.
The registers are loaded in the following order: EDI, ESI, EBP, EBX, EDX, ECX, and EAX (if
the operand-size attribute is 32) and DI, SlI, BP, BX, DX, CX, and AX (if the operand-size
attribute is 16). (These instructions reverse the operation of the PUSHA/PUSHAD instructions.)
The value on the stack for the ESP or SP register is ignored. Instead, the ESP or SP register is
incremented after each register is loaded.

The POPA (pop all) and POPAD (pop all double) mnemonics reference the same opcode. The
POPA instruction is intended for use when the operand-size attribute is 16 and the POPAD
instruction for when the operand-size attribute is 32. Some assemblers may force the operand
size to 16 when POPA is used and to 32 when POPAD is used (using the operand-size override
prefix [66H] if necessary). Others may treat these mnemonics as synonyms (POPA/POPAD) and
use the current setting of the operand-size attribute to determine the size of values to be popped
from the stack, regardless of the mnemonic used. (The D flag in the current code segment’s
segment descriptor determines the operand-size attribute.)

This instruction executes as described in non-64-bit modes. It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
IF OperandSize = 32 (* Instruction = POPAD *)

THEN
EDI « Pop();
ESI « Pop();
EBP « Pop();
Increment ESP by 4; (* Skip next 4 bytes of stack *)
EBX « Pop();
EDX « Pop();
ECX « Pop();
EAX « Pop();
ELSE (* OperandSize = 16, instruction = POPA *)
DI « Pop();
Sl « Pop();

POPA/POPAD—Pop All General-Purpose Registers Vol. 2B 4-109

INSTRUCTION SET REFERENCE, N-Z

BP « Pop();
Increment ESP by 2; (* Skip next 2 bytes of stack *)
BX « Pop();
DX « Pop();
CX « Pop();
AX « Pop();
Fl,
Fl,

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the starting or ending stack address is not within the stack segment.

Virtual-8086 Mode Exceptions

#SS(0) If the starting or ending stack address is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-110 Vol. 2B POPA/POPAD—Pop All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9D POPF Valid Valid Pop top of stack into lower 16 bits of
EFLAGS.
9D POPFD N.E. Valid Pop top of stack into EFLAGS.
REX.W + 9D POPFQ Valid N.E. Pop top of stack and zero-extend into
RFLAGS.

Description

Pops a doubleword (POPFD) from the top of the stack (if the current operand-size attribute is
32) and stores the value in the EFLAGS register, or pops a word from the top of the stack (if the
operand-size attribute is 16) and stores it in the lower 16 bits of the EFLAGS register (that is,
the FLAGS reqgister). These instructions reverse the operation of the PUSHF/PUSHFD instruc-
tions.

The POPF (pop flags) and POPFD (pop flags double) mnemonics reference the same opcode.
The POPF instruction is intended for use when the operand-size attribute is 16; the POPFD
instruction is intended for use when the operand-size attribute is 32. Some assemblers may force
the operand size to 16 for POPF and to 32 for POPFD. Others may treat the mnemonics as
synonyms (POPF/POPFD) and use the setting of the operand-size attribute to determine the size
of values to pop from the stack.

The effect of POPF/POPFD on the EFLAGS register changes, depending on the mode of oper-
ation. When the processor is operating in protected mode at privilege level 0 (or in real-address
mode, the equivalent to privilege level 0), all non-reserved flags in the EFLAGS register except
VIP, VIF, and VM may be modified. VIP, VIF and VM remain unaffected.

When operating in protected mode with a privilege level greater than 0, but less than or equal to
IOPL, all flags can be modified except the IOPL field and VIP, VIF, and VM. Here, the IOPL
flags are unaffected, the VIP and VIF flags are cleared, and the VM flag is unaffected. The inter-
rupt flag (IF) is altered only when executing at a level at least as privileged as the IOPL. If a
POPF/POPFD instruction is executed with insufficient privilege, an exception does not occur
but privileged bits do not change.

When operating in virtual-8086 mode, the IOPL must be equal to 3 to use POPF/POPFD instruc-
tions; VM, RF, IOPL, VIP, and VIF are unaffected. If the IOPL is less than 3, POPF/POPFD
causes a general-protection exception (#GP).

In 64-bit mode, use REX.W to pop the top of stack to RFLAGS. The mnemonic assigned is
POPFQ (note that the 32-bit operand is not encodable). POPFQ pops 64 bits from the stack,
loads the lower 32 bits into RFLAGS, and zero extends the upper bits of RFLAGS.

See Chapter 3 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
more information about the EFLAGS registers.

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol. 2B 4-111

INSTRUCTION SET REFERENCE, N-Z

Operation

IF VM =0 (* Not in Virtual-8086 Mode *)
THEN IFCPL=0
THEN
IF OperandSize = 32;

THEN
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified;
VIP and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE IF (Operandsize = 64)
RFLAGS = Pop(); (* 64-bit pop *)
(* All non-reserved flags except VIP, VIF, and VM can be modified; VIP
and VIF are cleared; VM and all reserved bits are unaffected *)

ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved flags can be modified *)

Fl;
ELSE (* CPL >07%)
IF OperandSize = 32
THEN
IF CPL > IOPL
THEN
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can be
modified; IF, IOPL, and VM, and all reserved bits are unaffected,;
VIP and VIF are cleared *)
ELSE
EFLAGS <« Pop(); (* 32-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
Fl;
ELSE IF (Operandsize = 64)
IF CPL > IOPL
THEN
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IF, IOPL, VIP, and VIF can
be madified; IF, IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
ELSE
RFLAGS « Pop(); (* 64-bit pop *)
(* All non-reserved bits except IOPL, VIP, and VIF can be
modified; IOPL, VM, and all reserved bits are unaffected;
VIP and VIF are cleared *)
FI;
ELSE (* OperandSize = 16 *)
EFLAGS[15:0] « Pop(); (* 16-bit pop *)
(* All non-reserved bits except IOPL can be modified; IOPL and all
reserved bits are unaffected *)
Fl;
FI;
ELSE (* In Virtual-8086 Mode *)
IFIOPL=3

THEN IF OperandSize = 32

4-112 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

THEN
EFLAGS « Pop();
(* All non-reserved bits except VM, RF, IOPL, VIP, and VIF can be
modified; VM, RF, IOPL, VIP, VIF, and all reserved bits are unaffected *)
ELSE
EFLAGS[15:0] « Pop(); FI;
(* All non-reserved bits except IOPL can be modified;
IOPL and all reserved bits are unaffected *)
ELSE (* IOPL < 3 %)
#GP(0); (* Trap to virtual-8086 monitor *)
Fl;
FI;
FI;

Flags Affected
All flags except the reserved bits and the VM bit.

Protected Mode Exceptions

#SS(0) If the top of stack is not within the stack segment.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#SS If the top of stack is not within the stack segment.

Virtual-8086 Mode Exceptions
#GP(0) If the 1/O privilege level is less than 3.

If an attempt is made to execute the POPF/POPFD instruction with an
operand-size override prefix.

#SS(0) If the top of stack is not within the stack segment.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register Vol. 2B 4-113

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is

4-114 Vol. 2B POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register

INSTRUCTION SET REFERENCE, N-Z

POR—Bitwise Logical OR

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFEB /r POR mm, mm/m64 Valid Valid Bitwise OR of mm/m64 and mm.
66 OF EB /r POR xmm1, Valid Valid Bitwise OR of xmm2/m128 and
Xxmm2/m128 xmm1l.
Description

Performs a bitwise logical OR operation on the source operand (second operand) and the desti-
nation operand (first operand) and stores the result in the destination operand. The source
operand can be an MMX technology register or a 64-bit memory location or it can be an XMM
register or a 128-bit memory location. The destination operand can be an MMX technology
register or an XMM register. Each bit of the result is set to 1 if either or both of the corresponding
bits of the first and second operands are 1; otherwise, it is set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « DEST OR SRC,;

Intel C/C++ Compiler Intrinsic Equivalent
POR __m64 _mm_or_si64(__m64 ml, _ m64 m2)
POR _ m128i _mm_or_si128(__m128i m1, _ m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

POR—BItwise Logical OR Vol. 2B 4-115

INSTRUCTION SET REFERENCE, N-Z

#UD If CRO.EM[bit 2] = 1.

128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one
that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.
128-bit operations will generate #UD only if CR4.0SFXSR[bit 9] = 0.
Execution of 128-bit instructions on a non-SSE2 capable processor (one

that is MMX technology capable) will result in the instruction operating
on the mm registers, not #UD.

#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-116 Vol. 2B POR—BItwise Logical OR

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

POR—BItwise Logical OR Vol. 2B 4-117

INSTRUCTION SET REFERENCE, N-Z

PREFETCHh—Prefetch Data Into Caches

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF 18 /1 PREFETCHTO m8 Valid Valid Move data from m8 closer to the
processor using TO hint.

OF 18 /2 PREFETCHT1 m8 Valid Valid Move data from m8 closer to the
processor using T1 hint.

OF 18 /3 PREFETCHT2 m8 Valid Valid Move data from m8 closer to the
processor using T2 hint.

OF 18 /0 PREFETCHNTA m8 Valid Valid Move data from m8 closer to the
processor using NTA hint.

Description

Fetches the line of data from memory that contains the byte specified with the source operand
to a location in the cache hierarchy specified by a locality hint:

® TO (temporal data)—prefetch data into all levels of the cache hierarchy.
— Pentium Il processor—1st- or 2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T1 (temporal data with respect to first level cache)—prefetch data into level 2 cache and
higher.

— Pentium Ill processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® T2 (temporal data with respect to second level cache)—prefetch data into level 2 cache and
higher.

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

® NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal
cache structure and into a location close to the processor, minimizing cache pollution.

— Pentium Il processor—1st-level cache
— Pentium 4 and Intel Xeon processors—2nd-level cache

The source operand is a byte memory location. (The locality hints are encoded into the machine
level instruction using bits 3 through 5 of the ModR/M byte. Use of any ModR/M value other
than the specified ones will lead to unpredictable behavior.)

If the line selected is already present in the cache hierarchy at a level closer to the processor, no
data movement occurs. Prefetches from uncacheable or WC memory are ignored.

4-118 Vol. 2B PREFETCHh—Prefetch Data Into Caches

INSTRUCTION SET REFERENCE, N-Z

The PREFETCHAh instruction is merely a hint and does not affect program behavior. If executed,
this instruction moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be over-
loaded or ignored by a processor implementation. The amount of data prefetched is also
processor implementation-dependent. It will, however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data from system
memory regions that are assigned a memaory-type that permits speculative reads (that is, the WB,
WC, and WT memory types). A PREFETCHh instruction is considered a hint to this speculative
behavior. Because this speculative fetching can occur at any time and is not tied to instruction
execution, a PREFETCHh instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHbh instruction
is also unordered with respect to CLFLUSH instructions, other PREFETCHh instructions, or
any other general instruction. It is ordered with respect to serializing instructions such as
CPUID, WRMSR, OUT, and MOV CR.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched.
The value “i” gives a constant (MM_HINT_TO, MM_HINT_T1, MM_HINT_T2, or
_MM_HINT_NTA) that specifies the type of prefetch operation to be performed.

Numeric Exceptions
None.

Exceptions (All Operating Modes)
None.

PREFETCHh—Prefetch Data Into Caches Vol. 2B 4-119

INSTRUCTION SET REFERENCE, N-Z

PSADBW—Compute Sum of Absolute Differences

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F6 /r PSADBW mm1, Valid Valid Computes the absolute differences of the
mm2/m64 packed unsigned byte integers from mm2

/m64 and mm1; differences are then summed
to produce an unsigned word integer result.

66 OF PSADBW xmm1, Valid Valid Computes the absolute differences of the

F6 Ir Xxmm2/m128 packed unsigned byte integers from xmm2
/m128 and xmm1,; the 8 low differences and 8
high differences are then summed separately
to produce two unsigned word integer results.

Description

Computes the absolute value of the difference of 8 unsigned byte integers from the source
operand (second operand) and from the destination operand (first operand). These 8 differences
are then summed to produce an unsigned word integer result that is stored in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Figure 4-5 shows the operation of the PSADBW
instruction when using 64-bit operands.

When operating on 64-bit operands, the word integer result is stored in the low word of the desti-
nation operand, and the remaining bytes in the destination operand are cleared to all Os.

When operating on 128-bit operands, two packed results are computed. Here, the 8 low-order
bytes of the source and destination operands are operated on to produce a word result that is
stored in the low word of the destination operand, and the 8 high-order bytes are operated on to
produce a word result that is stored in bits 64 through 79 of the destination operand. The
remaining bytes of the destination operand are cleared.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-120 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

SRC X7 X6 X5 X4 X3 X2 X1 X0

DEST Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

TEMP | ABS(X7:Y7)| ABS(X6:Y6)| ABS(X5:Y5) | ABS(X4:Y4)| ABS(X3:Y3)| ABS(X2:Y2) | ABS(X1:Y1) | ABS(X0:YO0)

DEST 00H 00H 00H 00H 00H 00H | SUM(TEMP7..TEMPO)

Figure 4-5. PSADBW Instruction Operation Using 64-bit Operands

Operation

PSADBW instructions when using 64-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 6 *)
TEMP7 « ABS(DEST([63:56] — SRC[63:56));
DEST[15:0] « SUM(TEMPO:TEMP?7);
DEST[63:16] «<- 000000000000H;

PSADBW instructions when using 128-bit operands:
TEMPO « ABS(DEST[7:0] — SRC[7:0]);
(* Repeat operation for bytes 2 through 14 *)
TEMP15 < ABS(DEST[127:120] — SRC[127:120]);
DEST[15:0] «~ SUM(TEMPO:TEMP?7);
DEST[63:6] «- 000000000000H;
DEST[79:64] «+ SUM(TEMP8:TEMP15);
DEST[127:80] «— 000000000000H;

Intel C/C++ Compiler Intrinsic Equivalent
PSADBW __m64_mm_sad_pu8(_m64 a,__m64 b)
PSADBW __m128i _mm_sad_epu8(_m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

PSADBW—Compute Sum of Absolute Differences Vol. 2B 4-121

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) I1f a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

4-122 Vol. 2B PSADBW—Compute Sum of Absolute Differences

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSADBW—Compute Sum of Absolute Differences Vol. 2B 4-123

INSTRUCTION SET REFERENCE, N-Z

PSHUFD—Shuffle Packed Doublewords

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 70 /rib PSHUFD xmm1, Valid Valid Shuffle the doublewords in
xmm2/m128, imm8 xmm2/m128 based on the

encoding in imm8 and store
the result in xmm1.

Description

Copies doublewords from source operand (second operand) and inserts them in the destination
operand (first operand) at the locations selected with the order operand (third operand). Figure 4-6
shows the operation of the PSHUFD instruction and the encoding of the order operand. Each
2-bit field in the order operand selects the contents of one doubleword location in the destination
operand. For example, bits 0 and 1 of the order operand select the contents of doubleword 0 of
the destination operand. The encoding of bits 0 and 1 of the order operand (see the field encoding
in Figure 4-6) determines which doubleword from the source operand will be copied to double-
word 0 of the destination operand.

SRC X3 X2 X1 X0
DEST Y3 YO

Y2 Y1
\ \ / /Encoding 00B - X0
ORDER of Fields in 01B - X1
Z 6543 21 0 ORDER 10B - X2

Operand 11B - X3

Figure 4-6. PSHUFD Instruction Operation

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a doubleword in the source operand to be copied to more than one doubleword location
in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-124 Vol. 2B PSHUFD—Shuffle Packed Doublewords

Operation

INSTRUCTION SET REFERENCE, N-Z

DEST([31:0] « (SRC >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] <« (SRC >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] <« (SRC >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] « (SRC >> (ORDER([7:6] * 32))[31:0];

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFD

Flags Affected

None.

__m128i _mm_shuffle_epi32(__m128i a, int n)

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

PSHUFD—Shuffle Packed Doublewords Vol. 2B 4-125

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM
#PF(fault-code)

4-126 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFD—Shuffle Packed Doublewords

INSTRUCTION SET REFERENCE, N-Z

PSHUFHW—Shuffle Packed High Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F30F 70 /rib PSHUFHW xmm1, xmm2/ Valid Valid Shuffle the high words in
m128, imm8 xmm2/m128 based on the

encoding in imm8 and store
the result in xmmZ1.

Description

Copies words from the high quadword of the source operand (second operand) and inserts them
in the high quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFHW instruction, each
2-bit field in the order operand selects the contents of one word location in the high quadword
of the destination operand. The binary encodings of the order operand fields select words (0, 1,
2 or 3, 4) from the high quadword of the source operand to be copied to the destination operand.
The low quadword of the source operand is copied to the low quadword of the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the high quadword of the source operand to be copied to more than one word
location in the high quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[63:0] <~ SRC[63:0];

DEST[79:64] < (SRC >> (ORDER[1:0] * 16))[79:64];
DEST[95:80] < (SRC >> (ORDER[3:2] * 16))[79:64];
DEST[111:96] « (SRC >> (ORDER[5:4] * 16))[79:64];
DEST[127:112] < (SRC >> (ORDER[7:6] * 16))[79:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFHW __m128i _mm_shufflehi_epil6(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

PSHUFHW—Shuffle Packed High Words Vol. 2B 4-127

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

4-128 Vol. 2B

PSHUFHW—Shuffle Packed High Words

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM
#PF(fault-code)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFHW—Shuffle Packed High Words Vol. 2B 4-129

INSTRUCTION SET REFERENCE, N-Z

PSHUFLW—Shuffle Packed Low Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F20F 70 Irib PSHUFLW xmm1, Valid Valid Shulffle the low words in
Xxmm2/m128, imm8 xmm2/m128 based on the

encoding in imm8 and store the
result in xmmZ1.

Description

Copies words from the low quadword of the source operand (second operand) and inserts them
in the low quadword of the destination operand (first operand) at word locations selected with
the order operand (third operand). This operation is similar to the operation used by the
PSHUFD instruction, which is illustrated in Figure 4-6. For the PSHUFLW instruction, each
2-bit field in the order operand selects the contents of one word location in the low quadword of
the destination operand. The binary encodings of the order operand fields select words (0, 1, 2,
or 3) from the low quadword of the source operand to be copied to the destination operand. The
high quadword of the source operand is copied to the high quadword of the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The order operand is an 8-bit immediate. Note that this instruction
permits a word in the low quadword of the source operand to be copied to more than one word
location in the low quadword of the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER([1:0] * 16))[15:0];
DEST[31:16] <« (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] « (SRC >> (ORDER][7:6] * 16))[15:0];
DEST[127:64] « SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFLW __m128i _mm_shufflelo_epil6(__m128i a, int n)

Flags Affected
None.

Numeric Exceptions

None.

4-130 Vol. 2B PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM
#PF(fault-code)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

If a page fault occurs.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

PSHUFLW—Shuffle Packed Low Words Vol. 2B 4-131

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#UD

#NM
#PF(fault-code)

4-132 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

If a page fault occurs.

PSHUFLW—Shuffle Packed Low Words

INSTRUCTION SET REFERENCE, N-Z

PSHUFW—Shuffle Packed Words

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF70/rib PSHUFW mmi1, Valid Valid Shuffle the words in mm2/m64 based
mm2/m64, imm8 on the encoding in imm8 and store the

result in mm1.

Description

Copies words from the source operand (second operand) and inserts them in the destination
operand (first operand) at word locations selected with the order operand (third operand). This
operation is similar to the operation used by the PSHUFD instruction, which is illustrated in
Figure 4-6. For the PSHUFW instruction, each 2-bit field in the order operand selects the
contents of one word location in the destination operand. The encodings of the order operand
fields select words from the source operand to be copied to the destination operand.

The source operand can be an MMX technology register or a 64-bit memory location. The desti-
nation operand is an MMX technology register. The order operand is an 8-bit immediate. Note
that this instruction permits a word in the source operand to be copied to more than one word
location in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[15:0] « (SRC >> (ORDER[1:0] * 16))[15:0];

DEST[31:16] « (SRC >> (ORDER[3:2] * 16))[15:0];
DEST[47:32] « (SRC >> (ORDER[5:4] * 16))[15:0];
DEST[63:48] < (SRC >> (ORDER([7:6] * 16))[15:0];

Intel C/C++ Compiler Intrinsic Equivalent
PSHUFW __m64 _mm_shuffle_pil6(__m64 a, int n)

Flags Affected
None.

Numeric Exceptions

None.

PSHUFW—Shuffle Packed Words Vol. 2B 4-133

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

If there is a pending x87 FPU exception.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD
#NM
#MF

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.
If CRO.TS[bit 3] = 1.
If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

4-134 Vol. 2B

PSHUFW—Shuffle Packed Words

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

PSHUFW—Shuffle Packed Words Vol. 2B 4-135

INSTRUCTION SET REFERENCE, N-Z

PSLLDQ—Shift Double Quadword Left Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 73 /7 ib PSLLDQ xmm1, Valid Valid Shift xmm1 left by imm8 bytes
imm8 while shifting in Os.

Description

Shifts the destination operand (first operand) to the left by the number of bytes specified in the
count operand (second operand). The empty low-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all Os.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI;
DEST « DEST << (TEMP * 8);

Intel C/C++ Compiler Intrinsic Equivalent
PSLLDQ _ m128i _mm_slli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSRI[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[hit 3] = 1.

4-136 Vol. 2B PSLLDQ—Shift Double Quadword Left Logical

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

PSLLDQ—Shift Double Quadword Left Logical Vol. 2B 4-137

INSTRUCTION SET REFERENCE, N-Z

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F1/r PSLLW mm, mm/m64 Valid Valid Shift words in mm left mm/m64
while shifting in Os.
66 OF F1/r PSLLW xmm1, Valid Valid Shift words in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in mm left by imm8
while shifting in Os.
66 OF 71 /6 ib PSLLW xmm1, imm8 Valid Valid Shift words in xmm1 left by imm8
while shifting in 0s.
OF F2 /r PSLLD mm, mm/m64 Valid Valid Shift doublewords in mm left by
mm/m64 while shifting in 0s.
66 OF F2 /r PSLLD xmm1, Valid Valid Shift doublewords in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF 72 /6 ib PSLLD mm, imm8 Valid Valid Shift doublewords in mm left by
imm8 while shifting in Os.
66 OF 72 /6 ib PSLLD xmm1, imm8 Valid Valid Shift doublewords in xmm1 left by
imm8 while shifting in Os.
OF F3 /r PSLLQ mm, mm/m64 Valid Valid Shift quadword in mm left by
mm/m64 while shifting in 0s.
66 OF F3 /r PSLLQ xmm1, Valid Valid Shift quadwords in xmm1 left by
xmm2/m128 xmm2/m128 while shifting in Os.
OF 73 /6 ib PSLLQ mm, imm8 Valid Valid Shift quadword in mm left by
imm8 while shifting in Os.
66 OF 73 /6 ib PSLLQ xmm1, imm8 Valid Valid Shift quadwords in xmm1 left by

imm8 while shifting in Os.

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the left by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted left, the empty low-order bits are
cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all Os.
Figure 4-7 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

4-138 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z

Pre-Shift
DEST X3 X2 X1 X0
Shift Left
with Zero
Extension
Y Y Y
Post-Shift

DEST | X3 << COUNT | X2 << COUNT | X1 << COUNT | X0 << COUNT

Figure 4-7. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand

The PSLLW instruction shifts each of the words in the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the double-
words in the destination operand; and the PSLLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] < ZeroExtend(DEST[63:48] << COUNT);
Fl;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «~ 0000000000000000H;

ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
DEST[63:32] « ZeroExtend(DEST[63:32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] <~ 0000000000000000H;
ELSE
DEST « ZeroExtend(DEST << COUNT);
FI;

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-139

INSTRUCTION SET REFERENCE, N-Z

PSLLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < ZeroExtend(DEST[127:112] << COUNT);
Fl;

PSLLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H;
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] << COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] < ZeroExtend(DEST[127:96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 63)
THEN
DEST[128:0] «+- 00000000000000000000000000000000H;
ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] << COUNT);
DEST[127:64] < ZeroExtend(DEST[127:64] << COUNT);
Fl;

Intel C/C++ Compiler Intrinsic Equivalents

PSLLW __m64 _mm_slli_pil6 (__m64 m, int count)

PSLLW __m64 _mm_sll_pil6(__m64 m, __m64 count)
PSLLW __m128i _mm_slli_pil6(__m64 m, int count)
PSLLW __m128i _mm_slli_pil6(__m128i m, __m128i count)
PSLLD __m64 _mm_slli_pi32(__m64 m, int count)

PSLLD __m64 _mm_sll_pi32(_m64 m, __m64 count)
PSLLD _m128i _mm_slli_epi32(_m128i m, int count)
PSLLD __m128i _mm_sll_epi32(_m128i m, __ m128i count)
PSLLQ __m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)
PSLLQ __m128i _mm_slli_si64(__m128i m, int count)

4-140 Vol. 2B PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

PSLLQ

Flags Affected

None.

INSTRUCTION SET REFERENCE, N-Z

_ m128i _mm_sll_si64(__m128i m, _ m128i count)

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical Vol. 2B 4-141

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-142 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logical

INSTRUCTION SET REFERENCE, N-Z

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF E1 /r PSRAW mm, Valid Valid Shift words in mm right by mm/m64
mm/m64 while shifting in sign bits.

66 OF E1 /r PSRAW xmm1, Valid Valid Shift words in xmm1 right by
xmm2/m128 xmm2/m128 while shifting in sign

bits.

OF 71 /4 ib PSRAW mm, Valid Valid Shift words in mm right by imm8
imm8 while shifting in sign bits

66 OF 71 /4 ib PSRAW xmml1, Valid Valid Shift words in xmm1 right by imm8
imm8 while shifting in sign bits

OF E2 Ir PSRAD mm, Valid Valid Shift doublewords in mm right by
mm/m64 mm/m64 while shifting in sign bits.

66 OF E2 /r PSRAD xmm1, Valid Valid Shift doubleword in xmm1 right by
xmm2/m128 xmm2 /m128 while shifting in sign

bits.

OF 72 /4ib PSRAD mm, Valid Valid Shift doublewords in mm right by
imm8 imm8 while shifting in sign bits.

66 OF 72 /4 ib PSRAD xmm1, Valid Valid Shift doublewords in xmm1 right by
imm8 imm8 while shifting in sign bits.

Description

Shifts the bits in the individual data elements (words or doublewords) in the destination operand
(first operand) to the right by the number of bits specified in the count operand (second operand).
As the bits in the data elements are shifted right, the empty high-order bits are filled with the
initial value of the sign bit of the data element. If the value specified by the count operand is
greater than 15 (for words) or 31 (for doublewords), each destination data element is filled with
the initial value of the sign bit of the element. (Figure 4-8 gives an example of shifting words in

a 64-bit operand.)

Pre-Shift
DEST

Shift Right
with Sign
Extension

Post-Shift
DEST

X3

X2

X1

X0

[

[

[

y

/

[

/

[

/

X3 >> COUNT

X2 >> COUNT

X1>> COUNT

X0 >> COUNT

Figure 4-8. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

Vol. 2B 4-143

INSTRUCTION SET REFERENCE, N-Z

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

The PSRAW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand, and the PSRAD instruction shifts each of the
doublewords in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT <« 16;
Fl;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] < SignExtend(DEST[63:48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
DEST[31:0] < SignExtend(DEST[31:0] >> COUNT);
DEST[63:32] < SignExtend(DEST[63:32] >> COUNT);

PSRAW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN COUNT <« 16;
Fl;
DEST[15:0] « SignExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] « SignExtend(DEST[127:112] >> COUNT);

PSRAD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN COUNT « 32;
Fl,
DEST[31:0] « SignExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] <« SignExtend(DEST[127:96] >>COUNT);

4-144 Vol. 2B PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PSRAW __m64 _mm_srai_pil6 (__m64 m, int count)

PSRAW __m64 _mm_sraw_pil6 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __m128i _mm_srai_epil6(__m128i m, int count)
PSRAW _ m128i _mm_sra_epil6(__m128i m, _ m128i count))
PSRAD __m128i _mm_srai_epi32 (__m128i m, int count)
PSRAD _ m128i _mm_sra_epi32 (__m128im, __m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic Vol. 2B 4-145

INSTRUCTION SET REFERENCE, N-Z

#UD

#NM
#MF

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-146 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSRAW/PSRAD—Shift Packed Data Right Arithmetic

INSTRUCTION SET REFERENCE, N-Z

PSRLDQ—Shift Double Quadword Right Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 73 /3 ib PSRLDQ Valid Valid Shift xmm1 right by imm8 while
xmm1, imm8 shifting in Os.

Description

Shifts the destination operand (first operand) to the right by the number of bytes specified in the
count operand (second operand). The empty high-order bytes are cleared (set to all 0s). If the
value specified by the count operand is greater than 15, the destination operand is set to all Os.
The destination operand is an XMM register. The count operand is an 8-bit immediate.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

TEMP « COUNT;
IF (TEMP > 15) THEN TEMP « 16; FI,
DEST « DEST >> (temp * 8);

Intel C/C++ Compiler Intrinsic Equivalents
PSRLDQ _ m128i _mm_srli_si128 (__m128i a, int imm)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-147

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

Numeric Exceptions

None.

4-148 Vol. 2B

PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z

PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logical

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF D1 /r PSRLW mm, Valid Valid Shift words in mm right by amount
mm/m64 specified in mm/m64 while shifting in Os.
66 OF D1 /r PSRLW xmm1, Valid Valid Shift words in xmm1 right by amount
Xxmmz2/m128 specified in xmm2/m128 while shifting
in Os.
OF 71 /2ib PSRLW mm, Valid Valid Shift words in mm right by imm8 while
imm8 shifting in Os.
66 OF 71/2ib PSRLW xmml, Valid Valid Shift words in xmm1 right by imm8 while
imm8 shifting in Os.
OF D2 /r PSRLD mm, Valid Valid Shift doublewords in mm right by
mm/mé64 amount specified in mm/m64 while
shifting in Os.
66 OF D2 /r PSRLD xmm1, Valid Valid Shift doublewords in xmmd1 right by
xmmz2/m128 amount specified in xmm2 /m128 while
shifting in Os.
OF 72 /2ib PSRLD mm, Valid Valid Shift doublewords in mm right by imm8
imm8 while shifting in Os.
66 OF 72 /2ib PSRLD xmm1, Valid Valid Shift doublewords in xmm1 right by
imm8 imm8 while shifting in 0s.
OF D3 /r PSRLQ mm, Valid Valid Shift mm right by amount specified in
mm/m64 mm/m64 while shifting in Os.
66 OF D3 /r PSRLQ xmm1, Valid Valid Shift quadwords in xmm1 right by
xmm2/m128 amount specified in xmm2/m128 while
shifting in Os.
OF 73 /2ib PSRLQ mm, Valid Valid Shift mm right by imm8 while shifting
imm8 in Os.
66 OF 73/2ib PSRLQ xmml1, Valid Valid Shift quadwords in xmm1 right by imm8
imm8 while shifting in Os.
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the right by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted right, the empty high-order bits
are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words),
31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all Os.
Figure 4-9 gives an example of shifting words in a 64-bit operand.

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate. Note that only the first 64-bits of
a 128-bit count operand are checked to compute the count.

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-149

INSTRUCTION SET REFERENCE, N-Z

PrelSISEhSith X3 X2 X1 X0
Shift Right ‘
with Zero
Extension
Y Y y
Postb%fgf_lt_ X3 >> COUNT | X2>> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 4-9. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand

The PSRLW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand; the PSRLD instruction shifts each of the double-
words in the destination operand; and the PSRLQ instruction shifts the quadword (or quad-
words) in the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSRLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64:0] «~ 0000000000000000H
ELSE
DEST[15:0] < ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd words *)
DEST[63:48] < ZeroExtend(DEST[63:48] >> COUNT);
Fl;

PSRLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64:0] «- 0000000000000000H

ELSE
DEST[31:0] < ZeroExtend(DEST[31:0] >> COUNT);
DEST[63:32] < ZeroExtend(DEST[63:32] >> COUNT);

FI;

PSRLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64:0] «~ 0000000000000000H
ELSE
DEST « ZeroExtend(DEST >> COUNT);
Fl;

4-150 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z

PSRLW instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] <+~ 00000000000000000000000000000000H
ELSE
DEST[15:0] « ZeroExtend(DEST[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < ZeroExtend(DEST[127:112] >> COUNT);
FI;

PSRLD instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 31)
THEN
DEST[128:0] «- 00000000000000000000000000000000H
ELSE
DEST[31:0] « ZeroExtend(DEST[31:0] >> COUNT);
(* Repeat shift operation for 2nd and 3rd doublewords *)
DEST[127:96] < ZeroExtend(DEST[127:96] >> COUNT);
FI;

PSRLQ instruction with 128-bit operand:
COUNT « COUNT_SOURCE[63:0];
IF (COUNT > 15)
THEN
DEST[128:0] «~ 00000000000000000000000000000000H
ELSE
DEST[63:0] « ZeroExtend(DEST[63:0] >> COUNT);
DEST[127:64] < ZeroExtend(DEST[127:64] >> COUNT);
FI;

Intel C/C++ Compiler Intrinsic Equivalents

PSRLW __m64 _mm_srli_pil6(__m64 m, int count)

PSRLW __m64 _mm_srl_pil6 (__m64 m, __m64 count)
PSRLW _ m128i _mm_srli_epil6 (__m128i m, int count)
PSRLW __m128i _mm_srl_epil6 (__m128i m, __m128i count)
PSRLD __m64 _mm_srli_pi32 (__m64 m, int count)

PSRLD __m64 _mm_srl_pi32 (_m64 m, __m64 count)
PSRLD _ m128i _mm_srli_epi32 (__m128i m, int count)
PSRLD _ m128i _mm_srl_epi32 (__m128i m, __m128i count)
PSRLQ __m64 _mm_srli_si64 (__m64 m, int count)

PSRLQ __m64 _mm_srl_si64 (__m64 m, __m64 count)
PSRLQ _ m128i _mm_srli_epi64 (__m128i m, int count)

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-151

INSTRUCTION SET REFERENCE, N-Z

PSRLQ _ m128i _mm_srl_epi64 (__m128i m, _ m128i count)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

4-152 Vol. 2B PSRLDQ—Shift Double Quadword Right Logical

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

PSRLDQ—Shift Double Quadword Right Logical Vol. 2B 4-153

INSTRUCTION SET REFERENCE, N-Z

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF F8/r PSUBB mm, Valid Valid Subtract packed byte integers in
mm/m64 mm/m64 from packed byte integers in
mm.
66 OF F8 /r PSUBB xmm1, Valid Valid Subtract packed byte integers in
xmm2/m128 xmm2/m128 from packed byte integers
in xmm1.
OF F9 /r PSUBW mm, Valid Valid Subtract packed word integers in
mm/m64 mm/m64 from packed word integers in
mm.
66 OF F9 /r PSUBW xmm1, Valid Valid Subtract packed word integers in
xmm2/m128 xmm2/m128 from packed word integers
in xmm1.
OF FA Ir PSUBD mm, Valid Valid Subtract packed doubleword integers in
mm/m64 mm/m64 from packed doubleword
integers in mm.
66 OF FA /r PSUBD xmm1, Valid Valid Subtract packed doubleword integers in
xmm2/m128 xmm2/mem128 from packed

doubleword integers in xmm1.

Description

Performs an SIMD subtract of the packed integers of the source operand (second operand) from
the packed integers of the destination operand (first operand), and stores the packed integer
results in the destination operand. See Figure 9-4 in the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Overflow is handled
with wraparound, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBB instruction subtracts packed byte integers. When an individual result is too large or
too small to be represented in a byte, the result is wrapped around and the low 8 bits are written
to the destination element.

The PSUBW instruction subtracts packed word integers. When an individual result is too large
or too small to be represented in a word, the result is wrapped around and the low 16 bits are
written to the destination element.

The PSUBD instruction subtracts packed doubleword integers. When an individual result is too
large or too small to be represented in a doubleword, the result is wrapped around and the low
32 bits are written to the destination element.

4-154 Vol. 2B PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Note that the PSUBB, PSUBW, and PSUBD instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-

tions, software must control the ranges of values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access

additional registers (XMM8-XMM15).

Operation

PSUBB instruction with 64-bit operands:
DEST[7:0] « DESTJ[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 7th byte *)
DEST[63:56] « DEST[63:56] — SRC[63:56];

PSUBB instruction with 128-bit operands:
DEST[7:0] « DESTJ[7:0] — SRC[7:0];
(* Repeat subtract operation for 2nd through 14th byte *)
DEST[127:120] «- DEST[111:120] — SRC[127:120];

PSUBW instruction with 64-bit operands:
DESTI[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd and 3rd word *)
DEST[63:48] «- DEST[63:48] — SRC[63:48];

PSUBW instruction with 128-bit operands:
DEST[15:0] « DEST[15:0] — SRC[15:0];
(* Repeat subtract operation for 2nd through 7th word *)
DEST[127:112] « DEST[127:112] — SRC[127:112];

PSUBD instruction with 64-bit operands:
DEST[31:0] «- DEST[31:0] — SRCJ[31:0];
DEST[63:32] <~ DEST[63:32] — SRC[63:32];
PSUBD instruction with 128-bit operands:
DEST[31:0] « DEST[31:0] — SRC[31:0];
(* Repeat subtract operation for 2nd and 3rd doubleword *)
DEST[127:96] «— DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalents

PSUBB __m64 _mm_sub_pi8(__m64 m1, __m64 m2)
PSUBW __m64 _mm_sub_pil6(__m64 ml, __m64 m2)
PSUBD __m64 _mm_sub_pi32(__m64 ml, __m64 m2)
PSUBB __m128i _mm_sub_epi8 (_m128ia, __m128ib)
PSUBW _ m128i _mm_sub_epil6 (__m128ia, __m128ib)
PSUBD _m128i _mm_sub_epi32 (_m128ia, __m128ib)

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

Vol. 2B 4-155

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#Ss(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

4-156 Vol. 2B

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same as for protected mode exceptions.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSUBB/PSUBW/PSUBD—Subtract Packed Integers Vol. 2B 4-157

INSTRUCTION SET REFERENCE, N-Z

PSUBQ—Subtract Packed Quadword Integers

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF FB /r PSUBQ mm1, mm2/m64 Valid Valid Subtract quadword integer
in mm1 from mm2 /m64.

66 OF FB /r PSUBQ xmm1, xmm2/m128 Valid Valid Subtract packed quadword
integers in xmm1 from
xmmz2 /m128.

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The source operand can be a quadword integer stored
in an MMX technology register or a 64-bit memory location, or it can be two packed quadword
integers stored in an XMM register or an 128-bit memory location. The destination operand can
be a quadword integer stored in an MMX technology register or two packed quadword integers
stored in an XMM register. When packed quadword operands are used, an SIMD subtract is
performed. When a quadword result is too large to be represented in 64 bits (overflow), the result
is wrapped around and the low 64 bits are written to the destination element (that is, the carry is
ignored).

Note that the PSUBQ instruction can operate on either unsigned or signed (two’s complement
notation) integers; however, it does not set bits in the EFLAGS register to indicate overflow
and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
the values upon which it operates.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PSUBQ instruction with 64-Bit operands:
DEST[63:0] «— DEST[63:0] — SRC[63:0];

PSUBQ instruction with 128-Bit operands:
DEST[63:0] <- DEST[63:0] — SRC[63:0];
DEST[127:64] <— DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalents
PSUBQ __m64 _mm_sub_si64(__m64 ml, __m64 m2)
PSUBQ _ m128i _mm_sub_epi64(__m128iml, _ m128i m2)

Flags Affected
None.

4-158 Vol. 2B PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

PSUBQ—Subtract Packed Quadword Integers Vol. 2B 4-159

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-160 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-hit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSUBQ—Subtract Packed Quadword Integers

INSTRUCTION SET REFERENCE, N-Z

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF E8 Ir PSUBSB mm, Valid Valid Subtract signed packed bytes in
mm/m64 mm/m64 from signed packed bytes
in mm and saturate results.
66 OF E8 Ir PSUBSB xmm1, Valid Valid Subtract packed signed byte integers
xmm2/m128 in xmm2/m128 from packed signed
byte integers in xmm1 and saturate
results.
OF E9Q Ir PSUBSW mm, Valid Valid Subtract signed packed words in
mm/m64 mm/m64 from signed packed words
in mm and saturate results.
66 OF E9 /r PSUBSW xmm1, Valid Valid Subtract packed signed word
xmmz2/m128 integers in xmm2/m128 from packed

signed word integers in xmm1 and
saturate results.

Description

Performs an SIMD subtract of the packed signed integers of the source operand (second
operand) from the packed signed integers of the destination operand (first operand), and stores
the packed integer results in the destination operand. See Figure 9-4 in the 1A-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation. Over-
flow is handled with signed saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBSB instruction subtracts packed signed byte integers. When an individual byte result
is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.

The PSUBSW instruction subtracts packed signed word integers. When an individual word
result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than
8000H), the saturated value of 7FFFH or 8000H, respectively, is written to the destination
operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Vol. 2B 4-161
Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBSB instruction with 64-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat subtract operation for 2nd through 7th bytes *)
DEST[63:56] < SaturateToSignedByte (DEST[63:56] — SRC[63:56]);

PSUBSB instruction with 128-bit operands:
DEST[7:0] « SaturateToSignedByte (DEST[7:0] — SRCJ[7:0]);
(* Repeat subtract operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToSignedByte (DEST[111:120] — SRC[127:120]);

PSUBSW instruction with 64-bit operands
DEST[15:0] < SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd and 7th words *)
DEST[63:48] « SaturateToSignedWord (DEST[63:48] — SRC[63:48]);

PSUBSW instruction with 128-bit operands
DEST[15:0] « SaturateToSignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat subtract operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBSB __m64 _mm_subs_pi8(_m64 m1, __m64 m2)
PSUBSB __m128i _mm_subs_epi8(_m128iml, __m128i m2)
PSUBSW __m64 _mm_subs_pil6(__m64 ml, __m64 m2)
PSUBSW __m128i _mm_subs_epil6(__m128i ml, __m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

4-162 Vol. 2B PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed

Saturation

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Vol. 2B 4-163

Saturation

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-164 Vol. 2B

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-hit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed
Saturation

INSTRUCTION SET REFERENCE, N-Z

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF D8 Ir PSUBUSB mm, Valid Valid Subtract unsigned packed bytes in
mm/m64 mm/m64 from unsigned packed bytes
in mm and saturate result.
66 OF D8 /r PSUBUSB xmm1, Valid Valid Subtract packed unsigned byte
xmm2/m128 integers in xmm2/m128 from packed

unsigned byte integers in xmm1 and
saturate result.

OF D9 /r PSUBUSW mm, Valid Valid Subtract unsigned packed words in
mm/m64 mm/m64 from unsigned packed words
in mm and saturate result.
66 OF D9 /r PSUBUSW xmm1, Valid Valid Subtract packed unsigned word
Xxmmz2/m128 integers in xmm2/m128 from packed

unsigned word integers in xmm1 and
saturate result.

Description

Performs an SIMD subtract of the packed unsigned integers of the source operand (second
operand) from the packed unsigned integers of the destination operand (first operand), and stores
the packed unsigned integer results in the destination operand. See Figure 9-4 in the 1A-32 Intel®
Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD operation.
Overflow is handled with unsigned saturation, as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on
128-bit operands, the destination operand must be an XMM register and the source operand can
be either an XMM register or a 128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte
result is less than zero, the saturated value of O0H is written to the destination operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an individual word
result is less than zero, the saturated value of 0000H is written to the destination operand.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Vol. 2B 4-165
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

Operation

PSUBUSB instruction with 64-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRC (7:0]);
(* Repeat add operation for 2nd through 7th bytes *)
DEST[63:56] < SaturateToUnsignedByte (DEST[63:56] — SRC[63:56];

PSUBUSB instruction with 128-bit operands:
DEST[7:0] « SaturateToUnsignedByte (DEST[7:0] — SRCJ[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120] « SaturateToUnSignedByte (DEST[127:120] — SRC[127:120));

PSUBUSW instruction with 64-bit operands:
DEST[15:0] < SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd and 3rd words *)
DEST[63:48] « SaturateToUnsignedWord (DEST[63:48] — SRC[63:48]);

PSUBUSW instruction with 128-bit operands:
DEST[15:0] « SaturateToUnsignedWord (DEST[15:0] — SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] <« SaturateToUnSignedWord (DEST[127:112] — SRC[127:112]);

Intel C/C++ Compiler Intrinsic Equivalents

PSUBUSB __m64 _mm_subs_pu8(_m64 ml, __m64 m2)
PSUBUSB _ m128i _mm_subs_epu8(_m128i ml, __m128i m2)
PSUBUSW __m64 _mm_subs_pul6(__m64 ml, __m64 m2)
PSUBUSW __m128i _mm_subs_epul6(__m128i m1l, _ m128i m2)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-166 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.

PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with Vol. 2B 4-167
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#MF (64-bit operations only) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only) If alignment checking is enabled and an unaligned

memory reference is made while the current privilege level is 3.

4-168 Vol. 2B PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with
Unsigned Saturation

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 68 /Ir PUNPCKHBW mm, Valid Valid Unpack and interleave high-order
mm/m64 bytes from mm and mm/m64 into
mm.
66 OF 68 /r PUNPCKHBW xmml1, Valid Valid Unpack and interleave high-order
xmmz2/m128 bytes from xmm1 and
xmm2/m128 into xmm1.
OF 69 /Ir PUNPCKHWD mm, Valid Valid Unpack and interleave high-order
mm/m64 words from mm and mm/m64 into
mm.
66 OF 69 /r PUNPCKHWD xmm1, Valid Valid Unpack and interleave high-order
xmm2/m128 words from xmm1 and
xmm2/m128 into xmm1.
OF 6A Ir PUNPCKHDQ mm, Valid Valid Unpack and interleave high-order
mm/m64 doublewords from mm and
mm/m64 into mm.
66 OF 6A/r PUNPCKHDQ xmm1, Valid Valid Unpack and interleave high-order
xmmz2/m128 doublewords from xmm1 and
xmm2/m128 into xmm1.
66 OF 6D /r PUNPCKHQDQ xmm1, Valid Valid Unpack and interleave high-order
xmmz2/m128 guadwords from xmm1 and
Xxmm2/m128 into xmm1.

Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, or quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. Figure 4-10 shows the unpack operation for bytes in 64-bit operands. The
low-order data elements are ignored.

SRC|Y7|Y6|Y5|Y4|Y3|Y2]|Yl|YO X7| X6 | X5| X4 | X3 |X2 | X1|X0 |DEST

DEST| Y7 | X7 | Y6 | X6 |Y5 | X5 |Y4 | X4

Figure 4-10. PUNPCKHBW Instruction Operation Using 64-bit Operands

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Vol. 2B 4-169
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 64-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 64-bit memory
operand, the full 64-bit operand is accessed from memory, but the instruction uses only the high-
order 32 bits. When the source data comes from a 128-bit memory operand, an implementation
may fetch only the appropriate 64 bits; however, alignment to a 16-byte boundary and normal
segment checking will still be enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and destination
operands, the PUNPCKHWD instruction interleaves the high-order words of the source and
destination operands, the PUNPCKHDQ instruction interleaves the high-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKHQDAQ instruction inter-
leaves the high-order quadwords of the source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all Os in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKHBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKHWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PUNPCKHBW instruction with 64-bit operands:
DEST[7:0] <« DEST[39:32];
DEST[15:8] « SRC[39:32];
DEST[23:16] < DEST[47:40];
DEST[31:24] « SRC[47:40];
DEST[39:32] « DEST[55:48];
DESTI[47:40] « SRC[55:48];
DEST[55:48] «- DEST[63:56];
DEST[63:56] «— SRC[63:56];

PUNPCKHW instruction with 64-bit operands:
DEST[15:0] < DEST[47:32];
DEST[31:16] <« SRC[47:32];
DEST[47:32] <« DEST[63:48];
DEST[63:48] < SRC[63:48];

PUNPCKHDQ instruction with 64-bit operands:
DEST[31:0] « DEST[63:32];
DEST[63:32] < SRC[63:32];

4-170 Vol. 2B PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKHBW instruction with 128-bit operands:
DEST[7:0] « DEST[71:64];
DEST[15:8] « SRC[71:64];
DEST[23:16] « DEST[79:72];
DEST[31:24] « SRC[79:72];
DEST[39:32] «- DEST[87:80];
DEST[47:40] < SRC[87:80];
DEST[55:48] < DEST[95:88];
DEST[63:56] < SRC[95:88];
DEST[71:64] « DEST[103:96];
DEST[79:72] « SRC[103:96];
DEST[87:80] «~ DEST[111:104];
DEST[95:88] «— SRC[111:104];
DEST[103:96] «- DEST[119:112];
DEST[111:104] «- SRC[119:112];
DEST[119:112] « DEST[127:120];
DEST[127:120] «- SRC[127:120];

PUNPCKHWD instruction with 128-bit operands:
DEST[15:0] « DEST[79:64];
DEST[31:16] < SRC[79:64];
DEST[47:32] «— DEST[95:80];
DEST[63:48] «— SRC[95:80];
DEST[79:64] < DEST[111:96];
DEST[95:80] <~ SRC[111:96];
DEST[111:96] « DEST[127:112];
DEST[127:112] « SRC[127:112];

PUNPCKHDQ instruction with 128-bit operands:
DEST[31:0] «- DEST[95:64];
DEST[63:32] <« SRC[95:64];
DEST[95:64] « DEST[127:96];
DEST[127:96] «— SRC[127:96];

PUNPCKHQDQ instruction:
DEST[63:0] « DEST[127:64];
DEST[127:64] < SRC[127:64];

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Vol. 2B 4-171
Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKHBW
PUNPCKHBW
PUNPCKHWD
PUNPCKHWD
PUNPCKHDQ
PUNPCKHDQ

__m64 _mm_unpackhi_pi8(__m64 m1, _ m64 m2)
__m128i _mm_unpackhi_epi8(_m128i m1, _ m128i m2)
__m64 _mm_unpackhi_pil6(__m64 ml,__m64 m2)
__m128i _mm_unpackhi_epil6(__m128i m1l,_ m128i m2)
__m64 _mm_unpackhi_pi32(__m64 ml, _ m64 m2)
__m128i _mm_unpackhi_epi32(__m128i ml, _ m128i m2)

PUNPCKHQDQ __m128i _mm_unpackhi_epi64 (__m128ia, _ m128ib)

Flags Affected

None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#Ss(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

4-172 Vol. 2B

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

(128-hit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ—
Unpack High Data

#UD

#NM
#MF

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a hon-canonical
form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Vol. 2B 4-173

Unpack High Data

INSTRUCTION SET REFERENCE, N-Z

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—
Unpack Low Data

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 60 /r PUNPCKLBW mm, Valid Valid Interleave low-order bytes from mm
mm/m32 and mm/m32 into mm.
66 OF 60 /r PUNPCKLBW xmm1, Valid Valid Interleave low-order bytes from
xmm2/m128 xmml and xmm2/m128 into xmm1.
OF61/r PUNPCKLWD mm, Valid Valid Interleave low-order words from mm
mm/m32 and mm/m32 into mm.
66 OF 61 /r PUNPCKLWD xmm1, Valid Valid Interleave low-order words from
xmm2/m128 xmml and xmm2/m128 into xmm1.
OF 62 /r PUNPCKLDQ mm, Valid Valid Interleave low-order doublewords
mm/m32 from mm and mm/m32 into mm.
66 OF 62 /r PUNPCKLDQ xmm1, Valid Valid Interleave low-order doublewords
xmm2/m128 from xmm1 and xmm2/m128 into
xmm1.
66 OF 6C /r PUNPCKLQDQ Valid Valid Interleave low-order quadword from
xmml, xmm2/m128 xmml and xmm2/m128 into xmm1
register.
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quad-
words) of the destination operand (first operand) and source operand (second operand) into the
destination operand. (Figure 4-11 shows the unpack operation for bytes in 64-bit operands.). The
high-order data elements are ignored.

3|Y2|Y1l|YO X7|X6| X5|X4| X3 (X2 |X1|X
Y3 | X3 |Y2|X2|Y1l|X1l|Y0 |X0

DEST

0 |DEST

SRC|Y7|Y6 |Y5|Y4|Y

Figure 4-11. PUNPCKLBW Instruction Operation Using 64-bit Operands

4-174 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z

The source operand can be an MMX technology register or a 32-bit memory location, or it can
be an XMM register or a 128-bit memory location. The destination operand can be an MMX
technology register or an XMM register. When the source data comes from a 128-bit memory
operand, an implementation may fetch only the appropriate 64 bits; however, alignment to a
16-byte boundary and normal segment checking will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and destination
operands, the PUNPCKLWD instruction interleaves the low-order words of the source and
destination operands, the PUNPCKLDQ instruction interleaves the low-order doubleword (or
doublewords) of the source and destination operands, and the PUNPCKLQDQ instruction inter-
leaves the low-order quadwords of the source and destination operands.

These instructions can be used to convert bytes to words, words to doublewords, doublewords
to quadwords, and quadwords to double quadwords, respectively, by placing all Os in the source
operand. Here, if the source operand contains all 0s, the result (stored in the destination operand)
contains zero extensions of the high-order data elements from the original value in the destina-
tion operand. For example, with the PUNPCKLBW instruction the high-order bytes are zero
extended (that is, unpacked into unsigned word integers), and with the PUNPCKLWD instruc-
tion, the high-order words are zero extended (unpacked into unsigned doubleword integers).

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

PUNPCKLBW instruction with 64-bit operands:
DEST[63:56] «— SRC[31:24];
DEST[55:48] «— DEST[31:24];
DEST[47:40] « SRC[23:16];
DEST[39:32] « DEST[23:16];
DEST[31:24] « SRCJ[15:8];
DEST[23:16] « DEST[15:8];
DEST[15:8] «— SRCI[7:0];
DEST[7:0] < DEST[7:0];

PUNPCKLWD instruction with 64-bit operands:
DEST[63:48] < SRC[31:16];
DEST[47:32] «— DEST[31:16];
DEST[31:16] « SRC[15:0];
DEST[15:0] < DEST[15:0];

PUNPCKLDQ instruction with 64-bit operands:
DEST[63:32] «— SRC[31:0];
DEST[31:0] «— DEST[31:0];

PUNPCKLBW instruction with 128-bit operands:
DEST[7:0] <« DEST[7:0];
DEST[15:8] « SRC[7:0];
DEST[23:16] «— DEST[15:8];
DEST[31:24] « SRC[15:8];
DEST[39:32] < DEST[23:16];

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Vol. 2B 4-175
Low Data

INSTRUCTION SET REFERENCE, N-Z

DEST[47:40] < SRC[23:16];
DEST[55:48] < DEST[31:24];
DEST[63:56] <— SRC[31:24];
DEST[71:64] < DEST[39:32];
DEST[79:72] < SRC[39:32];
DEST[87:80] <— DEST[47:40];
DEST[95:88] <~ SRC[47:40];
DEST[103:96] « DEST[55:48];
DEST[111:104] - SRC[55:48];
DEST[119:112] < DEST[63:56];
DEST[127:120] < SRC[63:56];

PUNPCKLWD instruction with 128-bit operands:

DEST[15:0] « DEST[15:0];
DEST[31:16] - SRC[15:0];
DEST[47:32] < DEST[31:16];
DEST[63:48] < SRC[31:16];
DEST[79:64] < DEST[47:32];
DEST[95:80] < SRC[47:32];
DEST[111:96] « DEST[63:48];
DEST[127:112] <« SRC[63:48];

PUNPCKLDQ instruction with 128-bit operands:

DEST[31:0] « DEST[31:0];
DEST[63:32] « SRC[31:0];
DEST[95:64] < DEST[63:32];
DEST[127:96] « SRC[63:32];

PUNPCKLQDQ

DEST[63:0] « DEST[63:0];
DEST[127:64] « SRC[63:0];

Intel C/C++ Compiler Intrinsic Equivalents

PUNPCKLBW _ m64 _mm_unpacklo_pi8 (__ m64 m1l, _ m64 m2)
PUNPCKLBW _ m128i _mm_unpacklo_epi8 (__m128i m1, _ m128i m2)
PUNPCKLWD _ m64 _mm_unpacklo_pil6 (__m64 ml, __m64 m2)
PUNPCKLWD _ m128i _mm_unpacklo_epil6 (__m128i m1, _ m128i m2)
PUNPCKLDQ _ m64 _mm_unpacklo_pi32 (__m64 m1, __m64 m2)
PUNPCKLDQ _ m128i _mm_unpacklo_epi32 (__m128i m1, _ m128i m2)
PUNPCKLQDQ _ m128i _mm_unpacklo_epi64 (_ m128iml, __m128i m2)

Flags Affected
None.

4-176 Vol. 2B PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack

INSTRUCTION SET REFERENCE, N-Z

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0)

#S5(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.
If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address space from
0 to OFFFFH.
(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.
#UD If CRO.EM[bit 2] = 1.
(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
#NM If CRO.TS[bit 3] = 1.
#MF (64-bit operations only) If there is a pending x87 FPU exception.
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack Vol. 2B 4-177

Low Data

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

4-178 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit version only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.
If CRO.TS[bit 3] = 1.
(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ— Unpack
Low Data

INSTRUCTION SET REFERENCE, N-Z

PUSH—Push Word, Doubleword or Quadword Onto the Stack

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

FF /6 PUSH r/m16 Valid Valid Push r/m16.

FF /6 PUSH r/m32 N.E. Valid Push r/m32.

FF /6 PUSH r/m64 Valid N.E. Push r/m64. Default operand size
64-bits.

50+rw PUSH r16 Valid Valid Push r16.

50+rd PUSH r32 N.E. Valid Push r32.

50+rd PUSH r64 Valid N.E. Push r64. Default operand size
64-bits.

6A PUSH imm8 Valid Valid Push sign-extended imm8. Stack

pointer is incremented by the size of
stack pointer.

68 PUSH imm16 Valid Valid Push sign-extended imm16. Stack
pointer is incremented by the size of
stack pointer.

68 PUSH imm32 Valid Valid Push sign-extended imm32. Stack

pointer is incremented by the size of
stack pointer.

OE PUSH CS Invalid Valid Push CS.

16 PUSH SS Invalid Valid Push SS.

1E PUSH DS Invalid Valid Push DS.

06 PUSH ES Invalid Valid Push ES.

OF AO PUSH FS Valid Valid Push FS and decrement stack
pointer by 16 bits.

OF AO PUSH FS N.E. Valid Push FS and decrement stack
pointer by 32 bits.

OF AO PUSH FS Valid N.E. Push FS. Default operand size
64-bits. (66H override causes 16-bit
operation).

OF A8 PUSH GS Valid Valid Push GS and decrement stack
pointer by 16 bits.

OF A8 PUSH GS N.E. Valid Push GS and decrement stack
pointer by 32 bits.

OF A8 PUSH GS Valid N.E. Push GS, default operand size
64-bits. (66H override causes 16-bit
operation).

NOTES:

* See IA-32 Architecture Compatibility section below.

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol. 2B 4-179

INSTRUCTION SET REFERENCE, N-Z

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16, 32 or 64 bits).
The operand-size attribute of the current code segment determines the amount the stack pointer
is decremented (2, 4 or 8 bytes).

In non-64-bit modes: if the address-size and operand-size attributes are 32, the 32-bit ESP
register (stack pointer) is decremented by 4. If both attributes are 16, the 16-bit SP register (stack
pointer) is decremented by 2.

If the source operand is an immediate and its size is less than the address size of the stack, a sign-
extended value is pushed on the stack. If the source operand is the FS or GS and its size is less
than the address size of the stack, the zero-extended value is pushed on the stack.

The B flag in the stack segment’s segment descriptor determines the stack’s address-size
attribute. The D flag in the current code segment’s segment descriptor (with prefixes), deter-
mines the operand-size attribute and the address-size attribute of the source operand. Pushing a
16-bit operand when the stack address-size attribute is 32 can result in a misaligned stack pointer
(a stack pointer that is not be aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus if a PUSH instruction uses a memory operand in which the ESP register
is used for computing the operand address, the address of the operand is computed before the
ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

In 64-bit mode, the instruction’s default operation size is 64 bits. In a push, the 64-bit RSP
register (stack pointer) is decremented by 8. A 66H override causes 16-bit operation. Note that
pushing a 16-bit operand can result in the stack pointer misaligned to 8-byte boundary.

IA-32 Architecture Compatibility

For 1A-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the
ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes
the new value of the SP register (that is the value after it has been decremented by 2).

4-180 Vol. 2B PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

Operation

IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN
RSP « (RSP - 8);
IF (SRC is FS or GS)
THEN
TEMP = ZeroExtend64(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend64(SRC); FI;
ELSE
TEMP = SRC;
FI
RSP <« TEMP; (* Push quadword *)
ELSE (* OperandSize = 16; 66H used *)
RSP « (RSP - 2);
RSP « SRC; (* Push word *)
Fl;
ELSE IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
ESP <« (ESP - 4);
IF (SRC is FS or GS)
THEN
TEMP = ZeroExtend32(SRC);
ELSE IF (SRC is IMMEDIATE)
TEMP = SignExtend32(SRC); FI;
ELSE
TEMP = SRC;
FI;
SS:ESP <~ TEMP; (* Push doubleword *)
ELSE (* OperandSize = 16*)
ESP <« (ESP - 2);
SS:ESP <« SRC; (* Push word *)
FI;
ELSE StackAddrSize = 16
IF OperandSize = 16
THEN
SP « (SP - 2);
SS:SP < SRC; (* Push word *)
ELSE (* OperandSize = 32 *)
SP « (SP —4);
SS:SP < SRC; (* Push doubleword *)
Fl;
Fl;
FI;

PUSH—Push Word, Doubleword or Quadword Onto the Stack Vol. 2B 4-181

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)
#SS(U)
#PF(fault-code)
#AC(0)

4-182 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

PUSH—Push Word, Doubleword or Quadword Onto the Stack

INSTRUCTION SET REFERENCE, N-Z

PUSHA/PUSHAD—Push All General-Purpose Registers

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
60 PUSHA Invalid Valid Push AX, CX, DX, BX, original SP, BP, SI, and
DI.
60 PUSHAD Invalid Valid Push EAX, ECX, EDX, EBX, original ESP,

EBP, ESI, and EDI.

Description

Pushes the contents of the general-purpose registers onto the stack. The registers are stored on
the stack in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), EBP, ESI,
and EDI (if the current operand-size attribute is 32) and AX, CX, DX, BX, SP (original value),
BP, Sl, and DI (if the operand-size attribute is 16). These instructions perform the reverse oper-
ation of the POPA/POPAD instructions. The value pushed for the ESP or SP register is its value
before prior to pushing the first register (see the “Operation” section below).

The PUSHA (push all) and PUSHAD (push all double) mnemonics reference the same opcode.
The PUSHA instruction is intended for use when the operand-size attribute is 16 and the
PUSHAD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHA is used and to 32 when PUSHAD is used. Others may treat
these mnemonics as synonyms (PUSHA/PUSHAD) and use the current setting of the operand-
size attribute to determine the size of values to be pushed from the stack, regardless of the
mnemonic used.

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

This instruction executes as described in compatibility mode and legacy mode. It is not valid in
64-bit mode.

Operation

IF 64-bit Mode
THEN #UD

Fl;

IF OperandSize = 32 (* PUSHAD instruction *)
THEN

Temp « (ESP);

Push(EAX);

Push(ECX);

Push(EDX);

Push(EBX);

Push(Temp);

PUSHA/PUSHAD—Push All General-Purpose Registers Vol. 2B 4-183

INSTRUCTION SET REFERENCE, N-Z

Push(EBP);
Push(ESI);
Push(EDI);
ELSE (* OperandSize = 16, PUSHA instruction *)

Temp « (SP);
Push(AX);
Push(CX);
Push(DX);
Push(BX);
Push(Temp);
Push(BP);
Push(Sl);
Push(DlI);

FI;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the starting or ending stack address is outside the stack segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
#GP If the ESP or SP register contains 7, 9, 11, 13, or 15.

Virtual-8086 Mode Exceptions

#GP(0) If the ESP or SP register contains 7, 9, 11, 13, or 15.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

4-184 Vol. 2B PUSHA/PUSHAD—Push All General-Purpose Registers

INSTRUCTION SET REFERENCE, N-Z

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

9C PUSHF Valid Valid Push lower 16 bits of EFLAGS.

9C PUSHFD N.E. Valid Push EFLAGS.

9C PUSHFQ Valid N.E. Push RFLAGS.
Description

Decrements the stack pointer by 4 (if the current operand-size attribute is 32) and pushes the
entire contents of the EFLAGS register onto the stack, or decrements the stack pointer by 2 (if
the operand-size attribute is 16) and pushes the lower 16 bits of the EFLAGS register (that is,
the FLAGS register) onto the stack. These instructions reverse the operation of the
POPF/POPFD instructions.

When copying the entire EFLAGS register to the stack, the VM and RF flags (bits 16 and 17)
are not copied; instead, the values for these flags are cleared in the EFLAGS image stored on
the stack. See Chapter 3 of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume
1, for more information about the EFLAGS register.

The PUSHF (push flags) and PUSHFD (push flags double) mnemonics reference the same
opcode. The PUSHF instruction is intended for use when the operand-size attribute is 16 and the
PUSHFD instruction for when the operand-size attribute is 32. Some assemblers may force the
operand size to 16 when PUSHF is used and to 32 when PUSHFD is used. Others may treat these
mnemonics as synonyms (PUSHF/PUSHFD) and use the current setting of the operand-size
attribute to determine the size of values to be pushed from the stack, regardless of the mnemonic
used.

In 64-bit mode, the instruction’s default operation is to decrement the stack pointer (RSP) by 8
and pushs RFLAGS on the stack. 16-bit operation is supported using the operand size override
prefix 66H. 32-bit operand size cannot be encoded in this mode. When copying RFLAGS to the
stack, the VM and RF flags (bits 16 and 17) are not copied; instead, values for these flags are
cleared in the RFLAGS image stored on the stack.

When in virtual-8086 mode and the 1/O privilege level (IOPL) is less than 3, the
PUSHF/PUSHFD instruction causes a general protection exception (#GP).

In the real-address mode, if the ESP or SP register is 1, 3, or 5 when the PUSHA/PUSHAD
instruction is executed, the processor shuts down due to a lack of stack space. No exception is
generated to indicate this condition.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol. 2B 4-185

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (PE=0)or (PE=1and (VM =0) or (VM =1 and IOPL = 3)))
(* Real-Address Mode, Protected mode, or Virtual-8086 mode with IOPL equal to 3 *)
THEN
IF OperandSize = 32
THEN
push (EFLAGS AND O0FCFFFFH);
(* VM and RF EFLAG bits are cleared in image stored on the stack *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
Fl;

ELSE IF 64-bit MODE (* In 64-bit Mode *)
IF OperandSize = 64
THEN
push (RFLAGS AND 00000000_00FCFFFFH);
(* VM and RF RFLAG bits are cleared in image stored on the stack; *)
ELSE
push (EFLAGS); (* Lower 16 bits only *)
FI;
ELSE (* In Virtual-8086 Mode with IOPL less than 3 *)
#GP(0); (* Trap to virtual-8086 monitor *)
FI;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the new value of the ESP register is outside the stack segment boundary.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions

#GP(0) If the 1/O privilege level is less than 3.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

4-186 Vol. 2B PUSHF/PUSHFD—Push EFLAGS Register onto the Stack

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while the current privilege level

is 3 and alignment checking is enabled.

PUSHF/PUSHFD—Push EFLAGS Register onto the Stack Vol. 2B 4-187

INSTRUCTION SET REFERENCE, N-Z

PXOR—Logical Exclusive OR

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF EF Ir PXOR mm, mm/m64 Valid Valid Bitwise XOR of mm/m64
and mm.
66 OF EF/r PXOR xmm1, xmm2/m128 Valid Valid Bitwise XOR of

xmm2/m128 and xmm1.

Description

Performs a bitwise logical exclusive-OR (XOR) operation on the source operand (second
operand) and the destination operand (first operand) and stores the result in the destination
operand. The source operand can be an MMX technology register or a 64-bit memory location
or it can be an XMM register or a 128-bit memory location. The destination operand can be an
MMX technology register or an XMM register. Each bit of the result is 1 if the corresponding
bits of the two operands are different; each bit is 0 if the corresponding bits of the operands are
the same.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST « DEST XOR SRC;

Intel C/C++ Compiler Intrinsic Equivalent
PXOR __m64 _mm_xor_si64 (__m64 ml, __m64 m2)
PXOR _ m128i _mm_xor_sil28 (__m128ia, __m128ib)

Flags Affected
None.

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only) I1f amemory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.

4-188 Vol. 2B PXOR—Logical Exclusive OR

#UD

#NM

#MF
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only) If a memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If CRO.EM[bit 2] = 1.

(128-hit operations only) If CR4.0SFXSR][bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

PXOR—Logical Exclusive OR Vol. 2B 4-189

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)

ub

#NM

#MF
#PF(fault-code)
#AC(0)

4-190 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

(128-bit operations only) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If CRO.EM[bit 2] = 1.

(128-bit operations only) If CR4.0SFXSR[bit 9] = 0.

(128-bit operations only) If CPUID.01H:EDX.SSE2[bit 26] = 0.
If CRO.TS[bit 3] = 1.

(64-bit operations only) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only) If alignment checking is enabled and an unaligned
memory reference is made while the current privilege level is 3.

PXOR—Logical Exclusive OR

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

Opcode**

DO /2
REX + D0 /2
D2 /2
REX + D2 /2

C0/2ib
REX +CO0/2ib

D1/2
D3 /2

Cl/2ib

D1/2
REX.W + D1 /2

D3 /2

REX.W + D3 /2
Cl/2ib
REX.W + C1/2
ib

DO /3

REX + D0 /3
D2/3

REX + D2 /3
C0/3ib

REX + CO0/3ib
D1/3

D3/3

C1/3ib

D1/3

Instruction

RCLr/m8, 1
RCL r/m8*, 1
RCL r/m8, CL
RCL r/m8*, CL

RCL r/m8,
imm8

RCL r/m8*,
imm8

RCL r/m16, 1
RCL r/m16, CL

RCL r/m16,
imm8

RCL r/m32, 1
RCL r/m64, 1

RCL r/m32, CL

RCL r/m64, CL

RCL r/m32,
imm8

RCL r/m64,
imm8
RCR/m8, 1
RCR r/m8*, 1
RCR r/m8, CL

RCR r/m8*, CL

RCR r/m8,
imm8

RCR r/m8*%,
imm8

RCR r/m16, 1

RCR r/m16, CL
RCR r/m16,

imm8
RCR r/m32, 1

64-Bit
Mode

Valid
Valid
Valid
Valid

Valid

Valid

Valid
Valid

Valid

Valid
Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.

Valid
N.E.

Valid
Valid

Valid

Valid
N.E.

Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
Valid
Valid

Valid

Description

Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, r/m8) left once.
Rotate 9 bits (CF, r/m8) left CL times.
Rotate 9 bits (CF, r/m8) left CL
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 9 bits (CF, r/m8) left imm8
times.

Rotate 17 bits (CF, r/m16) left once.
Rotate 17 bits (CF, r/m16) left CL
times.

Rotate 17 bits (CF, r/m16) left imm8
times.

Rotate 33 bits (CF, r/m32) left once.
Rotate 65 bits (CF, r/m64) left once.
Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left CL
times.

Rotate 65 bits (CF, r/m64) left CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) left imm8
times.

Rotate 65 bits (CF, r/m64) left imm8
times. Uses a 6 bit count.

Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right once.
Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right CL
times.

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 9 bits (CF, r/m8) right imm8
times.

Rotate 17 bits (CF, r/m16) right
once.

Rotate 17 bits (CF, r/m16) right CL
times.

Rotate 17 bits (CF, r/m16) right
imm8 times.

Rotate 33 bits (CF, r/m32) right
once. Uses a 6 bit count.

RCL/RCR/ROL/ROR-—Rotate

Vol. 2B 4-191

INSTRUCTION SET REFERENCE, N-Z

Opcode
REX.W + D1 /3

D3/3
REX.W + D3 /3
C1/3ib

REX.W + C1/3
ib

DO /0

REX + DO /0
D2 /0

REX + D2 /0
Co/0ib

REX + CO0 /0 ib

D1/0
D3 /0
Cl/0ib

D1/0
REX.W + D1 /0

D3/0
REX.W + D3 /0

C1/0ib
Cl/0ib

DO /1

REX + D0 /1
D2/1

REX + D2 /1
Co/lib

REX+CO0/1ib

D1/1
D3/1
Cil/nlib

D1/1

Instruction

RCR r/m64, 1

RCR r/m32, CL

RCR r/m64, CL

RCR r/m32,
imm8

RCR r/m64,
imm8

ROL r/m8, 1
ROL r/m8*, 1
ROL r/m8, CL
ROL r/m8*, CL
ROL r/m8,
imm8

ROL r/m8*,
imm8

ROL r/m16, 1
ROL r/m16, CL
ROL r/m16,
imm8

ROL r/m32, 1
ROL r/m64, 1

ROL r/m32, CL
ROL r/m64, CL

ROL r/m32,
imm8

ROL r/m64,
imm8

ROR r/m8, 1
ROR r/m8*, 1
ROR r/m8, CL
ROR r/m8*, CL
ROR r/m8,
imm8

ROR r/m8*,
imm8

ROR r/m16, 1
ROR r/m16, CL
ROR r/m16,
imm8

ROR r/m32, 1

64-Bit
Mode

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid

Valid
Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid

Compat/
Leg Mode

N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.

Valid
N.E.

Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid

Description
Rotate 65 bits (CF, r/m64) right
once. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right CL
times.

Rotate 65 bits (CF, r/m64) right CL
times. Uses a 6 bit count.

Rotate 33 bits (CF, /m32) right
imma8 times.

Rotate 65 bits (CF, r/m64) right
imma8 times. Uses a 6 bit count.

Rotate 8 bits r/m8 left once.
Rotate 8 bits r/m8 left once
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits r/m8 left CL times.
Rotate 8 bits r/m8 left imm8 times.

Rotate 8 bits r/m8 left imm8 times.

Rotate 16 bits r/m16 left once.
Rotate 16 bits r/m16 left CL times.
Rotate 16 bits r/m16 left imm8 times.

Rotate 32 bits r/m32 left once.

Rotate 64 bits r/m64 left once. Uses
a 6 bit count.

Rotate 32 bits r/m32 left CL times.

Rotate 64 bits r/m64 left CL times.
Uses a 6 bit count.

Rotate 32 bits r/m32 left imm8 times.

Rotate 64 bits r/m64 left imm8 times.
Uses a 6 bit count.

Rotate 8 bits r/m8 right once.
Rotate 8 bits r/m8 right once.
Rotate 8 bits r/m8 right CL times.
Rotate 8 bits r/m8 right CL times.

Rotate 8 bits r/m16 right imm8
times.

Rotate 8 bits r/m16 right imm8
times.

Rotate 16 bits r/m16 right once.
Rotate 16 bits r/m16 right CL times.

Rotate 16 bits r/m16 right imm8
times.

Rotate 32 bits r/m32 right once.

4-192 Vol. 2B

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

REX.W + D1 /1 ROR r/m64, 1 Valid N.E. Rotate 64 bits r/m64 right once.
Uses a 6 hit count.

D3/1 ROR r/m32,CL Valid Valid Rotate 32 bits r/m32 right CL times.

REX.W + D3 /1 ROR r/m64, CL Valid N.E. Rotate 64 bits r/m64 right CL times.
Uses a 6 bit count.

Cl/1lib ROR r/m32, Valid Valid Rotate 32 bits r/m32 right imm8

imm8 times.
REX.W + C1/1 ROR r/m64, Valid N.E. Rotate 64 bits r/m64 right imm8
ib imm8 times. Uses a 6 bit count.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

** See IA-32 Architecture Compatibility section below.

Description

Shifts (rotates) the bits of the first operand (destination operand) the number of bit positions
specified in the second operand (count operand) and stores the result in the destination operand.
The destination operand can be a register or amemory location; the count operand is an unsigned
integer that can be an immediate or a value in the CL register. In legacy and compatibility mode,
the processor restricts the count to a number between 0 and 31 by masking all the bits in the
count operand except the 5 least-significant bits.

The rotate left (ROL) and rotate through carry left (RCL) instructions shift all the bits toward
more-significant bit positions, except for the most-significant bit, which is rotated to the least-
significant bit location. The rotate right (ROR) and rotate through carry right (RCR) instructions
shift all the bits toward less significant bit positions, except for the least-significant bit, which
is rotated to the most-significant bit location.

The RCL and RCR instructions include the CF flag in the rotation. The RCL instruction shifts
the CF flag into the least-significant bit and shifts the most-significant bit into the CF flag. The
RCR instruction shifts the CF flag into the most-significant bit and shifts the least-significant bit
into the CF flag. For the ROL and ROR instructions, the original value of the CF flag is not a
part of the result, but the CF flag receives a copy of the bit that was shifted from one end to the
other.

The OF flag is defined only for the 1-bit rotates; it is undefined in all other cases (except that a
zero-bit rotate does nothing, that is affects no flags). For left rotates, the OF flag is set to the
exclusive OR of the CF bit (after the rotate) and the most-significant bit of the result. For right
rotates, the OF flag is set to the exclusive OR of the two most-significant bits of the result.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Use of REX.W promotes the first operand to 64 bits and causes the count operand to
become a 6-bit counter.

RCL/RCR/ROL/ROR-—Rotate Vol. 2B 4-193

INSTRUCTION SET REFERENCE, N-Z

IA-32 Architecture Compatibility

The 8086 does not mask the rotation count. However, all other 1A-32 processors (starting with
the Intel 286 processor) do mask the rotation count to 5 bits, resulting in a maximum count of
31. This masking is done in all operating modes (including the virtual-8086 mode) to reduce the

maximum execution time of the instructions.

Operation

(* RCL and RCR instructions *)

SIZE « OperandSize;

CASE (determine count) OF
SIZE < 8: tempCOUNT « (COUNT AND 1FH) MOD 9;
SIZE « 16: tempCOUNT « (COUNT AND 1FH) MOD 17;
SIZE < 32: tempCOUNT « COUNT AND 1FH;
SIZE < 64: tempCOUNT « COUNT AND 3FH;

ESAC;

(* RCL instruction operation *)
WHILE (tempCOUNT =# 0)
DO
tempCF « MSB(DEST);
DEST « (DEST * 2) + CF;
CF « tempCF;
tempCOUNT <« tempCOUNT -1,
OD;
ELIHW;
IF COUNT =1
THEN OF <~ MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;

(* RCR instruction operation *)
IF COUNT =1
THEN OF <~ MSB(DEST) XOR CF;
ELSE OF is undefined;
Fl;
WHILE (tempCOUNT = 0)
DO
tempCF « LSB(SRC);
DEST « (DEST / 2) + (CF * 25125y,
CF « tempCF;
tempCOUNT <« tempCOUNT -1,
OD;

(* ROL and ROR instructions *)

SIZE <« OperandSize;
CASE (determine count) OF

4-194 Vol. 2B

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

SIZE « 8: tempCOUNT « (COUNT AND 1FH) MOD 8; (* Mask count before MOD *)
SIZE < 16: tempCOUNT <« (COUNT AND 1FH) MOD 16;
SIZE « 32: tempCOUNT « (COUNT AND 1FH) MOD 32;
SIZE < 64: tempCOUNT « (COUNT AND 1FH) MOD 64;
ESAC;

(* ROL instruction operation *)
IF (tempCOUNT > 0) (* Prevents updates to CF *)
WHILE (tempCOUNT # 0)
DO
tempCF <« MSB(DEST);
DEST « (DEST * 2) + tempCF;
tempCOUNT « tempCOUNT - 1;
OD;
ELIHW;
CF « LSB(DEST);
IF COUNT =1
THEN OF «~ MSB(DEST) XOR CF;
ELSE OF is undefined;
FI;
Fl;

(* ROR instruction operation *)
IF tempCOUNT > 0) (* Prevent updates to CF *)
WHILE (tempCOUNT # 0)
DO
tempCF « LSB(SRC);
DEST « (DEST/ 2) + (tempCF * 25'ZE);
tempCOUNT <« tempCOUNT - 1;
OD;
ELIHW;
CF <« MSB(DEST);
IF COUNT =1
THEN OF «~ MSB(DEST) XOR MSB — 1(DEST);
ELSE OF is undefined;
FI;
FI;

Flags Affected

The CF flag contains the value of the bit shifted into it. The OF flag is affected only for single-
bit rotates (see “Description” above); it is undefined for multi-bit rotates. The SF, ZF, AF, and
PF flags are not affected.

RCL/RCR/ROL/ROR-—Rotate Vol. 2B 4-195

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the source operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#PF(fault-code)
#AC(0)

4-196 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the source operand is located in a nonwritable segment.
If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

RCL/RCR/ROL/ROR-—Rotate

INSTRUCTION SET REFERENCE, N-Z

RCPPS—Compute Reciprocals of Packed Single-Precision
Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 53 /r RCPPS xmm1, Valid Valid Computes the approximate reciprocals of
xmmz2/m128 the packed single-precision floating-point

values in xmm2/m128 and stores the
results in xmm1.

Description

Performs an SIMD computation of the approximate reciprocals of the four packed single-
precision floating-point values in the source operand (second operand) stores the packed
single-precision floating-point results in the destination operand. The source operand can be
an XMM register or a 128-bit memory location. The destination operand is an XMM register.
See Figure 10-5 in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for
an illustration of an SIMD single-precision floating-point operation.

The relative error for this approximation is:
|Relative Error| < 1.5 * 2712

The RCPPS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an « of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). Tiny results are always flushed to 0.0, with the sign
of the operand. (Input values greater than or equal to |1.11111111110100000000000B 2% are
guaranteed to not produce tiny results; input values less than or equal to
|1.00000000000110000000001B*212% are guaranteed to produce tiny results, which are in turn
flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is
converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST([31:0] «- APPROXIMATE(1.0/(SRC[31:0]));
DEST[63:32] < APPROXIMATE(L.0/(SRC[63:32]));
DEST[95:64] < APPROXIMATE(L.0/(SRC[95:64]));
DEST[127:96] «- APPROXIMATE(1.0/(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RCCPS _ m128 _mm_rcp_ps(__m128 a)

RCPPS—Compute Reciprocals of Packed Single-Precision Floating- Vol. 2B 4-197
Point Values

INSTRUCTION SET REFERENCE, N-Z

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-198 Vol. 2B

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

RCPPS—Compute Reciprocals of Packed Single-Precision Floating- Vol. 2B 4-199
Point Values

INSTRUCTION SET REFERENCE, N-Z

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-
Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F3 OF RCPSS xmm1, Valid Valid Computes the approximate reciprocal of
53 /r xmm2/m32 the scalar single-precision floating-point
value in xmm2/m32 and stores the result
in xmm1.

Description

Computes of an approximate reciprocal of the low single-precision floating-point value in the
source operand (second operand) and stores the single-precision floating-point result in the
destination operand. The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Figure 10-6 in the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 1, for an illustration of a scalar single-precision floating-point
operation.

The relative error for this approximation is:
|Relative Error| < 1.5 * 2712

The RCPSS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an « of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). Tiny results are always flushed to 0.0, with the sign
of the operand. (Input values greater than or equal to |1.11111111110100000000000B+2%| are
guaranteed to not produce tiny results; input values less than or equal to
|1.00000000000110000000001B*21%%| are guaranteed to produce tiny results, which are in turn
flushed to 0.0; and input values in between this range may or may not produce tiny results,
depending on the implementation.) When a source value is an SNaN or QNaN, the SNaN is
converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROX (1.0/(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RCPSS __m128 _mm_rcp_ss(__m128 a)

SIMD Floating-Point Exceptions
None.

4-200 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) For unaligned memory reference.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Vol. 2B 4-201
Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-202 Vol. 2B RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z

RDMSR—Read from Model Specific Register

64-Bit Compat/

Opcode* Instruction Mode Leg Mode Description

OF 32 RDMSR Valid Valid Load MSR specified by ECX into
EDX:EAX.

REX.W + OF 32 RDMSR Valid N.E. Load MSR specified by RCX into
RDX:RAX.

NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Loads the contents of a 64-bit model specific register (MSR) specified in an index register into
registers EDX:EAX. The input value loaded into the index register is the address of the MSR to
be read. The EDX register is loaded with the high-order 32 bits of the MSR and the EAX register
is loaded with the low-order 32 bits. If fewer than 64 bits are implemented in the MSR being
read, the values returned to EDX:EAX in unimplemented bit locations are undefined. In non-
64-bit mode, the index register is specified in ECX. In 64-bit mode, the index register is speci-
fied in RCX and the higher 32-bits of RDX and RAX are cleared.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) will be generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, and
machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in the 1A-32 Intel®
Architecture Software Developer’s Manual, Volume 3B, lists all the MSRs that can be read with
this instruction and their addresses. Note that each processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the
IA-32 Architecture with the Pentium processor. Execution of this instruction by an 1A-32
processor earlier than the Pentium processor results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

RDMSR—Read from Model Specific Register Vol. 2B 4-203

INSTRUCTION SET REFERENCE, N-Z

Operation

IF 64-Bit Mode and REX.W used
THEN
RAX[31:0] « MSR(RCX)[31:0];
RAX[63:32] « 0];
RDX[31:0] « MSR(RCX)[63:32];
RDX[63:32] « 0];
ELSE

(* Non-64-bit modes, 64-bit mode default *)
EDX-EAX < MSR[ECX];

Fl;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR address.

Real-Address Mode Exceptions
#GP If the value in ECX specifies a reserved or unimplemented MSR address.

Virtual-8086 Mode Exceptions
#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or unimplemented MSR
address.

4-204 Vol. 2B RDMSR—Read from Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

RDPMC—Read Performance-Monitoring Counters

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.

Description

Loads the 40-bit performance-monitoring counter specified in the ECX register into registers
EDX:EAX. The EDX register is loaded with the high-order 8 bits of the counter and the EAX
register is loaded with the low-order 32 bits. The counter to be read is specified with an unsigned
integer placed in the ECX register.

The indices used to specify performance counters are model-specific and may vary by processor
implementations. See Table 4-2 for valid indices for each processor family.

Table 4-2. Valid Performance Counter Index Range for RDPMC

CPUID Family/Model/ Valid PMC
Processor Family Other Signatures Index Range 40-bit Counters
P6 Family 06H 0,1 0,1
Pentium 4, Intel Xeon processors | Family OFH; Model 00H, >0and <17 >0and <17
01H, 02H
Pentium 4, Intel Xeon processors | (Family OFH; Model 03H, | >0 and <17 >0and <17
04H, 06H) and (L3 is
absent)
Pentium M processors Family 06H, Model 09H, 0,1 0,1
ODH
64-bit Intel Xeon processors with (Family OFH; Model 03H, | >0and <25 >0and <17
L3 (see Chapter 18 of 1A-32 04H) and (L3 is present)
Intel® Architecture Software
Developer’s Manual, Volume 3B)
Intel® Core™ Solo and Intel® Family 06H, Model OEH 0,1 0,1
Core™ Duo processors

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow” (40-bit) reads
on the first 18 performance counters. Selected this option using ECX[bit 31]. If bit 31 is set,
RDPMC reads only the low 32 bits of the selected performance counter. If bit 31 is clear, all 40
bits are read. A 32-bit result is returned in EAX and EDX is set to 0. A 32-bit read executes faster
on Pentium 4 processors and Intel Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 are 32-bit
counters. EDX is cleared after executing RDPMC for these counters.

RDPMC—Read Performance-Monitoring Counters Vol. 2B 4-205

INSTRUCTION SET REFERENCE, N-Z

When in protected or virtual 8086 mode, the performance-monitoring counters enabled (PCE)
flag in register CR4 restricts the use of the RDPMC instruction as follows. When the PCE flag
is set, the RDPMC instruction can be executed at any privilege level; when the flag is clear, the
instruction can only be executed at privilege level 0. (When in real-address mode, the RDPMC
instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction, when
executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to count
events such as the number of instructions decoded, number of interrupts received, or number of
cache loads. Appendix A, “Performance Monitoring Events,” in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, lists the events that can be counted for the Pentium 4,
Intel Xeon, and earlier |A-32 processors.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all the
events caused by the preceding instructions have been completed or that events caused by subse-
quent instructions have not begun. If an exact event count is desired, software must insert a seri-
alizing instruction (such as the CPUID instruction) before and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are not guaran-
teed to be monotonic. To guarantee monotonicity on back-to-back reads, a serializing instruction
must be placed between the tow RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode; however,
the full contents of the ECX register are used to select the counter, and the event count is stored
in the full EAX and EDX registers. The RDPMC instruction was introduced into the 1A-32
Architecture in the Pentium Pro processor and the Pentium processor with MMX technology.
The earlier Pentium processors have performance-monitoring counters, but they must be read
with the RDMSR instruction.

In 64-bit mode, RDPMC behavior is unchanged from 32-bit mode. The upper 32 bits of RAX
and RDX are cleared.

Operation
(* P6 family processors and Pentium processor with MMX technology *)
IF (ECX =0 or 1) and ((CR4.PCE =1) or (CPL = 0) or (CRO.PE = 0))
THEN
EAX « PMC(ECX)[31:0];
EDX « PMC(ECX)[39:32];
ELSE (* ECXisnot0or 1 or CR4.PCEis 0 and CPLis 1, 2, or 3 and CRO.PE is 1 *)
#GP(0);
Fl;
(* Processors with CPUID family 15 *)
IF ((CR4.PCE =1) or (CPL =0) or (CRO.PE =0))
THEN IF (ECX[30:0] = 0:17)

4-206 Vol. 2B RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

THEN IF ECX[31] =0
THEN IF 64-Bit Mode
THEN
RAX[31:0] « PMC(ECX[30:0])[31:0]; (* 40-bit read *)
RAX[63:32] «- 0;
RDX[31:0] « PMC(ECX[30:0])[39:32];
RDX[63:32] « 0;
ELSE
EAX « PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX « PMC(ECX[30:0])[39:32];
Fl;
ELSE IF ECX[31] =1
THEN IF 64-Bit Mode
THEN
RAX[31:0] « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
RAX[63:32] « O;
RDX « 0;
ELSE
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « 0;
Fl;
Fl;
ELSE IF (*64-bit Intel Xeon processor with L3 *)
THEN IF (ECX[30:0] = 18:25
EAX « PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX « 0;
Fl;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-4. *)
GP(0);
Fl;
ELSE (* CR4.PCE=0and (CPL=1, 2, or 3) and CRO.PE =1*)
#GP(0);
FI;

RDPMC—Read Performance-Monitoring Counters Vol. 2B 4-207

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

If the current privilege level is not 0 and the PCE flag in the CR4 register
is clear.

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Real-Address Mode Exceptions

#GP

If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Virtual-8086 Mode Exceptions

#GP(0)

If the PCE flag in the CR4 register is clear.
If an invalid performance counter index is specified (see Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0] is not
within the valid range.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0)

4-208 Vol. 2B

If the current privilege level is not 0 and the PCE flag in the CR4 register
is clear.

If an invalid performance counter index is specified in ECX[30:0] (see
Table 4-2).

RDPMC—Read Performance-Monitoring Counters

INSTRUCTION SET REFERENCE, N-Z

RDTSC—Read Time-Stamp Counter

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 31 RDTSC Valid Valid Read time-stamp counter into

EDX:EAX.

Description

In legacy, compatibility and default 64-bit mode; loads the current value of the processor’s time-
stamp counter into the EDX:EAX registers. The time-stamp counter is contained in a 64-bit
MSR. The high-order 32 bits of the MSR are loaded into the EDX register, and the low-order 32
bits are loaded into the EAX register.

The processor monotonically increments the time-stamp counter MSR every clock cycle and
resets it to O whenever the processor is reset. See “Time Stamp Counter” in Chapter 18 of the
I1A-32 Intel® Architecture Software Developer’s Manual, Volume 3B, for specific details of the
time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register CR4
restricts the use of the RDTSC instruction as follows. When the TSD flag is clear, the RDTSC
instruction can be executed at any privilege level; when the flag is set, the instruction can only
be executed at privilege level 0. (When in real-address mode, the RDTSC instruction is always
enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when executing at priv-
ilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily wait until
all previous instructions have been executed before reading the counter. Similarly, subsequent
instructions may begin execution before the read operation is performed.

This instruction was introduced by the Pentium processor.

In 64-bit mode, RDTSC behavior is unchanged from 32-bit mode. The upper 32 bits of RAX
and RDX are cleared.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

RDTSC—Read Time-Stamp Counter Vol. 2B 4-209

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CRO.PE = 0)
THEN

IF 64-Bit Mode
THEN

RAX[31:0] <~ TimeStampCounter[31:0];
RAX[63:32] « O;
RDX[31:0] «- TimeStampCounter[63:32];
RDX[63:32] < 0;
ELSE
EDX:EAX <« TimeStampCounter;

Fl;
ELSE (* CR4.TSD =1 and (CPL = 1, 2, or 3) and CRO.PE = 1 *)
#GP(0);
FI;
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) If the TSD flag in register CR4 is set.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-210 Vol. 2B RDTSC—Read Time-Stamp Counter

INSTRUCTION SET REFERENCE, N-Z

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Opcode
F36C

F3 6C
F3 6D
F3 6D
F3 6D
F3 A4
REX.W + F3 A4
F3 A5
F3 A5
REX.W + F3 A5
F3 6E
REX.W + F3 6E
F3 6F
F3 6F
REX.W + F3 6F
F3 AC
REX.W + F3 AC
F3 AD
F3 AD

REX.W + F3 AD

Instruction

REP INS m8, DX

REP INS m8, DX

REP INS m16, DX

REP INS m32, DX

REP INS r/m32, DX

REP MOVS m8, m8

REP MOVS m8, m8

REP MOVS m16,
ml16

REP MOVS m32,
m32

REP MOVS m64,
m64

REP OUTS DX,
r/m8

REP OUTS DX,
r/m8*

REP OUTS DX,
r/m16

REP OUTS DX,
r/m32

REP OUTS DX,
r/m32

REP LODS AL
REP LODS AL
REP LODS AX
REP LODS EAX

REP LODS RAX

64-Bit
Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid

N.E.

Description

Input (E)CX bytes from port DX
into ES:[(E)DI].

Input RCX bytes from port DX
into [RDI].

Input (E)CX words from port DX
into ES:[(E)DI.]

Input (E)CX doublewords from
port DX into ES:[(E)DI].

Input RCX default size from port
DX into [RDI].

Move (E)CX bytes from
DS:[(E)SI] to ES:[(E)DI].

Move RCX bytes from [RSI] to
[RDI].

Move (E)CX words from
DS:[(E)SI] to ES:[(E)DI].

Move (E)CX doublewords from
DS:[(E)SI] to ES:[(E)DI].

Move RCX quadwords from
[RSI] to [RDI].

Output (E)CX bytes from
DS:[(E)SI] to port DX.

Output RCX bytes from [RSI] to
port DX.

Output (E)CX words from
DS:[(E)SI] to port DX.

Output (E)CX doublewords from
DS:[(E)SI] to port DX.

Output RCX default size from
[RSI] to port DX.

Load (E)CX bytes from
DS:[(E)SI] to AL.

Load RCX bytes from [RSI] to
AL.

Load (E)CX words from
DS:[(E)SI] to AX.

Load (E)CX doublewords from
DS:[(E)SI] to EAX.

Load RCX quadwords from [RSI]
to RAX.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

Vol. 2B 4-211

INSTRUCTION SET REFERENCE, N-Z

Opcode
F3 AA

REX.W + F3 AA
F3 AB

F3 AB
REX.W + F3 AB
F3 A6
REX.W + F3 A6
F3 A7
F3 A7
REX.W + F3 A7
F3 AE
REX.W + F3 AE
F3 AF
F3 AF
REX.W + F3 AF
F2 A6
REX.W + F2 A6
F2 A7
F2 A7

REX.W + F2 A7

64-Bit
Instruction Mode
REP STOS m8 Valid
REP STOS m8 Valid
REP STOS m16 Valid
REP STOS m32 Valid
REP STOS m64 Valid
REPE CMPS m8, Valid
m8
REPE CMPS m8, Valid
m8
REPE CMPS m16, Valid
ml16
REPE CMPS m32, Valid
m32
REPE CMPS m64, Valid
m64
REPE SCAS m8 Valid
REPE SCAS m8 Valid
REPE SCAS m16 Valid
REPE SCAS m32 Valid
REPE SCAS m64 Valid
REPNE CMPS m8, Valid
m8
REPNE CMPS m8, Valid
m8
REPNE CMPS Valid
ml16, m16
REPNE CMPS Valid
m32, m32
REPNE CMPS Valid
m64, m64

Compat/
Leg Mode

Valid

N.E.
Valid

Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.
Valid
Valid

N.E.

Description

Fill (E)CX bytes at ES:[(E)DI]
with AL.

Fill RCX bytes at [RDI] with AL.

Fill (E)CX words at ES:[(E)DI]
with AX.

Fill (E)CX doublewords at
ES:[(E)DI] with EAX.

Fill RCX quadwords at [RDI] with
RAX.

Find nonmatching bytes in
ES:[(E)DI] and DS:[(E)SI].

Find non-matching bytes in [RDI]
and [RSI].

Find nonmatching words in
ES:[(E)DI] and DS:[(E)SI].

Find nonmatching doublewords
in ES:[(E)DI] and DS:[(E)SI].
Find non-matching quadwords in
[RDI] and [RSI].

Find non-AL byte starting at
ES:[(E)DI].

Find non-AL byte starting at
[RDI].

Find non-AX word starting at
ES:[(E)DI].

Find non-EAX doubleword
starting at ES:[(E)DI].

Find non-RAX quadword starting
at [RDI].

Find matching bytes in
ES:[(E)DI] and DS:[(E)SI].

Find matching bytes in [RDI] and
[RSI].

Find matching words in
ES:[(E)DI] and DS:[(E)SI].

Find matching doublewords in
ES:[(E)DI] and DS:[(E)SI].

Find matching doublewords in
[RDI] and [RSI].

4-212 Vol. 2B

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

F2 AE REPNE SCAS m8 Valid Valid Find AL, starting at ES:[(E)DI].
REX.W + F2 AE REPNE SCAS m8 Valid N.E. Find AL, starting at [RDI].

F2 AF REPNE SCAS m16 Valid Valid Find AX, starting at ES:[(E)DI].
F2 AF REPNE SCAS m32 Valid Valid Find EAX, starting at ES:[(E)DI].
REX.W + F2 AF REPNE SCAS m64 Valid N.E. Find RAX, starting at [RDI].
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Repeats a string instruction the number of times specified in the count register or until the indi-
cated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while equal),
REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while not zero)
mnemonics are prefixes that can be added to one of the string instructions. The REP prefix can
be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE, REPNE,
REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The REPZ and
REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respectively.) The
behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instruc-
tions, use the LOOP instruction or another looping construct. All of these repeat prefixes cause
the associated instruction to be repeated until the count in register is decremented to 0. See
Table 4-3.

Table 4-3. Repeat Prefixes

Repeat Prefix Termination Condition 1* Termination Condition 2
REP RCX or (E)CX=0 None

REPE/REPZ RCX or (E)CX =0 ZF =0

REPNE/REPNZ RCX or (E)CX =0 ZF =1

NOTES:

* Count register is CX, ECX or RCX by default, depending on attributes of the operating modes. In 64-bit
mode, if default operation size is 32 bits, the count register becomes RCX when a REX.W prefix is
used.

The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after each
iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the count register with a JECXZ instruction or by testing the ZF flag (with a JZ, INZ, or
JNE instruction).

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol. 2B 4-213

INSTRUCTION SET REFERENCE, N-Z

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all 1/O ports can handle the rate
at which these instructions execute. Note that a REP STOS instruction is the fastest way to
initialize a large block of memory.

In 64-bit mode, default operation size is 32 bits. The default count register is RCX for REP INS
and REP OUTS; it is ECX for other instructions. REX.W does not promote operation to 64-bit
for REP INS and REP OUTS. However, using an REX prefix in the form of REX.W does
promote operation to 64-bit operands for other REP/REPNE/REPZ/REPNZ instructions. See
the summary chart at the beginning of this section for encoding data and limits.

Operation

IF AddressSize = 16
THEN
Use CX for CountReg;
ELSE IF AddressSize = 64 and REX.W used
THEN Use RCX for CountReg; Fl;
ELSE
Use ECX for CountReg;
FI;
WHILE CountReg # 0
DO
Service pending interrupts (if any);
Execute associated string instruction;
CountReg « (CountReg — 1);
IF CountReg =0
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF =0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)

THEN exit WHILE loop; FI;
OD;

4-214 Vol. 2B REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Exceptions (All Operating Modes)
None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix Vol. 2B 4-215

INSTRUCTION SET REFERENCE, N-Z

RET—Return from Procedure

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

C3 RET Valid Valid Near return to calling procedure.

CB RET Valid Valid Far return to calling procedure.

C2iw RET imm16 Valid Valid Near return to calling procedure and pop
imm16 bytes from stack.

CA iw RET imm16 Valid Valid Far return to calling procedure and pop
imm16 bytes from stack.

Description

Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

® Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

® Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

® Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section
titled “Calling Procedures Using Call and RET” in Chapter 6 of the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 1, for detailed information on near, far, and inter-privi-
lege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

4-216 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

In 64-bit mode, the default operation size of this instruction is the stack size, i.e. 64 bits.

Operation

(* Near return *)
IF instruction = Near return

THEN;
IF OperandSize = 32
THEN
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI,
EIP « Pop();
ELSE
IF OperandSize = 64
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI,
RIP « Pop();
ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP « Pop();
tempEIP « tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
Fl;
FI;

IF instruction has immediate operand
THEN IF StackAddressSize = 32

THEN

ESP « ESP + SRC; (* Release parameters from stack *)
ELSE

IF StackAddressSize = 64

THEN

RET—Return from Procedure Vol. 2B 4-217

INSTRUCTION SET REFERENCE, N-Z

RSP « RSP + SRC; (* Release parameters from stack *)
ELSE (* StackAddressSize = 16 *)
SP « SP + SRC; (* Release parameters from stack *)
FI;
FI;
Fl;
Fl;

(* Real-address mode or virtual-8086 mode *)
IF ((PE =0) or (PE =1 AND VM = 1)) and instruction = far return
THEN
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI,
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits
THEN #SS(0); FI,
tempEIP « Pop();
tempEIP « tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP « tempEIP;
CS « Pop(); (* 16-bit pop *)
FI;
IF instruction has immediate operand
THEN
SP « SP + (SRC AND FFFFH); (* Release parameters from stack *)
Fl;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE=1and VM =0 and IA32_EFER.LMA = 0) and instruction = far RET
THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits
THEN #SS(0); FI;
FI;
IF return code segment selector is NULL
THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

4-218 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;

IF return code segment descriptor is non-conforming and return code
segment DPL # return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;
FI;
Fl;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* Release parameters from stack *)
Fl;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;

Read return segment selector;

IF stack segment selector is NULL
THEN #GP(0); FI;

IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;

Read segment descriptor pointed to by return segment selector;

IF stack segment selector RPL # RPL of the return code segment selector

or stack segment is not a writable data segment

or stack segment descriptor DPL # RPL of the return code segment selector

RET—Return from Procedure Vol. 2B 4-219

INSTRUCTION SET REFERENCE, N-Z

THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor
information also loaded *)
CS(RPL) «- CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded; segment
descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 16 *)
EIP « Pop();
EIP « EIP AND O000FFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) «- CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS <« Pop(); (* 16-bit pop; segment descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;
Fl;

FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector « 0; (* Segment selector invalid *)
Fl;
OD;

For each of ES, FS, GS, and DS
DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or
readable code segment
or if the segment is a data or non-conforming code segment

and the segment descriptor's DPL < CPL or RPL of code segment’s
segment selector

THEN SegmentSelector « 0; (* Segment selector invalid *)
OD;

4-220 Vol. 2B RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

ESP « ESP + SRC; (* Release parameters from calling procedure’s stack *)

(* 1A-32e Mode *)
IF (PE =1 and VM =0 and IA32_EFER.LMA = 1) and instruction = far RET

THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space
THEN #SS(0); FI;
ELSE
IF OperandSize = 16
THEN
IF second word on stack is not within stack limits
THEN #SS(0); FI;
IF first or second word on stack is not in canonical space
THEN #SS(0); FI;
ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space
THEN #SS(0); FI;
FI
Fl;
IF return code segment selector is NULL
THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit =1
THEN #GP(selector); FI;
IF return code segment selector RPL < CPL
THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL # return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present
THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL,;
ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;

RET—Return from Procedure Vol. 2B 4-221

INSTRUCTION SET REFERENCE, N-Z

Fl;
Fl,

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within the return code segment limit

THEN #GP(0); FI;
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)
ELSE
IF OperandSize = 16
THEN
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)

ESP « ESP + SRC; (* Release parameters from stack *)

ELSE (* OperandSize = 64 *)
RIP « Pop();

CS « Pop(); (* 64-bit pop, high-order 48 bits discarded *)
ESP « ESP + SRC; (* Release parameters from stack *)

Fl;
Fl,

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:

IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
or top (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)

THEN #SS(0); FI;

IF top (16 + SRC) bytes of stack are not in canonical address space (OperandSize = 32)
or top (8 + SRC) bytes of stack are not in canonical address space (OperandSize = 16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)

THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL
THEN
IF new CS descriptor L-bit =0
THEN #GP(selector);
IF stack segment selector RPL = 3
THEN #GP(selector);
Fl;
IF return stack segment descriptor is not within descriptor table limits
THEN #GP(selector); FI;
IF return stack segment descriptor is in hon-canonical address space
THEN #GP(selector); FI;

4-222 Vol. 2B

RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize = 32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* Release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor
information also loaded *)
ESP « tempESP;

SS « tempSS;
ELSE
IF OperandSize = 16
THEN
EIP « Pop();

EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* release parameters from called
procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information loaded *)
ESP « tempESP;
SS « tempSS;
ELSE (* OperandSize = 64 *)
RIP « Pop();

CS « Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information loaded *)

CS(RPL) « CPL;

ESP « ESP + SRC; (* Release parameters from called procedure’s
stack *)

tempESP « Pop();

tempSS <« Pop(); (* 64-bit pop; high-order 48 bits discarded; segment
descriptor information also loaded *)

ESP « tempESP;

RET—Return from Procedure Vol. 2B 4-223

INSTRUCTION SET REFERENCE, N-Z

SS « tempSS;
Fl,
Fl;

FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)
THEN SegmentSelector < 0; (* SegmentSelector invalid *)
Fl;
OD;

For each of ES, FS, GS, and DS

DO
IF segment selector index is not within descriptor table limits
or segment descriptor indicates the segment is not a data or readable code segment
or if the segment is a data or non-conforming code segment
and the segment descriptor's DPL < CPL or RPL of code segment’s segment selector

THEN SegmentSelector < 0; (* SegmentSelector invalid *)
OD;

ESP ESP + SRC; (* Release parameters from calling procedure’s stack *)

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.

If the return instruction pointer is not within the return code segment limit
#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

If the return code segment descriptor does not indicate a code segment.

If the return code segment is non-conforming and the segment selector’s
DPL is not equal to the RPL of the code segment’s segment selector

If the return code segment is conforming and the segment selector’s DPL
greater than the RPL of the code segment’s segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

4-224 Vol. 2B RET—Return from Procedure

#S5(0)

#NP(selector)
#PF(fault-code)
#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

If the return code segment is not present.

If a page fault occurs.

If an unaligned memaory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP
#SS

If the return instruction pointer is not within the return code segment limit

If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)
#AC(0)

If the return instruction pointer is not within the return code segment limit
If the top bytes of stack are not within stack limits.
If a page fault occurs.

If an unaligned memory access occurs when alignment checking is
enabled.

Compatibility Mode Exceptions

Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to
non-CPL3 64-bit mode.

If the return code segment selector is NULL.

If the proposed segment descriptor for a code segment does not indicate it
is a code segment.

If the proposed new code segment descriptor has both the D-bit and L-bit
set.

RET—Return from Procedure Vol. 2B 4-225

INSTRUCTION SET REFERENCE, N-Z

#S5(0)

#NP(selector)
#PF(fault-code)
#AC(0)

4-226 Vol. 2B

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical address
to be referenced.

If the return code or stack segment is not present.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

RET—Return from Procedure

INSTRUCTION SET REFERENCE, N-Z

RSM—Resume from System Management Mode

Non-
SMM
Opcode Instruction Mode SMM Mode Description
OF AA RSM Invalid Valid Resume operation of interrupted

program.

Description

Returns program control from system management mode (SMM) to the application program or
operating-system procedure that was interrupted when the processor received an SMM inter-
rupt. The processor’s state is restored from the dump created upon entering SMM. If the
processor detects invalid state information during state restoration, it enters the shutdown state.
The following invalid information can cause a shutdown:

® Any reserved bit of CR4 is set to 1.
® Any illegal combination of bits in CRO, such as (PG=1 and PE=0) or (NW=1 and CD=0).

® (Intel Pentium and Intel486 processors only.) The value stored in the state dump base field
is not a 32-KByte aligned address.

The contents of the model-specific registers are not affected by a return from SMM.

The SMM state map used by RSM supports resuming processor context for non-64-bit modes
and 64-bit mode.

See Chapter 24, “System Management,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3B, for more information about SMM and the behavior of the RSM instruction.

Operation

ReturnFromSMM;
IF (IA-32e mode supported)
THEN
ProcessorState «<— Restore(SMMDump(lA-32e SMM STATE MAP));
Else
ProcessorState «— Restore(SMMDump(Non-32-Bit-Mode SMM STATE MAP));
Fl

Flags Affected
All.

Protected Mode Exceptions

#UD If an attempt is made to execute this instruction when the processor is not
in SMM.

RSM—Resume from System Management Mode Vol. 2B 4-227

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions
Same exceptions as in Protected Mode.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-228 Vol. 2B

RSM—Resume from System Management Mode

INSTRUCTION SET REFERENCE, N-Z

RSQRTPS—Compute Reciprocals of Square Roots of Packed
Single-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 52 /r RSQRTPS xmm1, Valid Valid Computes the approximate reciprocals
xmmz2/m128 of the square roots of the packed

single-precision floating-point values in
xmm2/m128 and stores the results in
xmm1.

Description

Performs an SIMD computation of the approximate reciprocals of the square roots of the four
packed single-precision floating-point values in the source operand (second operand) and stores
the packed single-precision floating-point results in the destination operand. The source
operand can be an XMM register or a 128-bit memory location. The destination operand is an
XMM register. See Figure 10-5 in the IA-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of an SIMD single-precision floating-point operation.

The relative error for this approximation is:
|Relative Error| < 1.5 * 2712

The RSQRTPS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an o« of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). When a source value is a negative value (other than
—0.0), a floating-point indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST([31:0] « APPROXIMATE(1.0/SQRT(SRC[31:0]));
DEST[63:32] < APPROXIMATE(1.0/SQRT(SRC[63:32]));
DEST[95:64] < APPROXIMATE(L.0/SQRT(SRC[95:64]));
DEST[127:96] «- APPROXIMATE(1.0/SQRT(SRC[127:96]));

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTPS __m128 _mm_rsqrt_ps(__m128 a)

SIMD Floating-Point Exceptions
None.

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single- Vol. 2B 4-229
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-230 Vol. 2B

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

RSQRTPS—Compute Reciprocals of Square Roots of Packed Single- Vol. 2B 4-231
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F30F52/r RSQRTSSxmml, Valid Valid Computes the approximate reciprocal of
xmmz2/m32 the square root of the low single-precision

floating-point value in xmm2/m32 and
stores the results in xmm1.

Description

Computes an approximate reciprocal of the square root of the low single-precision floating-
point value in the source operand (second operand) stores the single-precision floating-point
result in the destination operand. The source operand can be an XMM register or a 32-bit
memory location. The destination operand is an XMM register. The three high-order double-
words of the destination operand remain unchanged. See Figure 10-6 in the 1A-32 Intel® Archi-
tecture Software Developer’s Manual, Volume 1, for an illustration of a scalar single-precision
floating-point operation.

The relative error for this approximation is:
|Relative Error| < 1.5 * 2712

The RSQRTSS instruction is not affected by the rounding control bits in the MXCSR register.
When a source value is a 0.0, an oo of the sign of the source value is returned. A denormal source
value is treated as a 0.0 (of the same sign). When a source value is a negative value (other than
—0.0), a floating-point indefinite is returned. When a source value is an SNaN or QNaN, the
SNaN is converted to a QNaN or the source QNaN is returned.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[31:0] « APPROXIMATE(1.0/SQRT(SRC[31:0]));
(* DEST[127:32] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
RSQRTSS __m128 _mm_rsqgrt_ss(__m128 a)

SIMD Floating-Point Exceptions
None.

4-232 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

RSQRTSS—Compute Reciprocal of Square Root of Scalar Single- Vol. 2B 4-233
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-234 Vol. 2B RSQRTSS—Compute Reciprocal of Square Root of Scalar Single-
Precision Floating-Point Value

INSTRUCTION SET REFERENCE, N-Z

SAHF—Store AH into Flags

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9E SAHF Invalid* Valid Loads SF, ZF, AF, PF, and CF from AH

into EFLAGS register.

* Valid in specific steppings. See Description section.

Description

Loads the SF, ZF, AF, PF, and CF flags of the EFLAGS register with values from the corre-
sponding bits in the AH register (bits 7, 6, 4, 2, and 0, respectively). Bits 1, 3, and 5 of register
AH are ignored; the corresponding reserved bits (1, 3, and 5) in the EFLAGS register remain as
shown in the “Operation” section below.

This instruction executes as described above in compatibility mode and legacy mode. It is valid
in 64-bit mode only if CPUID.80000001H:ECX.LAHF-SAHF[bit 0] = 1.

Operation

IF IA-64 Mode
THEN
IF CPUID.80000001.ECX][0] = 1;
THEN
RFLAGS(SF:ZF:0:AF:0:PF:1:CF) « AH;
ELSE
#UD;
Fl
ELSE
EFLAGS(SF:ZF:0:AF:0:PF:1:CF) « AH;
Fl;

Flags Affected

The SF, ZF, AF, PF, and CF flags are loaded with values from the AH register. Bits 1, 3, and 5
of the EFLAGS register are unaffected, with the values remaining 1, 0, and 0, respectively.

Protected Mode Exceptions
None.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
None.

SAHF—Store AH into Flags Vol. 2B 4-235

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
None.

64-Bit Mode Exceptions
#UD If CPUID.80000001.ECX[0] = 0.

4-236 Vol. 2B SAHF—Store AH into Flags

SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode***

DO /4

REX + DO /4
D2 /4

REX + D2 /4
C0/4ib

REX + CO /4 ib

D1/4
D3 /4
Cl/4ib

D1/4

REX.W + D1 /4
D3 /4

REX.W + D3 /4
Cl/4ib

REX.W + C1 /4 ib
DO /7

REX + DO /7
D2 /7

REX + D2 /7
CO0/7ib

REX + CO0 /7 ib
D1/7

D3 /7

C1/71ib

D1/7

REX.W + D1 /7

Instruction

SAL r/m8, 1
SAL r/m8**, 1
SAL r/m8, CL
SAL r/m8**, CL
SAL r/m8, imm8

SAL r/m8**, imm8

SAL r/m16, 1
SAL r/m16, CL
SAL r/m16, imm8

SAL/m32,1
SAL r/m64, 1
SAL r/m32, CL
SAL r/m64, CL
SAL r/m32, imm8

SAL r/m64, imm8
SAR 1r/m8, 1

SAR r/m8**, 1
SAR r/m8, CL
SAR r/m8**, CL
SAR r/m8, imm8
SAR r/m8**, imm8
SAR r/m16,1
SAR r/m16, CL
SAR r/m16, imm8
SAR r/m32, 1

SAR r/m64, 1

64-Bit
Mode

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
Valid
Valid
Valid

N.E.

Description

Multiply r/m8 by 2, once.
Multiply r/m8 by 2, once.
Multiply r/m8 by 2, CL times.
Multiply r/m8 by 2, CL times.
Multiply r/m8 by 2, imm8
times.

Multiply r/m8 by 2, imm8
times.

Multiply r/m16 by 2, once.
Multiply r/m16 by 2, CL times.
Multiply r/m16 by 2, imm8
times.

Multiply r/m32 by 2, once.
Multiply r/m64 by 2, once.
Multiply r/m32 by 2, CL times.
Multiply r/m64 by 2, CL times.
Multiply r/m32 by 2, imm8
times.

Multiply r/mé4 by 2, imm8
times.

Signed divide* r/m8 by 2,
once.

Signed divide* r/m8 by 2,
once.

Signed divide* r/m8 by 2, CL
times.

Signed divide* r/m8 by 2, CL
times.

Signed divide* r/m8 by 2,
imm8 time.

Signed divide* r/m8 by 2,
imma8 times.

Signed divide* r/m16 by 2,
once.

Signed divide* r/m16 by 2, CL
times.

Signed divide* r/m16 by 2,
imma8 times.

Signed divide* r/m32 by 2,
once.

Signed divide* r/m64 by 2,
once.

SAL/SAR/SHL/SHR—Shift

Vol. 2B 4-237

INSTRUCTION SET REFERENCE, N-Z

Opcode
D3 /7

REX.W + D3 /7
Cl/7ib
REX.W + C1/7ib

DO /4

REX + DO /4
D2 /4

REX + D2 /4
C0/4ib

REX + CO /4 ib

D1/4
D3 /4
Cl/4ib

D1/4

REX.W + D1 /4
D3 /4

REX.W + D3 /4
Cl/4ib

REX.W + C1 /4 ib
DO /5

REX + D0 /5

D2 /5

REX + D2 /5
C0/5ib

REX + CO0/5ib
D1/5

D3 /5

Cl/5ib

Instruction

SAR r/m32, CL
SAR r/m64, CL
SAR r/m32, imm8
SAR r/m64, imm8

SHL r/m8, 1
SHL r/m8**, 1
SHL r/m8, CL
SHL r/m8**, CL
SHL r/m8, imm8

SHL r/m8**, imm8

SHL r/m16,1
SHL r/m16, CL
SHL r/m16, imm8

SHL r/m32,1
SHL r/m64,1
SHL r/m32, CL
SHL r/m64, CL
SHL r/m32, imm8

SHL r/m64, imm8

SHR r/m8,1

SHR r/m8**, 1

SHR r/m8, CL

SHR r/m8**, CL

SHR r/m8, imm8

SHR r/m8**, imm8

SHR r/m16, 1

SHR r/m16, CL

SHR r/m16, imm8

64-Bit
Mode

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
Valid
Valid

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
N.E.
Valid
N.E.
Valid
Valid

Valid

Description
Signed divide* r/m32 by 2, CL
times.

Signed divide* r/m64 by 2, CL
times.

Signed divide* r/m32 by 2,
imm8 times.

Signed divide* r/m64 by 2,
imma8 times

Multiply r/m8 by 2, once.
Multiply r/m8 by 2, once.
Multiply r/m8 by 2, CL times.
Multiply r/m8 by 2, CL times.
Multiply r/m8 by 2, imm8
times.

Multiply r/m8 by 2, imm8
times.

Multiply r/m16 by 2, once.
Multiply r/m16 by 2, CL times.

Multiply r/m16 by 2, imm8
times.

Multiply r/m32 by 2, once.
Multiply r/m64 by 2, once.
Multiply r/m32 by 2, CL times.
Multiply r/m64 by 2, CL times.
Multiply r/m32 by 2, imm8
times.

Multiply r/m64 by 2, imm8
times.

Unsigned divide r/m8 by 2,
once.

Unsigned divide r/m8 by 2,
once.

Unsigned divide r/m8 by 2, CL
times.

Unsigned divide r/m8 by 2, CL
times.

Unsigned divide r/m8 by 2,
imm8 times.

Unsigned divide r/m8 by 2,
imm8 times.

Unsigned divide r/m16 by 2,
once.

Unsigned divide r/m16 by 2,
CL times

Unsigned divide r/m16 by 2,
imma8 times.

4-238 Vol. 2B

SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

D1/5 SHR r/m32, 1 Valid Valid Unsigned divide r/m32 by 2,
once.

REX.W + D1 /5 SHR r/m64, 1 Valid N.E. Unsigned divide r/m64 by 2,
once.

D3 /5 SHR r/m32, CL Valid Valid Unsigned divide r/m32 by 2,
CL times.

REX.W + D3 /5 SHR r/m64, CL Valid N.E. Unsigned divide r/m64 by 2,
CL times.

Cl/5ib SHR r/m32, imm8 Valid Valid Unsigned divide r/m32 by 2,
imm8 times.

REX.W + C1/5ib SHR r/m64, imm8 Valid N.E. Unsigned divide r/m64 by 2,
imma8 times.

NOTES:

Not the same form of division as IDIV; rounding is toward negative infinity.

** |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

*** See |A-32 Architecture Compatibility section below.

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or the CL register. The count is masked to 5 bits (or 6 bits if in 64-bit mode and
REX.W is used). The count range is limited to 0 to 31 (or 63 if 64-bit mode and REX.W is used).
A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 7-7 in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most signifi-
cant bit is either set or cleared depending on the instruction type. The SHR instruction clears
the most significant bit (see Figure 7-8 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1); the SAR instruction sets or clears the most significant bit to correspond to
the sign (most significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted value (see
Figure 7-9 in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1).

SAL/SAR/SHL/SHR—Shift Vol. 2B 4-239

INSTRUCTION SET REFERENCE, N-Z

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction to shift a
signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to 0 if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

In 64-bit mode, the instruction’s default operation size is 32 bits and the mask width for CL is 5
bits. Using an REX prefix in the form of REX.R permits access to additional registers (R8-R15).
Using an REX prefix in the form of REX.W promotes operation to 64-bits and sets the mask
width for CL to 6 bits. See the summary chart at the beginning of this section for encoding data
and limits.

IA-32 Architecture Compatibility

The 8086 does not mask the shift count. However, all other 1A-32 processors (starting with the
Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum count of 31. This
masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation

IF 64-Bit Mode and using REX.W
THEN
countMASK « 3FH;
ELSE
countMASK « 1FH;
Fl

tempCOUNT « (COUNT AND countMASK);
tempDEST <« DEST;
WHILE (tempCOUNT # 0)

DO
IF instruction is SAL or SHL
THEN
CF < MSB(DEST);
ELSE (* Instruction is SAR or SHR *)
CF <« LSB(DEST);
FI;

IF instruction is SAL or SHL

4-240 Vol. 2B SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

THEN
DEST « DEST * 2;
ELSE
IF instruction is SAR
THEN
DEST « DEST / 2; (* Signed divide, rounding toward negative infinity *)
ELSE (* Instruction is SHR *)
DEST « DEST/ 2 ; (* Unsigned divide *)
Fl;
Fl;
tempCOUNT <« tempCOUNT - 1;
OD;

(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1

THEN
IF instruction is SAL or SHL
THEN
OF <~ MSB(DEST) XOR CF;
ELSE
IF instruction is SAR
THEN
OF < 0;
ELSE (* Instruction is SHR *)
OF « MSB(tempDEST);
Fl,
Fl,
ELSE IF (COUNT AND countMASK) = 0
THEN

All flags unchanged;
ELSE (* COUNT not 1 or 0 *)
OF « undefined,;
FI;
Fl;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions where the count is greater than or equal to the size (in bits)
of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the
count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

SAL/SAR/SHL/SHR—Shift Vol. 2B 4-241

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#5S(0)
#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)
#PF(fault-code)
#AC(0)

4-242 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

SAL/SAR/SHL/SHR—Shift

INSTRUCTION SET REFERENCE, N-Z

SBB—Integer Subtraction with Borrow

Opcode
1Cib

1D iw
1Did

REX.W + 1D id

80/3ib
REX + 80 /3 ib
81/3iw
81/3id

REX.W + 81 /3 id

83/3ib

83/3ib

REX.W + 83 /3 ib
18 /r

REX + 18 /r

19 /r

19 /r

REX.W + 19 /r
1A Ir

REX + 1A Ir

1B /r

Instruction

SBB AL, imm8

SBB AX, imm16

SBB EAX, imm32

SBB RAX, imm32

SBB r/m8, imm8

SBB r/m8*, imm8

SBB r/m16, imm16

SBB r/m32, imm32

SBB r/m64, imm32

SBB r/m16, imm8
SBB r/m32, imm8
SBB r/m64, imm8
SBB r/m8, r8
SBB r/m8*, r8
SBB r/m16, r16
SBB r/m32, r32
SBB r/m64, r64
SBB r8, r/m8
SBB r8*, r/m8*

SBB r16, r/m16

64-Bit
Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
Valid

N.E.

Valid
N.E.
Valid
Valid

N.E.

Valid
Valid
N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.

Valid

Description

Subtract with borrow imm8
from AL.

Subtract with borrow imm16
from AX.

Subtract with borrow imm32
from EAX.

Subtract with borrow sign-
extended imm.32 to 64-bits
from RAX.

Subtract with borrow imm8
from r/m8.

Subtract with borrow imm8
from r/m8.

Subtract with borrow imm16
from r/m16.

Subtract with borrow imm32
from r/m32.

Subtract with borrow sign-
extended imm32 to 64-bits
from r/m64.

Subtract with borrow sign-
extended imm8 from r/m16.

Subtract with borrow sign-
extended imm8 from r/m32.

Subtract with borrow sign-
extended imm8 from r/m64.

Subtract with borrow r8 from
r/m8.
Subtract with borrow r8 from
r/m8.

Subtract with borrow r16
from r/m16.

Subtract with borrow r32
from r/m32.

Subtract with borrow r64
from r/m64.

Subtract with borrow r/m8
from r8.

Subtract with borrow r/m8
from r8.

Subtract with borrow r/m16
from ri6.

SBB—Integer Subtraction with Borrow

Vol. 2B 4-243

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
1B /r SBB r32, r/m32 Valid Valid Subtract with borrow r/m32
from r32.
REX.W + 1B /r SBB r64, r/m64 Valid N.E. Subtract with borrow r/m64
from r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Adds the source operand (second operand) and the carry (CF) flag, and subtracts the result from
the destination operand (first operand). The result of the subtraction is stored in the destination
operand. The destination operand can be a register or a memory location; the source operand can
be an immediate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) The state of the CF flag represents a borrow from a previous subtraction.

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

The SBB instruction does not distinguish between signed or unsigned operands. Instead, the
processor evaluates the result for both data types and sets the OF and CF flags to indicate a
borrow in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed
result.

The SBB instruction is usually executed as part of a multibyte or multiword subtraction in which
a SUB instruction is followed by a SBB instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
DEST « (DEST — (SRC + CF));

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

4-244 Vol. 2B SBB—Integer Subtraction with Borrow

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.+

SBB—Integer Subtraction with Borrow Vol. 2B 4-245

INSTRUCTION SET REFERENCE, N-Z

SCAS/SCASB/SCASW/SCASD—Scan String

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

AE SCAS m8 Valid Valid Compare AL with byte at ES:(E)DI or RDI,
then set status flags?.

AF SCAS m16 Valid Valid Compare AX with word at ES:(E)DI or
RDI, then set status flags.?

AF SCAS m32 Valid Valid Compare EAX with doubleword at
ES(E)DI or RDI then set status flags.?

REX.W + AF SCAS m64 Valid N.E. Compare RAX with quadword at RDI or
EDI then set status flags.

AE SCASB Valid Valid Compare AL with byte at ES:(E)DI or RDI
then set status flags.?

AF SCASW Valid Valid Compare AX with word at ES:(E)DI or
RDI then set status flags.?

AF SCASD Valid Valid Compare EAX with doubleword at
ES:(E)DI or RDI then set status flags.?

REX.W + AF SCASQ Valid N.E. Compare RAX with quadword at RDI or

EDI then set status flags.

NOTES:

a. In 64-bit mode, only 64-bit (RDI) and 32-bit (EDI) address sizes are supported. In non-64-bit mode, only
32-bit (EDI) and 16-bit (DI) address sizes are supported.

Description

In non-64-bit modes and in default 64-bit mode: this instruction compares a byte, word, double-
word or quadword specified using a memory operand with the value in AL, AX, or EAX. It then
sets status flags in EFLAGS recording the results. The memory operand address is read from
ES:(E)DI register (depending on the address-size attribute of the instruction and the current
operational mode). Note that ES cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed. The explicit-operand form
and the no-operands form. The explicit-operand form (specified using the SCAS mnemonic)
allows a memory operand to be specified explicitly. The memory operand must be a symbol that
indicates the size and location of the operand value. The register operand is then automatically
selected to match the size of the memory operand (AL register for byte comparisons, AX for
word comparisons, EAX for doubleword comparisons). The explicit-operand form is provided
to allow documentation. Note that the documentation provided by this form can be misleading.
That is, the memory operand symbol must specify the correct type (size) of the operand (byte,
word, or doubleword) but it does not have to specify the correct location. The location is always
specified by ES:(E)DI.

The no-operands form of the instruction uses a short form of SCAS. Again, ES:(E)DI is assumed
to be the memory operand and AL, AX, or EAX is assumed to be the register operand. The size
of operands is selected by the mnemonic: SCASB (byte comparison), SCASW (word compar-
ison), or SCASD (doubleword comparison).

4-246 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

After the comparison, the (E)DI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. If the DF flag is O, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented. The register is incremented
or decremented by 1 for byte operations, by 2 for word operations, and by 4 for doubleword
operations.

SCAS, SCASB, SCASW, SCASD, and SCASQ can be preceded by the REP prefix for block
comparisons of ECX bytes, words, doublewords, or quadwords. Often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of status flags.
See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in this chapter for a
description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64-bits, 32-bit address size is supported
using the prefix 67H. Using an REX prefix in the form of REX.W promotes operation on
doubleword operand to 64 bits. The 64-bit no-operand mnemonic is SCASQ. Address of the
memory operand is specified in either RDI or EDI, and AL/AX/EAX/RAX may be used as the
register operand. After a comparison, the destination register is incremented or decremented by
the current operand size (depending on the value of the DF flag). See the summary chart at the
beginning of this section for encoding data and limits.

Operation
Non-64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL - SRC;
SetStatusFlags(temp);
THEN IF DF =0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI « (E)DI -1, FI,
ELSE IF (Word comparison)

THEN
temp <« AX — SRC,;
SetStatusFlags(temp);
IFDF=0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI - 2; FI,
Fl;
ELSE IF (Doubleword comparison)
THEN
temp « EAX — SRC;
SetStatusFlags(temp);
IFDF =0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI « (E)DI — 4; FI,
Fl;

Fl;

SCAS/SCASB/SCASW/SCASD—Scan String Vol. 2B 4-247

INSTRUCTION SET REFERENCE, N-Z

64-bit Mode:

IF (Byte cmparison)
THEN
temp < AL — SRC;
SetStatusFlags(temp);
THENIFDF =0
THEN (R|E)DI « (R|E)DI + 1;
ELSE (R|E)DI « (R|E)DI — 1; FI;
ELSE IF (Word comparison)
THEN
temp <« AX — SRC,;
SetStatusFlags(temp);
IFDF=0
THEN (R|E)DI « (R|E)DI + 2;
ELSE (R|E)DI « (R|E)DI — 2; FI;
Fl;
ELSE IF (Doubleword comparison)
THEN
temp « EAX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (RIE)DI « (R|E)DI + 4;
ELSE (R|E)DI < (R|E)DI — 4; FI;
FI;
ELSE IF (Quadword comparison using REX.W)
THEN
temp « RAX — SRC;
SetStatusFlags(temp);
IFDF=0
THEN (R|E)DI « (R|E)DI + 8;
ELSE (R|E)DI « (R|E)DI - 8;
Fl;
FI;
F

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a NULL segment selector.
If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.

4-248 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

SCAS/SCASB/SCASW/SCASD—Scan String Vol. 2B 4-249

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-250 Vol. 2B SCAS/SCASB/SCASW/SCASD—Scan String

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Opcode
OF 97

REX + OF 97

OF 93
REX + OF 93
OF 92
REX + OF 92
OF 96

REX + OF 96

OF 92
REX + OF 92
OF 94
REX + OF 94
OF 9F

REX + OF 9F
OF 9D
REX + OF 9D

OF 9C
REX + OF 9C
OF 9E

REX + OF 9E
OF 96
REX + OF 96
OF 92
REX + OF 92

OF 93
REX + OF 93
OF 97

Instruction

SETA r/m8

SETA r/m8*

SETAE r/m8
SETAE r/m8*
SETB r/m8
SETB r/m8*
SETBE r/m8

SETBE r/m8*

SETC r/m8
SETC r/m8*
SETE r/m8
SETE r/m8*
SETG r/m8

SETG r/m8*

SETGE r/m8

SETGE r/m8*

SETL r/m8
SETL r/m8*
SETLE r/m8

SETLE r/m8*

SETNA r/m8

SETNA r/m8*

SETNAE r/m8

SETNAE r/m8*

SETNB r/m8
SETNB r/m8*
SETNBE r/m8

64-Bit
Mode

Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid

Compat/
Leg Mode

Valid
N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.

Valid
N.E.
Valid
N.E.
Valid

N.E.
Valid
N.E.

Valid
N.E.
Valid

N.E.
Valid
N.E.
Valid
N.E.

Valid
N.E.
Valid

Description
Set byte if above (CF=0 and
ZF=0).

Set byte if above (CF=0 and
ZF=0).

Set byte if above or equal (CF=0).
Set byte if above or equal (CF=0).
Set byte if below (CF=1).

Set byte if below (CF=1).

Set byte if below or equal (CF=1 or
ZF=1).

Set byte if below or equal (CF=1 or
ZF=1).

Set byte if carry (CF=1).

Set byte if carry (CF=1).

Set byte if equal (ZF=1).

Set byte if equal (ZF=1).

Set byte if greater (ZF=0 and
SF=OF).

Set byte if greater (ZF=0 and
SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if greater or equal
(SF=0F).

Set byte if less (SF# OF).
Set byte if less (SF# OF).

Set byte if less or equal (ZF=1 or
SF# OF).

Set byte if less or equal (ZF=1 or
SF# OF).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above (CF=1 or
ZF=1).

Set byte if not above or equal
(CF=1).

Set byte if not above or equal
(CF=1).

Set byte if not below (CF=0).
Set byte if not below (CF=0).

Set byte if not below or equal
(CF=0 and ZF=0).

SETcc—Set Byte on Condition

Vol. 2B 4-251

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

REX + OF 97 SETNBE r/m8* Valid N.E. Set byte if not below or equal
(CF=0 and ZF=0).

OF 93 SETNC r/m8 Valid Valid Set byte if not carry (CF=0).

REX + OF 93 SETNC r/m8* Valid N.E. Set byte if not carry (CF=0).

OF 95 SETNE r/m8 Valid Valid Set byte if not equal (ZF=0).

REX + OF 95 SETNE r/m8* Valid N.E. Set byte if not equal (ZF=0).

OF 9E SETNG r/m8 Valid Valid Set byte if not greater (ZF=1 or
SF# OF)

REX + OF 9E SETNG r/m8* Valid N.E. Set byte if not greater (ZF=1 or
SF# OF).

OF 9C SETNGE r/m8 Valid Valid Set byte if not greater or equal
(SF# OF).

REX + OF 9C SETNGE r/m8* Valid N.E. Set byte if not greater or equal
(SF# OF).

OF 9D SETNL r/m8 Valid Valid Set byte if not less (SF=OF).

REX + OF 9D SETNL r/m8* Valid N.E. Set byte if not less (SF=OF).

OF 9F SETNLE r/m8 Valid Valid Set byte if not less or equal (ZF=0
and SF=0F).

REX + OF 9F SETNLE r/m8* Valid N.E. Set byte if not less or equal (ZF=0
and SF=0OF).

OF 91 SETNO r/m8 Valid Valid Set byte if not overflow (OF=0).

REX + OF 91 SETNO r/m8* Valid N.E. Set byte if not overflow (OF=0).

OF 9B SETNP r/m8 Valid Valid Set byte if not parity (PF=0).

REX + OF 9B SETNP r/m8* Valid N.E. Set byte if not parity (PF=0).

OF 99 SETNS r/m8 Valid Valid Set byte if not sign (SF=0).

REX + OF 99 SETNS r/m8* Valid N.E. Set byte if not sign (SF=0).

OF 95 SETNZ r/m8 Valid Valid Set byte if not zero (ZF=0).

REX + OF 95 SETNZ r/m8* Valid N.E. Set byte if not zero (ZF=0).

OF 90 SETO r/m8 Valid Valid Set byte if overflow (OF=1)

REX + OF 90 SETO r/m8* Valid N.E. Set byte if overflow (OF=1).

OF 9A SETP r/m8 Valid Valid Set byte if parity (PF=1).

REX + OF 9A SETP r/m8* Valid N.E. Set byte if parity (PF=1).

OF 9A SETPE r/m8 Valid Valid Set byte if parity even (PF=1).

REX + OF 9A SETPE r/m8* Valid N.E. Set byte if parity even (PF=1).

OF 9B SETPO r/m8 Valid Valid Set byte if parity odd (PF=0).

REX + OF 9B SETPO r/m8* Valid N.E. Set byte if parity odd (PF=0).

OF 98 SETS r/m8 Valid Valid Set byte if sign (SF=1).

REX + OF 98 SETS r/m8* Valid N.E. Set byte if sign (SF=1).

OF 94 SETZ r/m8 Valid Valid Set byte if zero (ZF=1).

REX + OF 94 SETZ r/m8* Valid N.E. Set byte if zero (ZF=1).

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

4-252 Vol. 2B

SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

Description

Sets the destination operand to 0 or 1 depending on the settings of the status flags (CF, SF, OF,
ZF, and PF) in the EFLAGS register. The destination operand points to a byte register or a byte
in memory. The condition code suffix (cc) indicates the condition being tested for.

The terms “above” and “below” are associated with the CF flag and refer to the relationship
between two unsigned integer values. The terms “greater” and “less” are associated with the SF
and OF flags and refer to the relationship between two signed integer values.

Many of the SETcc instruction opcodes have alternate mnemonics. For example, SETG (set byte
if greater) and SETNLE (set if not less or equal) have the same opcode and test for the same
condition: ZF equals 0 and SF equals OF. These alternate mnemonics are provided to make code
more intelligible. Appendix B, “EFLAGS Condition Codes,” in the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 1, shows the alternate mnemonics for various test condi-
tions.

Some languages represent a logical one as an integer with all bits set. This representation can be
obtained by choosing the logically opposite condition for the SETcc instruction, then decre-
menting the result. For example, to test for overflow, use the SETNO instruction, then decre-
ment the result.

In 1A-64 mode, the operand size is fixed at 8 bits. Use of REX prefix enable uniform addressing
to additional byte registers. Otherwise, this instruction’s operation is the same as in legacy mode
and compatibility mode.

Operation
IF condition
THEN DEST « 1,
ELSE DEST <« 0;
FI;
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

SETcc—Set Byte on Condition Vol. 2B 4-253

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

4-254 Vol. 2B SETcc—Set Byte on Condition

INSTRUCTION SET REFERENCE, N-Z

SFENCE—Store Fence

64-Bit Compat
Opcode Instruction Mode /Leg Mode Description
OF AE /7 SFENCE Valid Valid Serializes store operations.

Description

Performs a serializing operation on all store-to-memory instructions that were issued prior the
SFENCE instruction. This serializing operation guarantees that every store instruction that
precedes in program order the SFENCE instruction is globally visible before any store instruc-
tion that follows the SFENCE instruction is globally visible. The SFENCE instruction is ordered
with respect store instructions, other SFENCE instructions, any MFENCE instructions, and any
serializing instructions (such as the CPUID instruction). It is not ordered with respect to load
instructions or the LFENCE instruction.

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, write-combining, and write-collapsing. The degree to
which a consumer of data recognizes or knows that the data is weakly ordered varies among
applications and may be unknown to the producer of this data. The SFENCE instruction
provides a performance-efficient way of insuring store ordering between routines that produce
weakly-ordered results and routines that consume this data.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

Wait_On_Following_Stores_Until(preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent
void_mm_sfence(void)

Exceptions (All Operating Modes)
None.

SFENCE—Store Fence Vol. 2B 4-255

INSTRUCTION SET REFERENCE, N-Z

SGDT—Store Global Descriptor Table Register

64-Bit Compat/
Opcode* Instruction Mode Leg Mode Description
OF 01 /0 SGDT m Valid Valid Store GDTR to m.

NOTES:
* See |IA-32 Architecture Compatibility section below.

Description

Stores the content of the global descriptor table register (GDTR) in the destination operand. The
destination operand specifies a memory location:

In legacy or compatibility mode, the destination operand is a 6-byte memory location. If the
operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and the 24-bit base address
is stored in bytes 3-5, and byte 6 is zero-filled. If the operand-size attribute is 32 bits, the 16-bit
limit field of the register is stored in the low 2 bytes of the memory location and the 32-bit base
address is stored in the high 4 bytes.

In 1A-32e mode, the operand size is fixed at 8+2 bytes. The instruction stores an 8-byte base and
a 2-byte limit.

SGDT is useful only by operating-system software. However, it can be used in application
programs without causing an exception to be generated. See “LGDT/LIDT—Load Global/Inter-
rupt Descriptor Table Register” in Chapter 3, 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for information on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of the SGDT is compatible with the Intel 286 processor if the upper 8 bits are
not referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6
processor family, Pentium, Intel486, and Intel386™ processors fill these bits with 0s.

Operation

IF instruction is SGDT
IF OperandSize = 16

THEN
DEST[0:15] «- GDTR(Limit);
DEST[16:39] « GDTR(Base); (* 24 bits of base address stored *)
DEST[40:47] « O;

ELSE IF (32-bit Operand Size)
DEST[0:15] «~ GDTR(Limit);
DEST[16:47] « GDTR(Base); (* Full 32-bit base address stored *)
Fl;

ELSE (* 64-bit Operand Size *)
DEST[0:15] «~ GDTR(Limit);

4-256 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

DEST[16:79] «— GDTR(Base); (* Full 64-bit base address stored *)
FI;
Fl;
Flags Affected
None.

Protected Mode Exceptions
#UD If the destination operand is a register.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is a register.

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is a register.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

SGDT—Store Global Descriptor Table Register Vol. 2B 4-257

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#UD If the destination operand is a register.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-258 Vol. 2B SGDT—Store Global Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

SHLD—Double Precision Shift Left

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF A4 SHLD r/m16, r16, Valid Valid Shift r/m16 to left imm8
imm8 places while shifting bits from
rl16 in from the right.
OF A5 SHLD r/m16, r16, Valid Valid Shift r/m16 to left CL places
CL while shifting bits from r16 in
from the right.
OF A4 SHLD r/m32, r32, Valid Valid Shift r/m32 to left imm8
imm8 places while shifting bits from
r32 in from the right.
REX.W + OF A4 SHLD r/m64, r64, Valid N.E. Shift r/m64 to left imm8
imm8 places while shifting bits from
r64 in from the right.
OF A5 SHLD r/m32, r32, Valid Valid Shift r/m32 to left CL places
CL while shifting bits from r32 in
from the right.
REX.W + OF A5 SHLD r/m64, r64, Valid N.E. Shift r/m64 to left CL places
CL while shifting bits from r64 in

from the right.

Description
The SHLD instruction is used for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the left the number of bits spec-
ified by the third operand (count operand). The second operand (source operand) provides bits
to shift in from the right (starting with bit 0 of the destination operand).

The destination operand can be a register or a memory location; the source operand is a register.
The count operand is an unsigned integer that can be stored in an immediate byte or in the CL
register. If the count operand is CL, the shift count is the logical AND of CL and a count mask.
In non-64-bit modes and default 64-bit mode; only bits 0 through 4 of the count are used. This
masks the count to a value between 0 and 31. If a count is greater than the operand size, the result
is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits (upgrading the count mask to 6 bits). See the
summary chart at the beginning of this section for encoding data and limits.

SHLD—Double Precision Shift Left Vol. 2B 4-259

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT « COUNT MOD 64;
ELSE COUNT « COUNT MOD 32;

FI
SIZE « OperandSize;
IF COUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined,;
CF, OF, SF, ZF, AF, PF are undefined,;
ELSE (* Perform the shift *)
CF « BIT[DEST, SIZE — COUNT];
(* Last bit shifted out on exit *)
FOR i < SIZE — 1 DOWN TO COUNT
DO
Bit(DEST, i) « Bit(DEST, i — COUNT);
OD;
FOR i« COUNT-1DOWN TO O
DO
BIT[DEST, i] « BIT[SRC, i — COUNT + SIZE];
OD;
FI;
FI;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

4-260 Vol. 2B SHLD—Double Precision Shift Left

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SHLD—Double Precision Shift Left Vol. 2B 4-261

INSTRUCTION SET REFERENCE, N-Z

SHRD—Double Precision Shift Right

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF AC SHRD r/m16, Valid Valid Shift r/m16 to right imm8 places
rl6, imm8 while shifting bits from r16 in from
the left.
OF AD SHRD r/m16, Valid Valid Shift r/m16 to right CL places
rl6, CL while shifting bits from r16 in from
the left.
OF AC SHRD r/m32, Valid Valid Shift r/m32 to right imm8 places
r32, mm8 while shifting bits from r32 in from
the left.
REX.W + 0F AC SHRD r/m64, Valid N.E. Shift r/m64 to right imm8 places
r64, imm8 while shifting bits from r64 in from
the left.
OF AD SHRD r/m32, Valid Valid Shift r/m32 to right CL places
r32, CL while shifting bits from r32 in from
the left.
REX.W + 0F AD SHRD r/m64, Valid N.E. Shift r/m64 to right CL places
r64, CL while shifting bits from r64 in from
the left.

Description
The SHRD instruction is useful for multi-precision shifts of 64 bits or more.

The instruction shifts the first operand (destination operand) to the right the number of bits spec-
ified by the third operand (count operand). The second operand (source operand) provides bits
to shift in from the left (starting with the most significant bit of the destination operand).

The destination operand can be a register or a memory location; the source operand is a register.
The count operand is an unsigned integer that can be stored in an immediate byte or the CL
register. If the count operand is CL, the shift count is the logical AND of CL and a count mask.
In non-64-bit modes and default 64-bit mode, the width of the count mask is 5 bits. Only bits 0
through 4 of the count register are used (masking the count to a value between 0 and 31). If the
count is greater than the operand size, the result is undefined.

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand. For a 1-bit shift, the OF flag is set if a sign change occurred; otherwise, it is cleared. If
the count operand is 0, flags are not affected.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits (upgrading the count mask to 6 bits). See the
summary chart at the beginning of this section for encoding data and limits.

4-262 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z

Operation

IF (In 64-Bit Mode and REX.W = 1)
THEN COUNT « COUNT MOD 64;
ELSE COUNT « COUNT MOD 32;

FI
SIZE « OperandSize;
IF COUNT =0
THEN
No operation;
ELSE
IF COUNT > SIZE
THEN (* Bad parameters *)
DEST is undefined,;
CF, OF, SF, ZF, AF, PF are undefined;
ELSE (* Perform the shift *)
CF « BIT[DEST, COUNT — 1]; (* Last bit shifted out on exit *)
FOR i« 0 TO SIZE -1 - COUNT
DO
BIT[DEST, i] « BIT[DEST, i + COUNT];
OD;
FOR i« SIZE-COUNT TO SIZE -1
DO
BIT[DEST,i] < BIT[SRC, i + COUNT - SIZE];
OD;
FI;
Fl;

Flags Affected

If the count is 1 or greater, the CF flag is filled with the last bit shifted out of the destination
operand and the SF, ZF, and PF flags are set according to the value of the result. For a 1-bit shift,
the OF flag is set if a sign change occurred; otherwise, it is cleared. For shifts greater than 1 bit,
the OF flag is undefined. If a shift occurs, the AF flag is undefined. If the count operand is 0, the
flags are not affected. If the count is greater than the operand size, the flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SHRD—Double Precision Shift Right Vol. 2B 4-263

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-264 Vol. 2B SHRD—Double Precision Shift Right

INSTRUCTION SET REFERENCE, N-Z

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF C6 /r SHUFPD xmm1, Valid Valid Shuffle packed double-precision
ib xmm2/m128, imm8 floating-point values selected by

imm8 from xmm1 and
xmm2/m128 to xmm1.

Description

Moves either of the two packed double-precision floating-point values from destination operand
(first operand) into the low quadword of the destination operand; moves either of the two packed
double-precision floating-point values from the source operand into to the high quadword of the
destination operand (see Figure 4-12). The select operand (third operand) determines which
values are moved to the destination operand.

DEST X1 X0
SRC Y1 YO /
DEST Y1 or YO X1 or X0

Figure 4-12. SHUFPD Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The select operand is an 8-bit immediate: bit 0 selects which value
is moved from the destination operand to the result (where 0 selects the low quadword and 1
selects the high quadword) and bit 1 selects which value is moved from the source operand to
the result. Bits 2 through 7 of the select operand are reserved and must be set to 0.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values Vol. 2B 4-265

INSTRUCTION SET REFERENCE, N-Z

Operation

IF SELECT[0] = 0

THEN DEST[63:0] <« DEST[63:0];
ELSE DEST[63:0] < DEST[127:64]; FI;

IF SELECT[1] =0

THEN DEST[127:64] < SRC[63:0];
ELSE DEST[127:64] < SRC[127:64]; FI,

Intel C/C++ Compiler Intrinsic Equivalent

SHUFPD

_ m128d _mm_shuffle_pd(__m128d a, _ m128d b, unsigned int imm8)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

4-266 Vol. 2B

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If the memory address is in a non-canonical form.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

SHUFPD—Shuffle Packed Double-Precision Floating-Point Values Vol. 2B 4-267

INSTRUCTION SET REFERENCE, N-Z

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OFC6/rib SHUFPS xmm1, Valid Valid Shuffle packed single-precision
xmm2/m128, imm8 floating-point values selected by
imm8 from xmm1 and xmm1/m128
to xmm1.
Description

Moves two of the four packed single-precision floating-point values from the destination
operand (first operand) into the low quadword of the destination operand; moves two of the four
packed single-precision floating-point values from the source operand (second operand) into to
the high quadword of the destination operand (see Figure 4-13). The select operand (third
operand) determines which values are moved to the destination operand.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1 YO
DEST Y3..Y0 Y3..Y0 X3 ... X0 X3 ... X0

Figure 4-13. SHUFPS Shuffle Operation

The source operand can be an XMM register or a 128-bit memory location. The destination
operand is an XMM register. The select operand is an 8-bit immediate: bits 0 and 1 select the
value to be moved from the destination operand to the low doubleword of the result, bits 2 and
3 select the value to be moved from the destination operand to the second doubleword of the
result, bits 4 and 5 select the value to be moved from the source operand to the third doubleword
of the result, and bits 6 and 7 select the value to be moved from the source operand to the high
doubleword of the result.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-268 Vol. 2B SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

Operation

CASE (SELECT[1:0]) OF
0: DEST[31:0] « DEST[31:0];
1: DEST[31:0] « DEST[63:32];
2: DEST[31:0] < DEST[95:64];
3: DEST[31:0] < DEST[127:96];
ESAC;

CASE (SELECT[3:2]) OF
0: DEST[63:32] « DEST[31:0];
1: DEST[63:32] « DEST[63:32];
2. DEST[63:32] « DEST[95:64];

3. DEST[63:32] « DEST[127:96];

ESAC;

CASE (SELECT[5:4]) OF
0: DEST[95:64] « SRC[31:0];
1: DEST[95:64] < SRC[63:32];
2: DEST[95:64] « SRC[95:64];
3: DEST[95:64] < SRC[127:96];
ESAC;

CASE (SELECT[7:6]) OF
0: DEST[127:96] <« SRC[31:0];
1: DEST[127:96] « SRC[63:32];
2: DEST[127:96] <« SRC[95:64];

3: DEST[127:96] < SRC[127:96];

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent
SHUFPS __m128 mm_shuffle_ps(_ _m128 a,

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

INSTRUCTION SET REFERENCE, N-Z

__m128 b, unsigned int imm8)

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or

GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values Vol. 2B 4-269

INSTRUCTION SET REFERENCE, N-Z

#UD

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.
If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-270 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

SHUFPS—Shuffle Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SIDT—Store Interrupt Descriptor Table Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF01/1 SIDT m Valid Valid Store IDTR to m.

Description

Stores the content the interrupt descriptor table register (IDTR) in the destination operand. The
destination operand specifies a 6-byte memory location.

In non-64-bit modes, if the operand-size attribute is 32 bits, the 16-bit limit field of the register
is stored in the low 2 bytes of the memory location and the 32-bit base address is stored in the
high 4 bytes. If the operand-size attribute is 16 bits, the limit is stored in the low 2 bytes and the
24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte filled with Os.

In 64-bit mode, the operand size fixed at 8+2 bytes. The instruction stores 8-byte base and 2-byte
limit values.

SIDT is only useful in operating-system software; however, it can be used in application
programs without causing an exception to be generated. See “LGDT/LIDT—Load Global/Inter-
rupt Descriptor Table Register” in Chapter 3, 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for information on loading the GDTR and IDTR.

IA-32 Architecture Compatibility

The 16-bit form of SIDT is compatible with the Intel 286 processor if the upper 8 bits are not
referenced. The Intel 286 processor fills these bits with 1s; the Pentium 4, Intel Xeon, P6
processor family, Pentium, Intel486, and Intel386 processors fill these bits with 0s.

Operation

IF instruction is SIDT
THEN
IF OperandSize = 16
THEN
DEST[0:15] « IDTR(Limit);
DEST[16:39] < IDTR(Base); (* 24 bits of base address stored; *)
DEST[40:47] < 0;
ELSE IF (32-bit Operand Size)
DEST[0:15] « IDTR(Limit);
DEST[16:47] < IDTR(Base); FI; (* Full 32-bit base address stored *)
ELSE (* 64-bit Operand Size *)
DEST[0:15] « IDTR(Limit);
DEST[16:79] « IDTR(Base); (* Full 64-bit base address stored *)
FI;
Fl;

SIDT—Store Interrupt Descriptor Table Register Vol. 2B 4-271

INSTRUCTION SET REFERENCE, N-Z

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-272 Vol. 2B

SIDT—Store Interrupt Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#UD If the destination operand is a register.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SIDT—Store Interrupt Descriptor Table Register Vol. 2B 4-273

INSTRUCTION SET REFERENCE, N-Z

SLDT—Store Local Descriptor Table Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 00 /0 SLDT r/m16 Valid Valid Stores segment selector from LDTR in
r/m16.
REX.W+0F SLDT r64/m16 Valid Valid Stores segment selector from LDTR in
00 /0 r64/m16.

Description

Stores the segment selector from the local descriptor table register (LDTR) in the destination
operand. The destination operand can be a general-purpose register or a memory location. The
segment selector stored with this instruction points to the segment descriptor (located in the
GDT) for the current LDT. This instruction can only be executed in protected mode.

Outside 1A-32e mode, when the destination operand is a 32-bit register, the 16-bit segment
selector is copied into the low-order 16 bits of the register. The high-order 16 bits of the register
are cleared for the Pentium 4, Intel Xeon, and P6 family processors. They are undefined for
Pentium, Intel486, and Intel386 processors. When the destination operand is a memory location,
the segment selector is written to memory as a 16-bit quantity, regardless of the operand size.

In compatibility mode, when the destination operand is a 32-bit register, the 16-bit segment
selector is copied into the low-order 16 bits of the register. The high-order 16 bits of the register
are cleared. When the destination operand is a memory location, the segment selector is written
to memory as a 16-bit quantity, regardless of the operand size.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). The behavior of SLDT with a 64-bit register is to zero-extend the 16-bit selector and
store it in the register. If the destination is memory and operand size is 64, SLDT will write the
16-bit selector to memory as a 16-bit quantity, regardless of the operand size

Operation
DEST « LDTR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

4-274 Vol. 2B SLDT—Store Local Descriptor Table Register

INSTRUCTION SET REFERENCE, N-Z

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The SLDT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SLDT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SLDT—Store Local Descriptor Table Register Vol. 2B 4-275

INSTRUCTION SET REFERENCE, N-Z

SMSW—Store Machine Status Word

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF01/4 SMSW r/m16 Valid Valid Store machine status word to r/m16.
OF01/4 SMSW r32/m16 Valid Valid Store machine status word in low-order 16

bits of r32/m16; high-order 16 bits of r32
are undefined.
REX.W + SMSW r64/m16 Valid Valid Store machine status word in low-order 16
OFO01/4 bits of r64/m16; high-order 16 bits of r32
are undefined.

Description

Stores the machine status word (bits 0 through 15 of control register CRO) into the destination
operand. The destination operand can be a general-purpose register or a memory location.

In non-64-bit modes, when the destination operand is a 32-bit register, the low-order 16 bits of
register CRO are copied into the low-order 16 bits of the register and the high-order 16 bits are
undefined. When the destination operand is a memory location, the low-order 16 bits of register
CRO are written to memory as a 16-bit quantity, regardless of the operand size.

In 64-bit mode, the behavior of the SMSW instruction is defined by the following examples:
® SMSW rl16 operand size 16, store CRO[15:0] in r16

® SMSW r32 operand size 32, zero-extend CRO[31:0], and store in r32

® SMSW r64 operand size 64, zero-extend CRO[63:0], and store in r64

® SMSW m16 operand size 16, store CR0[15:0] in m16

® SMSW m16 operand size 32, store CR0[15:0] in m16 (hot m32)

® SMSW m16 operands size 64, store CR0[15:0] in m16 (not m64)

SMSW is only useful in operating-system software. However, it is not a privileged instruction
and can be used in application programs. The is provided for compatibility with the Intel 286
processor. Programs and procedures intended to run on the Pentium 4, Intel Xeon, P6 family,
Pentium, Intel486, and Intel386 processors should use the MOV (control registers) instruction
to load the machine status word.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3B, for more information about the
behavior of this instruction in VMX non-root operation.

Operation

DEST « CRO0[15:0];
(* Machine status word *)

4-276 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SMSW—Store Machine Status Word Vol. 2B 4-277

INSTRUCTION SET REFERENCE, N-Z

SQRTPD—Compute Square Roots of Packed Double-Precision
Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 51 /r SQRTPD xmml1, Valid Valid Computes square roots of the
xmm2/m128 packed double-precision floating-
point values in xmm2/m128 and
stores the results in xmm1.

Description

Performs an SIMD computation of the square roots of the two packed double-precision floating-
point values in the source operand (second operand) stores the packed double-precision floating-
point results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 11-3 in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DESTI[63:0] «- SQRT(SRC[63:0));
DEST[127:64] <~ SQRT(SRC[127:64));

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPD _ m128d _mm_sqrt_pd (m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

4-278 Vol. 2B SMSW—Store Machine Status Word

#XM

#UD

INSTRUCTION SET REFERENCE, N-Z

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.CR4.0SXMMEXCPT (bit 10) is 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#XM

#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#S5(0)

#GP(0)

#PF(fault-code)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For a page fault.

SMSW—Store Machine Status Word Vol. 2B 4-279

INSTRUCTION SET REFERENCE, N-Z

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT][bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 0.
If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-280 Vol. 2B SMSW—Store Machine Status Word

INSTRUCTION SET REFERENCE, N-Z

SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF51/r SQRTPS xmm1, Valid Valid Computes square roots of the packed
xmmz2/m128 single-precision floating-point values in
xmm2/m128 and stores the results in
xmm1.

Description

Performs an SIMD computation of the square roots of the four packed single-precision
floating-point values in the source operand (second operand) stores the packed single-precision
floating-point results in the destination operand. The source operand can be an XMM register
or a 128-bit memory location. The destination operand is an XMM register. See Figure 10-5 in
the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an
SIMD single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[31:0] «- SQRT(SRC[31:0]);
DEST[63:32] < SQRT(SRC[63:32]);
DEST[95:64] < SQRT(SRC[95:64]);
DEST[127:96] « SQRT(SRC[127:96]);

Intel C/C++ Compiler Intrinsic Equivalent
SQRTPS _ m128 _mm_sqrt_ps(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

SQRTPS—Compute Square Roots of Packed Single-Precision Vol. 2B 4-281
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#NM
#XM

#UD

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#XM

#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-282 Vol. 2B

SQRTPS—Compute Square Roots of Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

SQRTPS—Compute Square Roots of Packed Single-Precision Vol. 2B 4-283
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SQRTSD—Compute Square Root of Scalar Double-Precision
Floating-Point Value

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F20F51/r SQRTSD xmm1, Valid Valid Computes square root of the
xmmz2/mé64 low double-precision floating-
point value in xmm2/m64 and
stores the results in xmm1.

Description

Computes the square root of the low double-precision floating-point value in the source operand
(second operand) and stores the double-precision floating-point result in the destination
operand. The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand remains
unchanged. See Figure 11-4 in the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, for an illustration of a scalar double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[63:0] < SQRT(SRC[63:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSD _ m128d _mm_sqrt_sd (m128d a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 1.

4-284 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

#UD

#AC(0)

INSTRUCTION SET REFERENCE, N-Z

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EMbit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

SQRTSD—Compute Square Root of Scalar Double-Precision Floating- Vol. 2B 4-285

Point Value

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT][bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-286 Vol. 2B SQRTSD—Compute Square Root of Scalar Double-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z

SQRTSS—Compute Square Root of Scalar Single-Precision
Floating-Point Value

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
F3 OF 51 /r SQRTSS xmmi1, Valid Valid Computes square root of the low
xmmz2/m32 single-precision floating-point value
in xmm2/m32 and stores the results
in xmm1.
Description

Computes the square root of the low single-precision floating-point value in the source operand
(second operand) and stores the single-precision floating-point result in the destination operand.
The source operand can be an XMM register or a 32-bit memory location. The destination
operand is an XMM register. The three high-order doublewords of the destination operand
remain unchanged. See Figure 10-6 in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, for an illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] < SQRT (SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SQRTSS _ m128 _mm_sqrt_ss(__m128 a)

SIMD Floating-Point Exceptions
Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 1.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating- Vol. 2B 4-287
Point Value

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-288 Vol. 2B SQRTSS—Compute Square Root of Scalar Single-Precision Floating-
Point Value

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT][bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.
If CRO.EMbit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

SQRTSS—Compute Square Root of Scalar Single-Precision Floating- Vol. 2B 4-289
Point Value

INSTRUCTION SET REFERENCE, N-Z

STC—Set Carry Flag

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F9 STC Valid Valid Set CF flag.

Description
Sets the CF flag in the EFLAGS register.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CF « 1,

Flags Affected
The CF flag is set. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

4-290 Vol. 2B STC—Set Carry Flag

INSTRUCTION SET REFERENCE, N-Z

STD—Set Direction Flag

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
FD STD Valid Valid Set DF flag.

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
DF « 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
None.

STD—Set Direction Flag Vol. 2B 4-291

INSTRUCTION SET REFERENCE, N-Z

STI—Set Interrupt Flag

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
FB STI Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the next
instruction.

Description

If protected-mode virtual interrupts are not enabled, STI sets the interrupt flag (IF) in the
EFLAGS register. After the IF flag is set, the processor begins responding to external, maskable
interrupts after the next instruction is executed. The delayed effect of this instruction is provided
to allow interrupts to be enabled just before returning from a procedure (or subroutine). For
instance, if an STI instruction is followed by an RET instruction, the RET instruction is allowed
to execute before external interrupts are recognized?. If the ST instruction is followed by a CLI
instruction (which clears the IF flag), the effect of the STI instruction is negated.

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and
NMI interrupts. NMI interrupts may be blocked for one macroinstruction following an STI.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than 3; STI sets
the VIF flag in the EFLAGS register, leaving IF unaffected.

Table 4-4 indicates the action of the STI instruction depending on the processor’s mode of oper-
ation and the CPL/IOPL settings of the running program or procedure.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

2. The STl instruction delays recognition of interrupts only if it is executed with EFLAGS.IF =0. In a
sequence of STl instructions, only the first instruction in the sequence is guaranteed to delay interrupts.

In the following instruction sequence, interrupts may be recognized before RET executes:
STI

STI
RET

4-292 Vol. 2B STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

Table 4-4. Decision Table for STI Results

PE M IOPL | CPL PVI VIP VME STI Result
0 X X X X X X IF=1
1 0 >CPL X X X X IF=1
1 0 <CPL 3 1 0 X VIF=1
1 0 <CPL | <3 X X X GP Fault
1 0 <CPL X 0 X X GP Fault
1 0 <CPL X X 1 X GP Fault
1 1 3 X X X X IF=1
1 1 <3 X X 0 1 VIF=1
1 1 <3 X X 1 X GP Fault
1 1 <3 X X X 0 GP Fault

X = This setting has no impact.

Operation

IF PE =0 (* Executing in real-address mode *)
THEN
IE < 1; (* Set Interrupt Flag *)
ELSE (* Executing in protected mode or virtual-8086 mode *)
IF VM =0 (* Executing in protected mode*)

THEN
IF IOPL > CPL
THEN
IE <~ 1; (* Set Interrupt Flag *)
ELSE
IF (IOPL < CPL) and (CPL = 3) and (VIP =0)
THEN
VIE « 1; (* Set Virtual Interrupt Flag *)
ELSE
#GP(0);
FI;
Fl;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN
IE <~ 1; (* Set Interrupt Flag *)
ELSE

STI—Set Interrupt Flag Vol. 2B 4-293

INSTRUCTION SET REFERENCE, N-Z

IF ((IOPL < 3) and (VIP = 0) and (VME = 1))

THEN
VIE < 1; (* Set Virtual Interrupt Flag *)

ELSE
#GP(0); (* Trap to virtual-8086 monitor *)

FI;)

FI;
FI;
FI;

Flags Affected
The IE flag is set to 1; or the VIF flag is set to 1.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current

program or procedure.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-294 Vol. 2B

STI—Set Interrupt Flag

INSTRUCTION SET REFERENCE, N-Z

STMXCSR—Store MXCSR Register State

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF AE /3 STMXCSR m32 Valid Valid Store contents of MXCSR register to m32.
Description

Stores the contents of the MXCSR control and status register to the destination operand. The
destination operand is a 32-bit memory location. The reserved bits in the MXCSR register are
stored as 0s.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
m32 <« MXCSR,;

Intel C/C++ Compiler Intrinsic Equivalent
_mm_getcsr(void)

Exceptions
None.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS, or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true: CR0.AM[bit 18] = 1, EFLAGS.AC[bit 18] = 1, current
CPL=3.

#UD If CR4.0SFXSR][bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

STMXCSR—Store MXCSR Register State Vol. 2B 4-295

INSTRUCTION SET REFERENCE, N-Z

Real Address Mode Exceptions

GP(0)

#UD
#NM
#UD

If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#PF(fault-code)
#AC

For a page fault.

For unaligned memory reference.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)
#PF(fault-code)
#UD

#NM

#AC

#UD
#UD

4-296 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.EM[bit 2] = 1.

If CRO.TS[bit 3] = 1.

For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true: CR0.AM[bit 18] = 1, EFLAGS.AC[bit 18] = 1, current
CPL=3

If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

STMXCSR—Store MXCSR Register State

INSTRUCTION SET REFERENCE, N-Z

STOS/STOSB/STOSW/STOSD/STOSQ—Store String

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

AA STOS m8 Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOS m16 Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOS m32 Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOS m64 Valid N.E. Store RAX at address RDI or EDI.

AA STOSB Valid Valid For legacy mode, store AL at address
ES:(E)DI; For 64-bit mode store AL at
address RDI or EDI.

AB STOSW Valid Valid For legacy mode, store AX at address
ES:(E)DI; For 64-bit mode store AX at
address RDI or EDI.

AB STOSD Valid Valid For legacy mode, store EAX at address
ES:(E)DI; For 64-bit mode store EAX at
address RDI or EDI.

REX.W + AB STOSQ Valid N.E. Store RAX at address RDI or EDI.

Description

In non-64-bit and default 64-bit mode; stores a byte, word, or doubleword from the AL, AX, or
EAX register (respectively) into the destination operand. The destination operand is a memory
location, the address of which is read from either the ES:EDI or ES:DI register (depending on
the address-size attribute of the instruction and the mode of operation). The ES segment cannot
be overridden with a segment override prefix.

At the assembly-code level, two forms of the instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the STOS
mnemonic) allows the destination operand to be specified explicitly. Here, the destination
operand should be a symbol that indicates the size and location of the destination value. The
source operand is then automatically selected to match the size of the destination operand (the
AL register for byte operands, AX for word operands, EAX for doubleword operands). The
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the destination operand symbol must
specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have
to specify the correct location. The location is always specified by the ES:(E)DI register. These
must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, doubleword, and quadword
versions of the STOS instructions. Here also ES:(E)DI is assumed to be the destination operand
and AL, AX, or EAX is assumed to be the source operand. The size of the destination and source

STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol. 2B 4-297

INSTRUCTION SET REFERENCE, N-Z

operands is selected by the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the register to the memory location, the
(E)DI register is incremented or decremented according to the setting of the DF flag in the
EFLAGS register. If the DF flag is 0, the register is incremented; if the DF flag is 1, the register
is decremented (the register is incremented or decremented by 1 for byte operations, by 2 for
word operations, by 4 for doubleword operations).

In 64-bit mode, the default address size is 64 bits, 32-bit address size is supported using the
prefix 67H. Using an REX prefix in the form of REX.W promotes operation on doubleword
operand to 64 bits. The promoted no-operand mnemonic is STOSQ. STOSQ (and its explicit
operands variant) store a quadword from the RAX register into the destination addressed by RDI
or EDI. See the summary chart at the beginning of this section for encoding data and limits.

The STOS, STOSB, STOSW, STOSD, STOSQ instructions can be preceded by the REP prefix
for block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because data needs to be moved into the AL, AX, or EAX
register before it can be stored. See “REP/REPE/REPZ/REPNE/REPNZ—Repeat String Oper-
ation Prefix” in this chapter for a description of the REP prefix.

Operation
Non-64-bit Mode:
IF (Byte store)

THEN
DEST « AL;
THEN IF DF =0
THEN (E)DI « (E)DI + 1;
ELSE (E)DI « (E)DI - 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THEN IF DF =0
THEN (E)DI « (E)DI + 2;
ELSE (E)DI « (E)DI — 2;
Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THEN IF DF =0
THEN (E)DI « (E)DI + 4;
ELSE (E)DI « (E)DI - 4;
Fl;
Fl;

Fl;

4-298 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

64-bit Mode:
IF (Byte store)
THEN
DEST « AL;
THEN IFDF =0
THEN (R|E)DI « (R|E)DI + 1;
ELSE (R|E)DI « (R|E)DI — 1;
Fl;
ELSE IF (Word store)
THEN
DEST « AX;
THEN IF DF =0
THEN (R|E)DI « (R|E)DI + 2;
ELSE (R|E)DI « (R|E)DI - 2;
Fl;
Fl;
ELSE IF (Doubleword store)
THEN
DEST « EAX;
THEN IFDF=0
THEN (R|E)DI « (R|E)DI + 4;
ELSE (R|E)DI « (R|E)DI — 4;
Fl;
FI;
ELSE IF (Quadword store using REX.W)
THEN
DEST <« RAX;
THEN IFDF =0
THEN (R|E)DI <« (R|E)DI + 8;
ELSE (R|E)DI « (R|E)DI - 8;
FI;
Fl;
FI;

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a NULL segment selector.

#PF(fault-code) If a page fault occurs.

STOS/STOSB/STOSW/STOSD/STOSQ—Store String Vol. 2B 4-299

INSTRUCTION SET REFERENCE, N-Z

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#GP If a memory operand effective address is outside the ES segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the ES segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-300 Vol. 2B STOS/STOSB/STOSW/STOSD/STOSQ—Store String

INSTRUCTION SET REFERENCE, N-Z

STR—Store Task Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 00 /1 STR r/m16 Valid Valid Stores segment selector from TR in
r/m16.

Description

Stores the segment selector from the task register (TR) in the destination operand. The destina-
tion operand can be a general-purpose register or a memory location. The segment selector
stored with this instruction points to the task state segment (TSS) for the currently running task.

When the destination operand is a 32-bit register, the 16-bit segment selector is copied into the
lower 16 bits of the register and the upper 16 bits of the register are cleared. When the destina-
tion operand is a memory location, the segment selector is written to memory as a 16-bit
guantity, regardless of operand size.

In 64-bit mode, operation is the same. The size of the memory operand is fixed at 16 bits. In
register stores, the 2-byte TR is zero extended if stored to a 64-bit register.

The STR instruction is useful only in operating-system software. It can only be executed in
protected mode.

Operation
DEST <« TR(SegmentSelector);

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the destination is a memory operand that is located in a non-writable
segment or if the effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The STR instruction is not recognized in real-address mode.

STR—Store Task Register Vol. 2B 4-301

INSTRUCTION SET REFERENCE, N-Z
Virtual-8086 Mode Exceptions
#UD The STR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.

#SS(U) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-302 Vol. 2B STR—Store Task Register

SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

2Cib SUB AL, imm8 Valid Valid Subtract imm8 from AL.

2D iw SUB AX, imm16 Valid Valid Subtract imm16 from AX.

2D id SUB EAX, imm32 Valid Valid Subtract imm32 from EAX.

REX.W + 2D id SUB RAX, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from RAX.

80/5ib SUB r/m8, imm8 Valid Valid Subtract imm8 from r/m8.

REX +80/5ib SUB r/m8*, imm8 Valid N.E. Subtract imm8 from r/m8.

81/5iw SUB r/m16, imm16 Valid Valid Subtract imm16 from r/m16.

81/5id SUB r/m32, imm32 Valid Valid Subtract imm32 from r/m32.

REX.W +81/5id SUB r/m64, imm32 Valid N.E. Subtract imm32 sign-
extended to 64-bits from
r/m64.

83/5ib SUB r/m16, imm8 Valid Valid Subtract sign-extended imm8
from r/m16.

83/5ib SUB r/m32, imm8 Valid Valid Subtract sign-extended imm8
from r/m32.

REX.W + 83 /5ib SUB r/m64, imm8 Valid N.E. Subtract sign-extended imm8
from r/m64.

28 Ir SUB r/m8, r8 Valid Valid Subtract r8 from r/m8.

REX + 28 /r SUB r/m8*, r8* Valid N.E. Subtract r8 from r/m8.

29 /r SUB r/m16, r16 Valid Valid Subtract r16 from r/m16.

29 /Ir SUB r/m32, r32 Valid Valid Subtract r32 from r/m32.

REX.W + 29 /r SUB r/m64, r32 Valid N.E. Subtract r64 from r/m64.

2A Ir SUB r8, r/m8 Valid Valid Subtract r/m8 from r8.

REX + 2A Ir SUB r8*, r/m8* Valid N.E. Subtract r/m8 from r8.

2B Ir SUB r16, r/m16 Valid Valid Subtract r/m16 from r16.

2B Ir SUB r32, r/m32 Valid Valid Subtract r/m32 from r32.

REX.W + 2B Ir SUB r64, r/m64 Valid N.E. Subtract r/m64 from r64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Subtracts the second operand (source operand) from the first operand (destination operand) and
stores the result in the destination operand. The destination operand can be a register or a
memory location; the source operand can be an immediate, register, or memory location.
(However, two memory operands cannot be used in one instruction.) When an immediate value
is used as an operand, it is sign-extended to the length of the destination operand format.

SUB—Subtract Vol. 2B 4-303

INSTRUCTION SET REFERENCE, N-Z

The SUB instruction performs integer subtraction. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate an overflow in the signed or
unsigned result, respectively. The SF flag indicates the sign of the signed result.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST « (DEST - SRC);

Flags Affected
The OF, SF, ZF, AF, PF, and CF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

4-304 Vol. 2B SUB—Subtract

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

SUB—Subtract Vol. 2B 4-305

INSTRUCTION SET REFERENCE, N-Z

SUBPD—Subtract Packed Double-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 5C /r SUBPD xmml1, Valid Valid Subtract packed double-precision
xmm2/m128 floating-point values in xmm2/m128
from xmm1.
Description

Performs an SIMD subtract of the two packed double-precision floating-point values in the
source operand (second operand) from the two packed double-precision floating-point values in
the destination operand (first operand), and stores the packed double-precision floating-point
results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 11-3 in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DESTI[63:0] «- DEST[63:0] — SRC[63:0];
DEST[127:64] « DEST[127:64] — SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPD . m128d _mm_sub_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 1.

4-306 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 1.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.

If CRO.EMbit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

SUBPD—Subtract Packed Double-Precision Floating-Point Values Vol. 2B 4-307

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT [bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-308 Vol. 2B SUBPD—Subtract Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBPS—Subtract Packed Single-Precision Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 5C /r SUBPS xmm1 Valid Valid Subtract packed single-precision
xmm2/m128 floating-point values in xmm2/mem from
xmm1.
Description

Performs an SIMD subtract of the four packed single-precision floating-point values in the
source operand (second operand) from the four packed single-precision floating-point values in
the destination operand (first operand), and stores the packed single-precision floating-point
results in the destination operand. The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. See Figure 10-5 in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of an SIMD
double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST([31:0] «- DEST[31:0] - SRC[31:0];
DEST[63:32] - DEST[63:32] — SRC[63:32];
DEST[95:64] < DEST[95:64] — SRC[95:64];
DEST[127:96] « DEST[127:96] — SRC[127:96];

Intel C/C++ Compiler Intrinsic Equivalent
SUBPS _ m128 _mm_sub_ps(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

SUBPS—Subtract Packed Single-Precision Floating-Point Values Vol. 2B 4-309

INSTRUCTION SET REFERENCE, N-Z

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT][bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT][bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT [bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-310 Vol. 2B SUBPS—Subtract Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

SUBPS—Subtract Packed Single-Precision Floating-Point Values Vol. 2B 4-311

INSTRUCTION SET REFERENCE, N-Z

SUBSD—Subtract Scalar Double-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F20F 5C/r SUBSD xmm1, Valid Valid Subtracts the low double-precision
xmmz2/m64 floating-point values in

xmm2/mem64 from xmm1.

Description

Subtracts the low double-precision floating-point value in the source operand (second operand)
from the low double-precision floating-point value in the destination operand (first operand), and
stores the double-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 64-bit memory location. The destination operand is an XMM
register. The high quadword of the destination operand remains unchanged. See Figure 11-4 in
the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an illustration of a
scalar double-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[63:0] « DEST[63:0] — SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSD __m128d _mm_sub_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

4-312 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.

If CRO.EMbit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

SUBSD—Subtract Scalar Double-Precision Floating-Point Values Vol. 2B 4-313

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT][bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

4-314 Vol. 2B SUBSD—Subtract Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

SUBSS—Subtract Scalar Single-Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
F3 OF 5C /r SUBSS xmml1, Valid Valid Subtract the lower single-precision
xmm2/m32 floating-point values in xmm2/m32
from xmm1.
Description

Subtracts the low single-precision floating-point value in the source operand (second operand)
from the low single-precision floating-point value in the destination operand (first operand), and
stores the single-precision floating-point result in the destination operand. The source operand
can be an XMM register or a 32-bit memory location. The destination operand is an XMM
register. The three high-order doublewords of the destination operand remain unchanged. See
Figure 10-6 in the I1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for an
illustration of a scalar single-precision floating-point operation.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[31:0] < DEST[31:0] — SRC[31:0];
(* DEST[127:96] unchanged *)

Intel C/C++ Compiler Intrinsic Equivalent
SUBSS _ m128 _mm_sub_ss(__m128 a, __m128 b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 1.

SUBSS—Subtract Scalar Single-Precision Floating-Point Values Vol. 2B 4-315

INSTRUCTION SET REFERENCE, N-Z

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT]bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

4-316 Vol. 2B SUBSS—Subtract Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#S5(0)

#GP(0)
#PF(fault-code)
#NM

#XM

#UD

#AC(0)

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EMbit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

SUBSS—Subtract Scalar Single-Precision Floating-Point Values Vol. 2B 4-317

INSTRUCTION SET REFERENCE, N-Z

SWAPGS—Swap GS Base Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF01/7 SWAPGS Valid Invalid Exchanges the current GS base register
value with the value contained in MSR
address CO000102H.
Description

SWAPGS exchanges the current GS base register value with the value contained in MSR
address C0000102H (MSR_KERNELGSbase). KernelGSbase is guaranteed to be canonical; so
SWAPGS does not perform a canonical check. The SWAPGS instruction is a privileged instruc-
tion intended for use by system software.

When using SYSCALL to implement system calls, there is no kernel stack at the OS entry point.
Neither is there a straightforward method to obtain a pointer to kernel structures from which the
kernel stack pointer could be read. Thus, the kernel can't save general purpose registers or refer-
ence memory.

By design, SWAPGS does not require any general purpose registers or memory operands. No
registers need to be saved before using the instruction. SWAPGS exchanges the CPL 0 data
pointer from the KernelGShase MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access kernel data structures. Similarly, when the OS
kernel is entered using an interrupt or exception (where the kernel stack is already set up),
SWAPGS can be used to quickly get a pointer to the kernel data structures.

The KernelGSbase MSR itself is only accessible using RDMSR/WRMSR instructions. Those
instructions are only accessible at privilege level 0. WRMSR will cause a #GP(0) if the value to
be written to KernelGSbhase MSR is non-canonical.

See Table 4-5.
Table 4-5. SWAPGS Operation Parameters
Opcode ModR/M Byte Instruction
MOD REG R/IM Not 64-bit Mode 64-bit Mode
OF 01 MOD # 11 111 XXX INVLPG INVLPG
11 111 000 #UD SWPGS
11 111 # 000 #UD #UD
4-318 Vol. 2B SWAPGS—Swap GS Base Register

Operation

IF CS.L# 1 (* Not in 64-Bit Mode *)
THEN
#UD; FI;

IFCPL#0
THEN #GP(0); FI;

tmp <« GS(BASE);
GS(BASE) «— KERNELGSbase;
KERNELGSbase « tmp;

Flags Affected
None

Protected Mode Exceptions
#UD If Mode # 64-Bit

Real-Address Mode Exceptions

#UD Instruction not recognized.

Virtual-8086 Mode Exceptions

#UD Instruction not recognized.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If CPL#0.

SWAPGS—Swap GS Base Register

INSTRUCTION SET REFERENCE, N-Z

Vol. 2B 4-319

INSTRUCTION SET REFERENCE, N-Z

SYSCALL—Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 05 SYSCALL Valid Invalid Fast call to privilege level 0

system procedures.

Description

SYSCALL saves the RIP of the instruction following SYSCALL to RCX and loads a new RIP
from the 1A32_LSTAR (64-bit mode). Upon return, SYSRET copies the value saved in RCX to
the RIP.

SYSCALL saves RFLAGS (lower 32 bit only) in R11. It then masks RFLAGS with an OS-
defined value using the IA32_FMASK (MSR C000_0084). The actual mask value used by the
OS is the complement of the value written to the 1A32_FMASK MSR. None of the bits in
RFLAGS are automatically cleared (except for RF). SYSRET restores RFLAGS from R11 (the
lower 32 bits only).

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

® The CS and SS base and limit remain the same for all processes, including the operating
system (the base is OH and the limit is OFFFFFFFFH).

® The CS of the SYSCALL target has a privilege level of 0.
® The CS of the SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS #1) or (IA32_EFER.SCE # 1))
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
RCX « RIP;

RIP « LSTAR_MSR;

R11 « EFLAGS;

EFLAGS « (EFLAGS MASKED BY 1A32_FMASK);
CPL « 0;

CS(SEL) « IA32_STAR_MSR[47:32];

CS(DPL) « 0;

CS(BASE) « 0;

CS(LIMIT) < OXFFFFF;

CS(GRANULAR) < 1;

SS(SEL) « IA32_STAR_MSR[47:32] + 8;

SS(DPL) « 0;

SS(BASE) « 0;

4-320 Vol. 2B SYSCALL—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SS(LIMIT) « OXFFFFF;
SS(GRANULAR) <« 1;

Flags Affected
All.

Protected Mode Exceptions
#UD If Mode # 64-bit.

Real-Address Mode Exceptions

#UD Instruction is not recognized in this mode.

Virtual-8086 Mode Exceptions

#UD Instruction is not recognized in this mode.

Compatibility Mode Exceptions

#UD Instruction is not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE = 0.

SYSCALL—Fast System Call

Vol. 2B 4-321

INSTRUCTION SET REFERENCE, N-Z

SYSENTER—Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 34 SYSENTER Valid Valid Fast call to privilege level 0 system
procedures.

Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion
instruction to SYSEXIT. The instruction is optimized to provide the maximum performance for
system calls from user code running at privilege level 3 to operating system or executive proce-
dures running at privilege level 0.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code
segment and code entry point, and the privilege level 0 stack segment and stack pointer by
writing values to the following MSRs:

® JA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the
segment selector for the privilege level 0 code segment. This value is also used to compute
the segment selector of the privilege level 0 stack segment.

® |A32_SYSENTER_EIP — Contains the 32-bit offset into the privilege level 0 code
segment to the first instruction of the selected operating procedure or routine.

® |A32_SYSENTER_ESP — Contains the 32-bit stack pointer for the privilege level 0
stack.

These MSRs can be read from and written to using RDMSR/WRMSR. Register addresses are
listed in Table 4-6. The addresses are defined to remain fixed for future 1A-32 processors.

Table 4-6. MSRs Used By the SYSENTER and SYSEXIT Instructions

MSR Address
IA32_SYSENTER_CS 174H
IA32_SYSENTER_ESP 175H
IA32_SYSENTER_EIP 176H

When SYSENTER is executed, the processor:

1. Loads the segment selector from the I1A32_SYSENTER_CS into the CS register.

2. Loads the instruction pointer from the IA32_SYSENTER_EIP into the EIP register.
3. Adds 8 to the value in IA32_SYSENTER_CS and loads it into the SS register.

4. Loads the stack pointer from the IA32_SYSENTER_ESP into the ESP register.

5. Switches to privilege level 0.

4-322 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

6. Clears the VM flag in the EFLAGS register, if the flag is set.
7. Begins executing the selected system procedure.
The processor does not save a return IP or other state information for the calling procedure.

The SYSENTER instruction always transfers program control to a protected-mode code
segment with a DPL of 0. The instruction requires that the following conditions are met by the
operating system:

® The segment descriptor for the selected system code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

® The segment descriptor for selected system stack segment selects a flat 32-bit stack
segment of up to 4 GBytes, with read, write, accessed, and expand-up permissions.

The SYSENTER can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not consti-
tute a call/return pair. When executing a SYSENTER instruction, the processor does not save
state information for the user code, and neither the SYSENTER nor the SYSEXIT instruction
supports passing parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions
between privilege level 3 code and privilege level 0 operating system procedures, the following
conventions must be followed:

® The segment descriptors for the privilege level 0 code and stack segments and for the
privilege level 3 code and stack segments must be contiguous in the global descriptor table.
This convention allows the processor to compute the segment selectors from the value
entered in the SYSENTER_CS_MSR MSR.

® The fast system call “stub” routines executed by user code (typically in shared libraries or
DLLs) must save the required return IP and processor state information if a return to the
calling procedure is required. Likewise, the operating system or executive procedures
called with SYSENTER instructions must have access to and use this saved return and
state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture in the
Pentium Il processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor
family and model to ensure that the SYSENTER/SYSEXIT instructions are actually present.
For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; FI;
FI;

SYSENTER—Fast System Call Vol. 2B 4-323

INSTRUCTION SET REFERENCE, N-Z

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation
IF CRO.PE = 0 THEN #GP(0); FI;

IF SYSENTER_CS_MSR([15:2] = 0 THEN #GP(0); FI;

EFLAGS.VM « 0;
EFLAGS.IF < 0;
EFLAGS.RF « 0;

CS.SEL « SYSENTER_CS_MSR
(* Set rest of CS to a fixed value *)
CS.BASE « 0;

CS.LIMIT « FFFFFH;
CS.ARbyte.G « 1;

CS.ARbyte.S « 1;

CS.ARbyte. TYPE « 1011B;
CS.ARbyte.D « 1;
CS.ARbyte.DPL « 0;
CS.SEL.RPL « 0;

CS.ARbyte.P « 1;

CPL « O;

SS.SEL « CS.SEL + 8;

(* Set rest of SS to a fixed value *)
SS.BASE « 0;

SS.LIMIT « FFFFFH;
SS.ARbyte.G « 1;
SS.ARbyte.S «;
SS.ARbyte. TYPE « 0011B;
SS.ARbyte.D « 1;
SS.ARbyte.DPL « 0;
SS.SEL.RPL « 0;
SS.ARbyte.P « 1;

ESP « SYSENTER_ESP_MSR,;
EIP <~ SYSENTER_EIP_MSR;

IA-32e Mode Operation

(* Insures protected mode execution *)
(* Mask interrupts *)

(* Operating system provides CS *)
(* Flat segment *)

(* 4-GByte limit *)

(* 4-KByte granularity *)

(* Execute + Read, Accessed *)

(* 32-bit code segment*)

(* Flat segment *)
(* 4-GByte limit *)
(* 4-KByte granularity *)

(* Read/Write, Accessed *)
(* 32-bit stack segment*)

In 1A-32e mode, SYSENTER executes a fast system calls from user code running at privilege
level 3 (in compatibility mode or 64-bit mode) to 64-bit executive procedures running at privi-
lege level 0. This instruction is a companion instruction to the SYSEXIT instruction.

In 1A-32e mode, the IA32_SYSENTER_EIP and 1A32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; 1A32_SYSENTER_CS must not contain a NULL
selector.

4-324 Vol. 2B SYSENTER—Fast System Call

INSTRUCTION SET REFERENCE, N-Z

When SYSENTER transfers control, the following fields are generated and bits set:

® Target code segment — Reads non-NULL selector from 1A32_SYSENTER_CS.

®* New CS attributes — L-bit = 1 (go to 64-bit mode); CS base = 0, CS limit = FFFFFFFFH.
® Target instruction — Reads 64-bit canonical address from 1A32_SYSENTER_EIP.

® Stack segment — Computed by adding 8 to the value from IA32_SYSENTER_CS.

® Stack pointer — Reads 64-bit canonical address from IA32_SYSENTER_ESP.

® New SS attributes — SS base = 0, SS limit = FFFFFFFFH.

Flags Affected
VM, IF, RF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
Same exceptions as in Protected Mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

SYSENTER—Fast System Call Vol. 2B 4-325

INSTRUCTION SET REFERENCE, N-Z

SYSEXIT—Fast Return from Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 35 SYSEXIT Valid Valid Fast return to privilege level 3 user code.
REX.W + SYSEXIT Valid Valid Fast return to 64-bit mode privilege level 3
OF 35 user code.

Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the
SYSENTER instruction. The instruction is optimized to provide the maximum performance for
returns from system procedures executing at protections levels 0 to user procedures executing
at protection level 3. It must be executed from code executing at privilege level 0.

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code
entry point, and the privilege level 3 stack segment and stack pointer by writing values into the
following MSR and general-purpose registers:

® |JA32_SYSENTER_CS — Contains a 32-bit value, of which the lower 16 bits are the
segment selector for the privilege level 0 code segment in which the processor is currently
executing. This value is used to compute the segment selectors for the privilege level 3
code and stack segments.

® EDX — Contains the 32-bit offset into the privilege level 3 code segment to the first
instruction to be executed in the user code.

® ECX — Contains the 32-bit stack pointer for the privilege level 3 stack.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR/WRMSR. The
register address is listed in Table 4-6. This address is defined to remain fixed for future 1A-32
processors.

When SYSEXIT is executed, the processor:

1. Adds 16 to the value in I1A32_SYSENTER_CS and loads the sum into the CS selector
register.

2. Loads the instruction pointer from the EDX register into the EIP register.

3. Adds 24 to the value in IA32_SYSENTER_CS and loads the sum into the SS selector
register.

4. Loads the stack pointer from the ECX register into the ESP register.
5. Switches to privilege level 3.
6. Begins executing the user code at the EIP address.

See “SWAPGS—Swap GS Base Register” in this chapter for information about using the
SYSENTER and SYSEXIT instructions as companion call and return instructions.

4-326 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

The SYSEXIT instruction always transfers program control to a protected-mode code segment
with a DPL of 3. The instruction requires that the following conditions are met by the operating
system:

® The segment descriptor for the selected user code segment selects a flat, 32-bit code
segment of up to 4 GBytes, with execute, read, accessed, and non-conforming permissions.

® The segment descriptor for selected user stack segment selects a flat, 32-bit stack segment
of up to 4 GBytes, with expand-up, read, write, and accessed permissions.

The SYSENTER can be invoked from all operating modes except real-address mode and virtual
8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the 1A-32 architecture in the
Pentium Il processor. The availability of these instructions on a processor is indicated with the
SYSENTER/SYSEXIT present (SEP) feature flag returned to the EDX register by the CPUID
instruction. An operating system that qualifies the SEP flag must also qualify the processor
family and model to ensure that the SYSENTER/SYSEXIT instructions are actually present.
For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; FI;
FI;

When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor
returns a the SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

Operation

IF SYSENTER_CS_MSR[15:2] = 0 THEN #GP(0); FI;
IF CRO.PE = 0 THEN #GP(0); FI;
IF CPL # 0 THEN #GP(0); FI;

CS.SEL « (SYSENTER_CS_MSR + 16); (* Segment selector for return CS *)
(* Set rest of CS to a fixed value *)

CS.BASE « 0; (* Flat segment *)

CS.LIMIT « FFFFFH,; (* 4-GByte limit *)

CS.ARbyte.G « 1, (* 4-KByte granularity *)

CS.ARbyte.S « 1;

CS.ARbyte. TYPE « 1011B; (* Execute, Read, Non-Conforming Code *)
CS.ARbyte.D « 1; (* 32-bit code segment*)

CS.ARbyte.DPL « 3;
CS.SEL.RPL « 3;
CS.ARbyte.P « 1;
CPL « 3;

SS.SEL « (SYSENTER_CS_MSR + 24); (* Segment selector for return SS *)
(* Set rest of SS to a fixed value *);

SYSEXIT—Fast Return from Fast System Call Vol. 2B 4-327

INSTRUCTION SET REFERENCE, N-Z

SS.BASE « 0; (* Flat segment *)

SS.LIMIT « FFFFFH; (* 4-GByte limit *)

SS.ARbyte.G «1; (* 4-KByte granularity *)
SS.ARbyte.S «;

SS.ARbyte. TYPE « 0011B; (* Expand Up, Read/Write, Data *)
SS.ARbyte.D « 1; (* 32-bit stack segment*)

SS.ARbyte.DPL « 3;
SS.SEL.RPL « 3;
SS.ARbyte.P « 1;

ESP « ECX;
ElIP« EDX;
IA-32e Mode Operation

In 1A-32e mode, SYSEXIT executes a fast system calls from a 64-bit executive procedures
running at privilege level 0 to user code running at privilege level 3 (in compatibility mode or
64-bit mode). This instruction is a companion instruction to the SYSENTER instruction.

In 1A-32e mode, the IA32_SYSENTER_EIP and 1A32_SYSENTER_ESP MSRs hold 64-bit
addresses and must be in canonical form; 1A32_SYSENTER_CS must not contain a NULL
selector.

When the SYSEXIT instruction transfers control to 64-bit mode user code using REX.W, the
following fields are generated and bits set:

® Target code segment — Computed by adding 32 to the value in the
IA32_SYSENTER_CS.

® New CS attributes — L-bit = 1 (go to 64-bit mode).

® Target instruction — Reads 64-bit canonical address in RDX.

® Stack segment — Computed by adding 8 to the value of CS selector.
® Stack pointer — Update RSP using 64-bit canonical address in RCX.

When SYSEXIT transfers control to compatibility mode user code when the operand size
attribute is 32 bits, the following fields are generated and bits set:

® Target code segment — Computed by adding 16 to the value in IA32_SYSENTER_CS.
® New CS attributes — L-bit = 0 (go to compatibility mode).

® Target instruction — Fetch the target instruction from 32-bit address in EDX.

® Stack segment — Computed by adding 24 to the value in IA32_SYSENTER_CS.

® Stack pointer — Update ESP from 32-bit address in ECX.

Flags Affected
None.

4-328 Vol. 2B SYSEXIT—Fast Return from Fast System Call

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
If CPL #0.

Real-Address Mode Exceptions
#GP(0) If protected mode is not enabled.

Virtual-8086 Mode Exceptions
#GP(0) Always

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If IA32_SYSENTER_CS =0.
If CPL # 0.

If ECX or EDX contains a non-canonical address.

SYSEXIT—Fast Return from Fast System Call Vol. 2B 4-329

INSTRUCTION SET REFERENCE, N-Z

SYSRET—Return From Fast System Call

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 07 SYSRET Valid Invalid Return from fast system call

Description

SYSCALL saves the RIP of the instruction following the SYSCALL into RCX and loads the
new RIP from the LSTAR (64-bit mode only). Upon return, SYSRET copies the value saved in
RCX to the RIP.

In a return to 64-bit mode using Osize 64, SYSRET sets the CS selector value to MSR
IA32_STAR[63:48] +16. The SS is set to IA32_STAR[63:48] + 8.

SYSRET transfer control to compatibility mode using Osize 32. The CS selector value is set to
MSR IA32_STAR[63:48]. The SS is set to IA32_STAR[63:48] + 8.

It is the responsibility of the OS to keep descriptors in the GDT/LDT that correspond to selectors
loaded by SYSCALL/SYSRET consistent with the base, limit and attribute values forced by the
these instructions.

Software should not alter the CS or SS descriptors in a manner that violates the following
assumptions made by SYSCALL/SYSRET:

® CS and SS base and limit remain the same for all processes, including the operating
system.

® CSof the SYSCALL target has a privilege level of 0.
® CSofthe SYSRET target has a privilege level of 3.
SYSCALL/SYSRET do not check for violations of these assumptions.

Operation

IF (CS.L# 1) or (IA32_EFER.SCE # 1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)

THEN #UD; FI;
IF (CPL #0)
THEN #GP(0); FI;
IF (RCX # CANONICAL_ADDRESS)
THEN #GP(0); FI;
IF (OPERAND_SIZE = 64)
THEN (* Return to 64-Bit Mode *)
EFLAGS « R11;
CPL « 0x3;
CS(SEL) « IA32_STAR[63:48] + 16;
CS(PL) « 0x3;
SS(SEL) « IA32_STAR[63:48] + 8;

4-330 Vol. 2B SYSRET—Return From Fast System Call

INSTRUCTION SET REFERENCE, N-Z

SS(PL) « 0x3;
RIP « RCX;

ELSE (* Return to Compatibility Mode *)
EFLAGS « R11;
CPL « 0x3;
CS(SEL) « IA32_STAR[63:48] ;
CS(PL) « 0x3;
SS(SEL) « IA32_STAR[63:48] + 8;
SS(PL) « 0x3;
EIP « ECX;

Fl;

Flags Affected
VM, IF, RF.

Protected Mode Exceptions
#UD If Mode # 64-Bit.

Real-Address Mode Exceptions
#UD Instruction not recognized in this mode.

Virtual-8086 Mode Exceptions
#UD Instruction not recognized in this mode.

Compatibility Mode Exceptions
#UD Instruction not recognized in this mode.

64-Bit Mode Exceptions
#UD If IA32_EFER.SCE bit = 0.
#GP(0) If CPL # 0.

If ECX contains a non-canonical address.

SYSRET—Return From Fast System Call

Vol. 2B 4-331

INSTRUCTION SET REFERENCE, N-Z

TEST—Logical Compare

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
A8 ib TEST AL, imm8 Valid Valid AND imm8 with AL; set SF,
ZF, PF according to result.
A9 iw TEST AX, imm16 Valid Valid AND imm16 with AX; set SF,
ZF, PF according to result.
A9id TEST EAX,imm32 Valid Valid AND imm32 with EAX; set SF,
ZF, PF according to result.
REX.W + A9 id TEST RAX,imm32 Valid N.E. AND imm32 sign-extended to
64-bits with RAX; set SF, ZF,
PF according to result.
F6 /0 ib TEST r/m8, imm8 Valid Valid AND imm8 with r/m8; set SF,
ZF, PF according to result.
REX +F6 /0 ib TEST r/m8*, imm8 Valid N.E. AND imm8 with r/m8; set SF,
ZF, PF according to result.
F7 /0 iw TEST r/m16, Valid Valid AND imm16 with r/m16; set
imm16 SF, ZF, PF according to result.
F7/0id TEST r/m32, Valid Valid AND imm32 with r/m32; set
imm32 SF, ZF, PF according to result.
REX.W + F7 /0 id TEST r/m64, Valid N.E. AND imm32 sign-extended to
imm32 64-bits with r/m64; set SF, ZF,
PF according to result.
84 /Ir TEST r/m8, r8 Valid Valid AND r8 with r/m8; set SF, ZF,
PF according to result.
REX + 84 /r TEST r/m8*, r8* Valid N.E. AND r8 with r/m8; set SF, ZF,
PF according to result.
851/r TEST r/m16, r16 Valid Valid AND r16 with r/m16; set SF,
ZF, PF according to result.
85 /r TEST r/m32, r32 Valid Valid AND r32 with r/m32; set SF,
ZF, PF according to result.
REX.W + 85 /r TEST r/m64, r64 Valid N.E. AND r64 with r/m64; set SF,
ZF, PF according to result.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Computes the bit-wise logical AND of first operand (source 1 operand) and the second operand
(source 2 operand) and sets the SF, ZF, and PF status flags according to the result. The result is

then discarded.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using an REX prefix in the form of REX.W promotes operation to 64 bits. See the
summary chart at the beginning of this section for encoding data and limits.

4-332 Vol. 2B

TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

Operation

TEMP « SRC1 AND SRC2;
SF « MSB(TEMP);

IF TEMP =0
THEN ZF « 1;
ELSE ZF « 0;

Fl:

PF « BitwiseXNOR(TEMP[0:7]);
CF «0;

OF « 0;

(* AF is undefined *)

Flags Affected

The OF and CF flags are set to 0. The SF, ZF, and PF flags are set according to the result (see
the “Operation” section above). The state of the AF flag is undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

TEST—Logical Compare Vol. 2B 4-333

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-334 Vol. 2B TEST—Logical Compare

INSTRUCTION SET REFERENCE, N-Z

UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 2E /r UCOMISD xmm1, Valid Valid Compares (unordered) the low double-
xmmz2/m64 precision floating-point values in xmm21
and xmm2/m64 and set the EFLAGS
accordingly.
Description

Performs and unordered compare of the double-precision floating-point values in the low quad-
words of source operand 1 (first operand) and source operand 2 (second operand), and sets the
ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater than,
less than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unordered
result is returned if either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 64 bit
memory location.

The UCOMISD instruction differs from the COMISD instruction in that it signals an SIMD
floating-point invalid operation exception (#1) only when a source operand is an SNaN. The
COMISD instruction signals an invalid operation exception if a source operand is either a QNaN
or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is gener-
ated.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

RESULT <« UnorderedCompare(SRC1[63:0] < > SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF, PF, CF « 111;

GREATER_THAN: ZF, PF, CF « 000;

LESS_THAN: ZF, PF, CF « 001;

EQUAL: ZF, PF, CF <« 100;
ESAC;

OF, AF, SF « 0;

UCOMISD—Unordered Compare Scalar Double-Precision Floating- Vol. 2B 4-335
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_ucomieq_sd(__m128d a, _ m128d b)
int_mm_ucomilt_sd(__m128d a, _ m128d b)
int_mm_ucomile_sd(__m128d a, _ m128d b)
int_mm_ucomigt_sd(__m128d a, _ m128d b)
int_mm_ucomige_sd(__m128d a, _ m128d b)
int_mm_ucomineq_sd(__m128d a, _ m128d b)

SIMD Floating-Point Exceptions

Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

4-336 Vol. 2B

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

UCOMISD—Unordered Compare Scalar Double-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

UCOMISD—Unordered Compare Scalar Double-Precision Floating- Vol. 2B 4-337
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 2E Ir UCOMISS xmm1, Valid Valid Compare lower single-precision floating-
xmmz2/m32 point value in xmm1 register with lower

single-precision floating-point value in
xmm2/mem and set the status flags
accordingly.

Description

Performs and unordered compare of the single-precision floating-point values in the low double-
words of the source operand 1 (first operand) and the source operand 2 (second operand), and
sets the ZF, PF, and CF flags in the EFLAGS register according to the result (unordered, greater
than, less than, or equal). In The OF, SF and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Source operand 1 is an XMM register; source operand 2 can be an XMM register or a 32 bit
memory location.

The UCOMISS instruction differs from the COMISS instruction in that it signals an SIMD
floating-point invalid operation exception (#1) only when a source operand is an SNaN. The
COMISS instruction signals an invalid operation exception if a source operand is either a QNaN
or an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is generated.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

RESULT « UnorderedCompare(SRC1[63:0] <> SRC2[63:0]) {
(* Set EFLAGS *)
CASE (RESULT) OF

UNORDERED: ZF,PF,CF « 111;
GREATER_THAN: ZF,PF,CF « 000;
LESS_THAN: ZF,PF,CF « 001;
EQUAL: ZF,PF,CF « 100;
ESAC;
OF,AF,SF « 0;
4-338 Vol. 2B UCOMISS—Unordered Compare Scalar Single-Precision Floating-

Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
int_mm_ucomieq_ss(__m128 a, _ m128 b)
int_mm_ucomilt_ss(__m128 a, _ m128 b)
int_mm_ucomile_ss(_ m128 a, _ m128 b)
int_mm_ucomigt_ss(__m128 a, _ m128 b)
int_mm_ucomige_ss(__m128 a, _ m128 b)

int_mm_ucomineq_ss(__m128 a, _ m128 b)

SIMD Floating-Point Exceptions
Invalid (if SNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT bit 10] = 0.

UCOMISS—Unordered Compare Scalar Single-Precision Floating- Vol. 2B 4-339
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0)

#GP(0)
#PF(fault-code)
#NM

#XM

#UD

#AC(0)

4-340 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

UCOMISS—Unordered Compare Scalar Single-Precision Floating-
Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, N-Z

UD2—Undefined Instruction

Compat/
Opcode Instruction 64-Bit Mode Leg Mode Description
OF OB ub2 Valid Valid Raise invalid opcode exception.

Description

Generates an invalid opcode. This instruction is provided for software testing to explicitly
generate an invalid opcode. The opcode for this instruction is reserved for this purpose.

Other than raising the invalid opcode exception, this instruction is the same as the NOP instruc-
tion.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

#UD (* Generates invalid opcode exception *);

Flags Affected
None.

Exceptions (All Operating Modes)

#UD Instruction is guaranteed to raise an invalid opcode exception in all oper-
ating modes.

UD2—Undefined Instruction Vol. 2B 4-341

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPD—Unpack and Interleave High Packed Double-
Precision Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
66 OF 15 /r UNPCKHPD xmm1, Valid Valid Unpacks and Interleaves double-
xmm2/m128 precision floating-point values
from high quadwords of xmm21 and
xmm2/m128.

Description

Performs an interleaved unpack of the high double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-14.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

DEST X1 X0
SRC Y1 YO
DEST Y1 X1

Figure 4-14. UNPCKHPD Instruction High Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

4-342 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

Operation

INSTRUCTION SET REFERENCE, N-Z

DEST[63:0] «- DEST[127:64];
DEST[127:64] <« SRC[127:64];

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD

_m128d _mm_unpackhi_pd(__m128d a, _ m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

UNPCKHPD—Unpack and Interleave High Packed Double-Precision Vol. 2B 4-343

Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-344 Vol. 2B UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
OF 15 /r UNPCKHPS xmm1, Valid Valid Unpacks and Interleaves single-
xmm2/m128 precision floating-point values

from high quadwords of xmm1
and xmm2/mem into xmm1.

Description

Performs an interleaved unpack of the high-order single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-15.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1 YO
Y
DEST Y3 X3 Y2 X2

Figure 4-15. UNPCKHPS Instruction High Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST([31:0] « DEST[95:64];
DEST[63:32] - SRC[95:64];
DEST[95:64] < DEST[127:96];
DEST[127:96] « SRC[127:96];

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Vol. 2B 4-345
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent
UNPCKHPS __m128 _mm_unpackhi_ps(__m128 a, _ m128 b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.
If any part of the operand lies outside the effective address space from 0
to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

4-346 Vol. 2B UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

UNPCKHPS—Unpack and Interleave High Packed Single-Precision Vol. 2B 4-347
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description
66 OF 14 UNPCKLPD xmm1, Valid Valid Unpacks and Interleaves double-
Ir xmm2/m128 precision floating-point values from low

quadwords of xmm1 and xmm2/m128.

Description

Performs an interleaved unpack of the low double-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-16.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

DEST X1 X0

/

SRC Y1 YO /

DEST YO X0

Figure 4-16. UNPCKLPD Instruction Low Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation

DEST[63:0] <~ DEST[63:0];
DEST[127:64] « SRC[63:0];

4-348 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKHPD

_m128d _mm_unpacklo_pd(__m128d a, _ m128d b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

UNPCKLPD—Unpack and Interleave Low Packed Double-Precision Vol. 2B 4-349

Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.0OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

4-350 Vol. 2B UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 14 Ir UNPCKLPS xmm1, Valid Valid Unpacks and Interleaves single-
xmm2/m128 precision floating-point values from
low quadwords of xmm1 and
xmmz2/mem into xmm1.
Description

Performs an interleaved unpack of the low-order single-precision floating-point values from the
source operand (second operand) and the destination operand (first operand). See Figure 4-17.
The source operand can be an XMM register or a 128-bit memory location; the destination
operand is an XMM register.

DEST X3 X2 X1 X0
SRC Y3 Y2 Y1l YO /
DEST Y1 X1 YO X0

Figure 4-17. UNPCKLPS Instruction Low Unpack and Interleave Operation

When unpacking from a memory operand, an implementation may fetch only the appropriate 64
bits; however, alignment to 16-byte boundary and normal segment checking will still be
enforced.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

Vol. 2B 4-351

INSTRUCTION SET REFERENCE, N-Z

Operation

DEST[31:0] «- DEST[31:0];
DEST[63:32] «- SRC[31:0];
DEST[95:64] < DEST[63:32];
DEST[127:96] « SRC[63:32];

Intel C/C++ Compiler Intrinsic Equivalent

UNPCKLPS

__m128 _mm_unpacklo_ps(__m128 a, _ m128 b)

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For an illegal address in the SS segment.
For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRI[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

4-352 Vol. 2B

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.
If CR4.OSFXSRIbit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

UNPCKLPS—Unpack and Interleave Low Packed Single-Precision Vol. 2B 4-353
Floating-Point Values

INSTRUCTION SET REFERENCE, N-Z

VERR/VERW—Verify a Segment for Reading or Writing

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 00 /4 VERR r/m16 Valid Valid Set ZF=1 if segment specified with r/m16
can be read.
OF 00 /5 VERW r/m16 Valid Valid Set ZF=1 if segment specified with r/m16
can be written.

Description

Verifies whether the code or data segment specified with the source operand is readable (VERR)
or writable (VERW) from the current privilege level (CPL). The source operand is a 16-bit
register or a memory location that contains the segment selector for the segment to be verified.
If the segment is accessible and readable (VERR) or writable (VERW), the ZF flag is set; other-
wise, the ZF flag is cleared. Code segments are never verified as writable. This check cannot be
performed on system segments.

To set the ZF flag, the following conditions must be met:
® The segment selector is not NULL.

® The selector must denote a descriptor within the bounds of the descriptor table (GDT or
LDT).

® The selector must denote the descriptor of a code or data segment (not that of a system
segment or gate).

® For the VERR instruction, the segment must be readable.
® For the VERW instruction, the segment must be a writable data segment.

® |f the segment is not a conforming code segment, the segment’s DPL must be greater than
or equal to (have less or the same privilege as) both the CPL and the segment selector's
RPL.

The validation performed is the same as is performed when a segment selector is loaded into the
DS, ES, FS, or GS register, and the indicated access (read or write) is performed. The segment
selector's value cannot result in a protection exception, enabling the software to anticipate
possible segment access problems.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode. The operand size
is fixed at 16 bits.

4-354 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

Operation

IF SRC(Offset) > (GDTR(Limit) or (LDTR(Limit))
THEN ZF « O; FI;

Read segment descriptor;

IF SegmentDescriptor(DescriptorType) = 0 (* System segment *)
or (SegmentDescriptor(Type) # conforming code segment)
and (CPL > DPL) or (RPL > DPL)
THEN
ZF « O;
ELSE
IF ((Instruction = VERR) and (Segment readable))
or ((Instruction = VERW) and (Segment writable))
THEN
ZF « 1;
FI;
Fl;

Flags Affected

The ZF flag is set to 1 if the segment is accessible and readable (VERR) or writable (VERW);
otherwise, it is set to 0.

Protected Mode Exceptions

The only exceptions generated for these instructions are those related to illegal addressing of the
source operand.

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD The VERR and VERW instructions are not recognized in real-address
mode.

Virtual-8086 Mode Exceptions

#UD The VERR and VERW instructions are not recognized in virtual-8086
mode.

VERR/VERW—Verify a Segment for Reading or Writing Vol. 2B 4-355

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-356 Vol. 2B VERR/VERW—Verify a Segment for Reading or Writing

INSTRUCTION SET REFERENCE, N-Z

WAIT/FWAIT—Wait

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
9B WAIT Valid Valid Check pending unmasked floating-
point exceptions.
9B FWAIT Valid Valid Check pending unmasked floating-

point exceptions.

Description

Causes the processor to check for and handle pending, unmasked, floating-point exceptions
before proceeding. (FWAIT is an alternate mnemonic for WAIT.)

This instruction is useful for synchronizing exceptions in critical sections of code. Coding a
WAIT instruction after a floating-point instruction insures that any unmasked floating-point
exceptions the instruction may raise are handled before the processor can modify the instruc-
tion’s results. See the section titled “Floating-Point Exception Synchronization” in Chapter 8 of
the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1, for more information on
using the WAIT/FWAIT instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CheckForPendingUnmaskedFloatingPointExceptions;

FPU Flags Affected
The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM If CRO.MP[bit 1] = 1 and CRO.TS[bit 3] = 1.

Real-Address Mode Exceptions
#NM If CR0O.MP[bit 1] = 1 and CRO.TS]bit 3] = 1.

Virtual-8086 Mode Exceptions
#NM If CR0O.MP[bit 1] = 1 and CRO.TS][bit 3] = 1.

WAIT/FWAIT—Wait Vol. 2B 4-357

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-358 Vol. 2B

WAIT/FWAIT—Wait

INSTRUCTION SET REFERENCE, N-Z

WBINVD—Write Back and Invalidate Cache

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 09 WBINVD Valid Valid Write back and flush Internal caches;

initiate writing-back and flushing of
external caches.

Description

Writes back all modified cache lines in the processor’s internal cache to main memory and inval-
idates (flushes) the internal caches. The instruction then issues a special-function bus cycle that
directs external caches to also write back modified data and another bus cycle to indicate that
the external caches should be invalidated.

After executing this instruction, the processor does not wait for the external caches to complete
their write-back and flushing operations before proceeding with instruction execution. It is the
responsibility of hardware to respond to the cache write-back and flush signals.

The WBINVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction. This instruction
is also a serializing instruction (see “Serializing Instructions” in Chapter 8 of the I1A-32 Intel®
Architecture Software Developer’s Manual, Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the
INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBINVD instruction is implementation dependent, and its function may be implemented
differently on future 1A-32 processors. The instruction is not supported on 1A-32 processors
earlier than the Intel486 processor.

Operation

WriteBack(InternalCaches);
Flush(InternalCaches);
SignalWriteBack(ExternalCaches);
SignalFlush(ExternalCaches);
Continue; (* Continue execution *)

Flags Affected
None.

WBINVD—Write Back and Invalidate Cache Vol. 2B 4-359

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

Real-Address Mode Exceptions
None.

Virtual-8086 Mode Exceptions
#GP(0) The WBINVD instruction cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-360 Vol. 2B WBINVD—Write Back and Invalidate Cache

INSTRUCTION SET REFERENCE, N-Z

WRMSR—Write to Model Specific Register

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description
OF 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.
REX.W +0F30 WRMSR Valid N.E. Write the value in RDX[31:0]:
RAX[31:0] to MSR specified by RCX.

Description

In legacy and compatibility mode, writes the contents of registers EDX:EAX into the 64-bit
model specific register (MSR) specified by the ECX register. The value loaded into the ECX
register is the address of the MSR. The contents of the EDX register are copied to high-order 32
bits of the selected MSR and the contents of the EAX register are copied to low-order 32 bits of
the MSR. Undefined or reserved bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a
general protection exception #GP(0) is generated. Specifying a reserved or unimplemented
MSR address in ECX will also cause a general protection exception. The processor will also
generate a general protection exception if software attempts to write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated. This
includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and machine
check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 3B, lists all MSRs that can be read with this instruction
and their addresses. Note that each processor family has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in Chapter 7
of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported (EDX[5]=1)
before using this instruction.

In 64-bit mode, operation is the same as legacy mode, except that targeted registers are updated
by MSR[63:32] = RDX[31:0], MSR[31:0] = RAX[31:0].
IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced into the
I1A-32 architecture with the Pentium processor. Execution of this instruction by an 1A-32
processor earlier than the Pentium processor results in an invalid opcode exception #UD.

WRMSR—Write to Model Specific Register Vol. 2B 4-361

INSTRUCTION SET REFERENCE, N-Z

Operation

IF 64-BIt Mode and REX.W used
THEN
MSR[RCX] <« RDX:RAX;
ELSE IF (Non-64-Bit Modes or Default 64-Bit Mode)
MSR[ECX] «- EDX:EAX; FI;
Fl;
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Real-Address Mode Exceptions
#GP(0) If the value in ECX specifies a reserved or unimplemented MSR address.

If the value in EDX:EAX sets bits that are reserved in the MSR specified
by ECX.

Virtual-8086 Mode Exceptions
#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
Same exceptions as in Protected Mode.

4-362 Vol. 2B WRMSR—Write to Model Specific Register

INSTRUCTION SET REFERENCE, N-Z

XADD—Exchange and Add

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

OF CO/r XADD r/m8, r8 Valid Valid Exchange r8 and r/m8; load
sum into r/m8.

REX + OF CO /r XADD r/m8*, r8* Valid N.E. Exchange r8 and r/m8; load
sum into r/m8.

OFC1/r XADD r/m16, r16 Valid Valid Exchange r16 and r/m16;
load sum into r/m16.

OFC11/r XADD r/m32, r32 Valid Valid Exchange r32 and r/m32;
load sum into r/m32.

REX.W +OF C1 /r XADD r/m64, r64 Valid N.E. Exchange r64 and r/m64;

load sum into r/m64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is used:
AH, BH, CH, DH.

Description

Exchanges the first operand (destination operand) with the second operand (source operand),
then loads the sum of the two values into the destination operand. The destination operand can
be a register or a memory location; the source operand is a register.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

IA-32 Architecture Compatibility

IA-32 processors earlier than the Intel486 processor do not recognize this instruction. If this
instruction is used, you should provide an equivalent code sequence that runs on earlier
processors.

Operation

TEMP « SRC + DEST;
SRC « DEST;
DEST <« TEMP;

Flags Affected

The CF, PF, AF, SF, ZF, and OF flags are set according to the result of the addition, which is
stored in the destination operand.

XADD—Exchange and Add Vol. 2B 4-363

INSTRUCTION SET REFERENCE, N-Z

Protected Mode Exceptions

#GP(0)

#5S(0)
#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#Ss(0)

#GP(0)
#PF(fault-code)
#AC(0)

4-364 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

XADD—Exchange and Add

INSTRUCTION SET REFERENCE, N-Z

XCHG—Exchange Register/Memory with Register

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

90+rw XCHG AX, r16 Valid Valid Exchange r16 with AX.

90+rw XCHG r16, AX Valid Valid Exchange AX with r16.

90+rd XCHG EAX, r32 Valid Valid Exchange r32 with EAX.

REX.W +90+rd XCHG RAX, r64 Valid N.E. Exchange r64 with RAX.

90+rd XCHG r32, EAX Valid Valid Exchange EAX with r32.

REX.W +90+rd XCHG r64, RAX Valid N.E. Exchange RAX with r64.

86 /r XCHG r/m8, r8 Valid Valid Exchange r8 (byte register) with
byte from r/m8.

REX + 86 /r XCHG r/m8*, r8* Valid N.E. Exchange r8 (byte register) with
byte from r/m8.

86 /r XCHG r8, r/m8 Valid Valid Exchange byte from r/m8 with r8
(byte register).

REX + 86 /r XCHG r8*, r/m8* Valid N.E. Exchange byte from r/m8 with r8
(byte register).

87 Ir XCHG r/m16, r16 Valid Valid Exchange r16 with word from
r/m16.

87 1Ir XCHG r16, r/m16 Valid Valid Exchange word from r/m16 with
rl6.

871Ir XCHG r/m32, r32 Valid Valid Exchange r32 with doubleword
from r/m32.

REX.W + 87 Ir XCHG r/m64, r64 Valid N.E. Exchange r64 with quadword
from r/mé4.

87 Ir XCHG r32, r/m32 Valid Valid Exchange doubleword from r/m32
with r32.

REX.W + 87 Ir XCHG r64, r/m64 Valid N.E. Exchange quadword from r/m64
with r64.

NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Exchanges the contents of the destination (first) and source (second) operands. The operands
can be two general-purpose registers or a register and a memory location. If a memory operand
is referenced, the processor’s locking protocol is automatically implemented for the duration of
the exchange operation, regardless of the presence or absence of the LOCK prefix or of the value
of the 10PL. (See the LOCK prefix description in this chapter for more information on the
locking protocol.)

This instruction is useful for implementing semaphores or similar data structures for process
synchronization. (See “Bus Locking” in Chapter 7 of the 1A-32 Intel® Architecture Software
Developer’s Manual, Volume 3A, for more information on bus locking.)

XCHG—Exchange Register/Memory with Register Vol. 2B 4-365

INSTRUCTION SET REFERENCE, N-Z

The XCHG instruction can also be used instead of the BSWAP instruction for 16-bit operands.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using an REX prefix in the
form of REX.R permits access to additional registers (R8-R15). Using an REX prefix in the
form of REX.W promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
TEMP « DEST;
DEST « SRC;
SRC « TEMP;
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If either operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

4-366 Vol. 2B XCHG—Exchange Register/Memory with Register

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

XCHG—Exchange Register/Memory with Register Vol. 2B 4-367

INSTRUCTION SET REFERENCE, N-Z

XLAT/XLATB—Table Look-up Translation

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

D7 XLAT m8 Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

D7 XLATB Valid Valid Set AL to memory byte DS:[(E)BX +
unsigned AL].

REX.W + D7 XLATB Valid N.E. Set AL to memory byte [RBX +
unsigned AL].

Description

Locates a byte entry in a table in memory, using the contents of the AL register as a table index,
then copies the contents of the table entry back into the AL register. The index in the AL register
is treated as an unsigned integer. The XLAT and XLATB instructions get the base address of the
table in memory from either the DS:EBX or the DS:BX registers (depending on the address-size
attribute of the instruction, 32 or 16, respectively). (The DS segment may be overridden with a
segment override prefix.)

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operand”
form and the “no-operand” form. The explicit-operand form (specified with the XLAT
mnemonic) allows the base address of the table to be specified explicitly with a symbol. This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the symbol does not have to specify the
correct base address. The base address is always specified by the DS:(E)BX registers, which
must be loaded correctly before the XLAT instruction is executed.

The no-operands form (XLATB) provides a “short form” of the XLAT instructions. Here also
the processor assumes that the DS:(E)BX registers contain the base address of the table.

In 64-bit mode, operation is similar to that in legacy or compatibility mode. AL is used to specify
the table index (the operand size is fixed at 8 bits). RBX, however, is used to specify the table’s
base address. See the summary chart at the beginning of this section for encoding data and
limits.

Operation

IF AddressSize = 16
THEN
AL « (DS:BX + ZeroExtend(AL));
ELSE IF (AddressSize = 32)
AL « (DS:EBX + ZeroExtend(AL)); FI;
ELSE (AddressSize = 64)
AL < (RBX + ZeroExtend(AL));
Fl;

4-368 Vol. 2B XLAT/XLATB—Table Look-up Translation

INSTRUCTION SET REFERENCE, N-Z

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a hon-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

XLAT/XLATB—Table Look-up Translation Vol. 2B 4-369

INSTRUCTION SET REFERENCE, N-Z

XOR—Logical Exclusive OR

64-Bit Compat/

Opcode Instruction Mode Leg Mode Description

34ib XOR AL, imm8 Valid Valid AL XOR imm8.

35iw XOR AX, imm16 Valid Valid AX XOR imm16.

35id XOR EAX, imm32 Valid Valid EAX XOR imm32.

REX.W + 35id XOR RAX, imm32 Valid N.E. RAX XOR imm32 (sign-
extended).

80/6ib XOR r/m8, imm8 Valid Valid r/m8 XOR imm8.

REX + 80 /6 ib XOR r/m8*, imm8 Valid N.E. r/m8 XOR imm8.

81 /6 iw XOR r/m16, imm16 Valid Valid r/m16 XOR imm16.

81/6id XOR r/m32, imm32 Valid Valid r/m32 XOR imm32.

REX.W + 81 /6 id XOR r/m64, imm32 Valid N.E. r/m64 XOR imma32 (sign-
extended).

83/6ib XOR r/m16, imm8 Valid Valid r/m16 XOR imm8 (sign-
extended).

83/6ib XOR r/m32, imm8 Valid Valid r/m32 XOR imm8 (sign-
extended).

REX.W + 83 /6 ib XOR r/m64, imm8 Valid N.E. r/m64 XOR imm8 (sign-
extended).

30/r XOR r/m8, r8 Valid Valid r/m8 XOR r8.

REX + 30 /r XOR r/m8*, r8* Valid N.E. r/m8 XOR r8.

31/r XOR r/m16, r16 Valid Valid r/m16 XOR rl16.

31/r XOR r/m32, r32 Valid Valid r/m32 XOR r32.

REX.W + 31 /r XOR r/m64, r64 Valid N.E. r/m64 XOR r64.

321/r XOR 8, r/m8 Valid Valid r8 XOR r/m8.

REX + 32 /r XOR r8*, r/m8* Valid N.E. r8 XOR r/m8.

33/r XOR r16, r/m16 Valid Valid r16 XOR r/m16.

33/r XOR r32, r/Im32 Valid Valid r32 XOR r/m32.

REX.W + 33 /r XOR r64, r/Im64 Valid N.E. r64 XOR r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if an REX prefix is
used: AH, BH, CH, DH.

Description

Performs a bitwise exclusive OR (XOR) operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. (However, two memory operands cannot be used in one instruction.) Each bit
of the result is 1 if the corresponding bits of the operands are different; each bit is O if the corre-

sponding bits are the same.

4-370 Vol. 2B

XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

This instruction can be used with a LOCK prefix to allow the instruction to be executed atom-
ically.

In 64-bit mode, using an REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using an REX prefix in the form of REX.W promotes operation to 64 bits. See the
summary chart at the beginning of this section for encoding data and limits.

Operation
DEST « DEST XOR SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

XOR—Logical Exclusive OR Vol. 2B 4-371

INSTRUCTION SET REFERENCE, N-Z

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-canonical
form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

4-372 Vol. 2B XOR—Logical Exclusive OR

INSTRUCTION SET REFERENCE, N-Z

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

66 OF 57 /r XORPD xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.

Description

Performs a bitwise logical exclusive-OR of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first operand),
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] « DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPD . m128d _mm_xor_pd(__m128d a, __ m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Vol. 2B 4-373
Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#S5S(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-374 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

XORPD—Bitwise Logical XOR for Double-Precision Floating-Point
Values

INSTRUCTION SET REFERENCE, N-Z

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point
Values

64-Bit Compat/
Opcode Instruction Mode Leg Mode Description

OF 57 Ir XORPS xmm1, xmm2/m128 Valid Valid Bitwise exclusive-OR of
xmm2/m128 and xmm1.

Description

Performs a bitwise logical exclusive-OR of the four packed single-precision floating-point
values from the source operand (second operand) and the destination operand (first operand),
and stores the result in the destination operand. The source operand can be an XMM register or
a 128-bit memory location. The destination operand is an XMM register.

In 64-bit mode, using an REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

Operation
DEST[127:0] « DEST[127:0] BitwiseXOR SRC[127:0];

Intel C/C++ Compiler Intrinsic Equivalent
XORPS _ m128 _mm_xor_ps(__m128a, __m128b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or
GS segments.

If a memory operand is not aligned on a 16-byte boundary, regardless of

segment.
#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Vol. 2B 4-375
Values

INSTRUCTION SET REFERENCE, N-Z

Real-Address Mode Exceptions

#GP(0)

#NM
#UD

If a memory operand is not aligned on a 16-byte boundary, regardless of
segment.

If any part of the operand lies outside the effective address space from 0
to FFFFH.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions

Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#S5S(0)

#GP(0)

#PF(fault-code)
#NM
#UD

4-376 Vol. 2B

If a memory address referencing the SS segment is in a non-canonical
form.

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary, regardless of
segment.

For a page fault.

If CRO.TS[bit 3] = 1.

If CRO.EM[bit 2] = 1.

If CR4.OSFXSRIbit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.

XORPS—Bitwise Logical XOR for Single-Precision Floating-Point
Values

VMX Instruction
Reference title

5.1

CHAPTER 5
VMX INSTRUCTION REFERENCE

OVERVIEW

This chapter describes the 1A-32 instructions that support the virtual-machine extensions
(VMX). VMX is intended to support virtualization of processor hardware and a system software
layer acting as a host to multiple guest software environments. The virtual-machine extensions
(VMX) includes five instructions that manage the virtual-machine control structure (VMCS)
and five instruction that manage VMX operation. Additional details of VMX are described in
1A-32 Intel Architecture Software Developer’s Manual, Volume 3B.

The behavior of the VMCS-maintenance instructions is summarized below:

VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It
makes the referenced VMCS active and current, loading the current-VMCS pointer with
this operand and establishes the current VMCS based on the contents of VMCS-data area
in the referenced VMCS region. Because this makes the referenced VMCS active, a logical
processor may start maintaining on the processor some of the VMCS data for the VMCS.

VMPTRST — This instruction takes a single 64-bit destination operand that is in
memory. The current-VMCS pointer is stored into the destination operand.

VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The
instruction sets the launch state of the VMCS referenced by the operand to “clear”, renders
that VMCS inactive, and ensures that data for the VMCS have been written to the VMCS-
data area in the referenced VMCS region. If the operand is the same as the current-VMCS
pointer, that pointer is made invalid.

VMREAD — This instruction reads a component from the VMCS (the encoding of that
field is given in a register operand) and stores it into a destination operand that may be a
register or in memory.

VMWRITE — This instruction writes a component to the VMCS (the encoding of that
field is given in a register operand) from a source operand that may be a register or in
memory.

The behavior of the VMX management instructions is summarized below:

VMCALL — This instruction allows a guest in VMX non-root operation to call the
VMM for service. A VM exit occurs, transferring control to the VMM.

VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A
VM entry occurs, transferring control to the VM.

VMXOFF — This instruction causes the processor to leave VMX operation.

Vol. 2B 5-1

VMX INSTRUCTION REFERENCE

® VMXON — This instruction takes a single 64-bit source operand that is in memory. It
causes a logical processor to enter VMX root operation and to use the memory referenced
by the operand to support VMX operation.

Only VMCALL can be executed in compatibility mode (causing a VM exit). The other VMX
instructions generate invalid-opcode exceptions if executed in compatibility mode.

5.2 CONVENTIONS

The operation sections for the VMX instructions in Section 5.3 use the pseudo-function VMexit,
which indicates that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfaillnvalid, and
VMfailValid. These pseudo-functions signal instruction success or failure by setting or clearing
bits in RFLAGS and, in some cases, by writing the VM-instruction error field. The following
pseudocode fragments detail these functions:

VMsucceed:
CF « 0;
PF « 0O;
AF « 0;
ZF < 0;
SF « 0;
OF « 0;

VMfail(ErrorNumber):
IF VMCS pointer is valid
THEN VMfailValid(ErrorNumbery);
ELSE VMfaillnvalid;
Fl;

VMfaillnvalid:
CF«1;
PF < 0;
AF « 0;
ZF « 0;
SF « 0;
OF « 0;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF « 0;
PF « 0;
AF « 0;
ZF « 1;
SF « 0;
OF « 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Appendix J, “VM Instruction
Error Numbers,” in the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3B.

5-2 Vol. 2B

VMX INSTRUCTION REFERENCE

5.3 VMXINSTRUCTIONS

This section provides detailed descriptions of the VMX instructions.

Vol. 2B 5-3

VMX INSTRUCTION REFERENCE

VMCALL—Call to VM Monitor

Opcode Instruction Description
OF01C1 VMCALL Call to VM monitor by causing VM exit.
Description

This instruction allows guest software can make a call for service into an underlying VM
monitor. The details of the programming interface for such calls are VMM-specific; this instruc-
tion does nothing more than cause a VM exit, registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 24.16.2 in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3B). This invocation will acti-
vate the dual-monitor treatment of system-management interrupts (SMIs) and system-manage-
ment mode (SMM) if it is not already active (see Section 24.16.6 in 1A-32 Intel Architecture
Software Developer’s Manual, Volume 3B).

Operation

IF not in VMX operation
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIF in SMM or if the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear
THEN VMfail(VMCALL executed in VMX root operation);
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA =1 and CS.L = Q)
THEN #UD;
ELSIFCPL>0
THEN #GP(0);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 24.16.2
of the IA-32 Intel® Architecture Software Developer's Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);
ELSIF VM-exit control fields pertinent to saving state are not valid*
THEN VMfailValid(VMCALL with invalid VM-exit control fields);
ELSE
enter SMM,;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor
THEN

1. This includes the “save” VM-exit controls and the VM-exit MSR-store address and count fields.

5-4 Vol. 2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE

leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);
ELSE

read SMM-monitor features field, MSEG (see Section 24.16.6.2,
in the 1A-32 Intel® Architecture Software Developer’'s Manual, Volume 3B);

IF features field is invalid
THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the |1A-32 Intel® Architecture Software Developer’'s Manual, Volume 3B);

FI;
FI;
Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the logical processor is in VMX
root operation.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMCALL instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

VMCALL—Call to VM Monitor Vol. 2B 5-5

VMX INSTRUCTION REFERENCE

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.

5-6 Vol. 2B VMCALL—Call to VM Monitor

VMX INSTRUCTION REFERENCE

VMCLEAR—Clear Virtual-Machine Control Structure

Opcode Instruction Description
66 OF C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.
Description

This instruction applies to the VMCS whose VMCS region resides at the physical address
contained in the instruction operand. The instruction ensures that VMCS data for that VMCS
(some of these data may be currently maintained on the processor) are copied to the VMCS region
in memory. It also initializes parts of the VMCS region (for example, it sets the launch state of
that VMCS to clear). See Chapter 20, “Virtual-Machine Control Structures,” in the 1A-32 Intel®
Architecture Software Developer’s Manual, Volume 3B.

The operand of this instruction is always 64 bits and is always in memory. If the operand is the
current-VMCS pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the
data may be already resident in memory before the VMCLEAR is executed.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L = 0)

THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL>0
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
(processor supports Intel EM64T and
addr sets any bits beyond the physical-address width) OR
(processor does not support Intel EM64T and addr sets any bits in the range 63:32)
THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMCLEAR with VMXON pointer);
ELSE
ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand « “clear”
IF operand addr = current-VMCS pointer
THEN current-VMCS pointer « FFFFFFFF_FFFFFFFFH;
Fl;
VMsucceed;

VMCLEAR—Clear Virtual-Machine Control Structure Vol. 2B 5-7

VMX INSTRUCTION REFERENCE

Fl;
Fl,

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD.

REP* Reserved and may cause unpredictable behavior (applies to both
REPNE/REPNZ and REP/REPE/REPZ).

Segment overrides Treated normally

Operand size Ignored
Address size Treated normally
REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.
#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.
#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMCLEAR instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

5-8 Vol. 2B VMCLEAR—Clear Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.
If not in VMX operation.

VMCLEAR—Clear Virtual-Machine Control Structure Vol. 2B 5-9

VMX INSTRUCTION REFERENCE

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Opcode Instruction Description

OF01C2 VMLAUNCH Launch virtual machine managed by current VMCS.

OF01C3 VMRESUME Resume virtual machine managed by current VMCS.
Description

Effects a VM entry managed by the current VMCS.

® VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is
successful, it sets the launch state to “launched.”

* VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as
detailed in Chapter 22, “VM Entries,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 3B. Failure to pass checks on the VMX controls or on the host-state area passes
control to the instruction following the VMLAUNCH or VMRESUME instruction. If these pass
but checks on the guest-state area fail, the logical processor loads state from the host-state area
of the VMCS, passing control to the instruction referenced by the RIP field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither
VMLAUNCH nor VMRESUME should be used immediately after either MOV to SS or POP
to SS.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL>0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE
Check settings of VMX controls and host-state area;
IF invalid settings
THEN VMfailValid(VM entry with invalid VMX-control field(s)) or

5-10 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer)
or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;
ELSE

Attempt to load guest state and PDPTRs as appropriate;

clear address-range monitoring;

IF failure in checking guest state or PDPTRs

THEN VM entry fails (see Section 22.7, in the
1A-32 Intel® Architecture Software Developer’'s Manual, Volume 3B);

ELSE
Attempt to load MSRs from VM-entry MSR-load area;
IF failure
THEN VM entry fails (see Section 22.7, in the IA-32 Intel®
Architecture Software Developer's Manual, Volume 3B);
ELSE
IF VMLAUNCH
THEN launch state of VMCS « “launched”;
FI;
IF in SMM and “entry to SMM” VM-entry control is O
THEN
IF “deactivate dual-monitor treatment” VM-entry
controlis O
THEN SMM-transfer VMCS pointer «
current-VMCS pointer;
Fl;
IF executive-VMCS pointer is VMX pointer
THEN current-VMCS pointer «
VMCS-link pointer;
ELSE current-VMCS pointer «
executive-VMCS pointer;
Fl;
leave SMM;
Fl;
VM entry succeeds;
FI;

Fl,
Fl;
Fl;

Further details of the operation of the VM-entry appear in Chapter 22 of 1A-32 Intel Architecture
Software Developer’s Manual, Volume 3B.

VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine Vol. 2B 5-11

VMX INSTRUCTION REFERENCE

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Ignored

Operand size Causes #UD

Address size Ignored

REX Ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMLAUNCH and VMRESUME instructions are not recog-
nized outside VMX operation.

Virtual-8086 Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized in
virtual-8086 mode.

Compatibility Mode Exceptions

#UD The VMLAUNCH and VMRESUME instructions are not recognized in
compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If executed outside VMX operation.

5-12 Vol. 2B VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

VMX INSTRUCTION REFERENCE

VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OF C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.
Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction
operand. The instruction fails if its operand is not properly aligned, sets unsupported physical-
address bits, or is equal to the VIMXON pointer. In addition, the instruction fails if the 32 bits in
memory referenced by the operand do not match the VMCS revision identifier supported by this
processor.?

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL>0
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand,;
IF addr is not 4KB-aligned OR
(processor supports Intel EM64T and
addr sets any bits beyond the processor’s physical-address width) OR
processor does not support Intel EM64T and addr sets any bits in the range 63:32
THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMPTRLD with VMXON pointer);
ELSE
rev < 32 bits located at physical address addr;
IF rev # VMCS revision identifier supported by processor
THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE
current-VMCS pointer « addr;
VMsucceed;
Fl;
Fl;
Fl;

2. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier
supported by this processor (see Appendix G, “VMX Capability Reporting Facility,” in the 1A-32
Intel® Architecture Software Developer’s Manual, Volume 3B).

VMPTRLD—Load Pointer to Virtual-Machine Control Structure Vol. 2B 5-13

VMX INSTRUCTION REFERENCE

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes
LOCK Causes #UD
REPNE/REPNZ Causes #UD

REP/REPE/REPZ Changes encoding to that of VMXON; see “VMXON—Enter VMX Oper-
ation” for operation and interactions with other prefixes.

Segment overrides Treated normally

Operand size Changes encoding to that of VMCLEAR; see “VMCLEAR—Clear
Virtual-Machine Control Structure” for operation and interactions with
other prefixes.

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.
#SS(0) If the memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.
#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX oper-
ation and the VMPTRLD instruction is not recognized outside VMX
operation.

Virtual-8086 Mode Exceptions
#UD The VMPTRLD instruction is not recognized in virtual-8086 mode.

5-14 Vol. 2B VMPTRLD—Load Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Compatibility Mode Exceptions
#UD The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.
If not in VMX operation.

VMPTRLD—Load Pointer to Virtual-Machine Control Structure Vol. 2B 5-15

VMX INSTRUCTION REFERENCE

VMPTRST—Store Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OF C7 /7 VMPTRST Stores the current VMCS pointer into memory.
Description

Stores the current-VMCS pointer into a specified memory address. The operand of this instruc-
tion is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA = 1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL>0
THEN #GP(0);
ELSE
64-bit in-memory destination operand « current-VMCS pointer;
VMsucceed;
Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

5-16 Vol. 2B VMPTRST—Store Pointer to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.
If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMPTRST instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the destination operand is in the CS, DS, ES, FS, or GS segments and
the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the destination operand is in the SS segment and the memory address is
in a non-canonical form.

#UD If operand is a register.
If not in VMX operation.

VMPTRST—Store Pointer to Virtual-Machine Control Structure Vol. 2B 5-17

VMX INSTRUCTION REFERENCE

VMREAD—Read Field from Virtual-Machine Control Structure

Opcode Instruction Description

OF 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

OF 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
Description

Reads a specified field from the VMCS and stores it into a specified destination operand
(register or memory).

The specific VMCS field is identified by the VMCS-field encoding contained in the register
source operand. Outside 1A-32e mode, the source operand has 32 bits, regardless of the value of
CS.D. In 64-bit mode, the source operand has 64 bits; however, if bits 63:32 of the source
operand are not zero, VMREAD will fail due to an attempt to access an unsupported VMCS
component (see operation section).

The effective size of the primary source operand, which may be a register or in memory, is
always 32 bits outside 1A-32e mode (the setting of CS.D is ignored with respect to operand size)
and 64 bits in 64-bit mode. If the VMCS field specified by the secondary source operand is
shorter than this effective operand size, the high bits of the primary source operand are ignored.
If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory destination operand can occur only after
determining, in the operation section below, that the VMCS pointer is valid and that the speci-
fied VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L =0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF register source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE
DEST « contents of VMCS field indexed by register source operand;
VMsucceed;
FI;

5-18 Vol. 2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory destination operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any
code segment.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.
#SS(0) If a memory destination operand effective address is outside the SS
segment limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMREAD instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMREAD instruction is not recognized in compatibility mode.

VMREAD—Read Field from Virtual-Machine Control Structure Vol. 2B 5-19

VMX INSTRUCTION REFERENCE

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory destination operand is in the CS, DS, ES, FS, or GS
segments and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory destination operand.

#SS(0) If the memory destination operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

5-20 Vol. 2B VMREAD—Read Field from Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.

VMRESUME—Resume Virtual Machine Vol. 2B 5-21

VMX INSTRUCTION REFERENCE

VMWRITE—Write Field to Virtual-Machine Control Structure

Opcode Instruction Description

OF 79 VMWRITE r64, r/m64 Writes.a specified VMCS field (in 64-bit mode)

OF 79 VMWRITE r32, r/m32 Writes.a specified VMCS field (outside 64-bit mode)
Description

Writes to a specified field in the VMCS specified by a secondary source operand (register only)
using the contents of a primary source operand (register or memory).

The VMCS field is identified by the VMCS-field encoding contained in the register secondary
source operand. Outside A-32e mode, the secondary source operand is always 32 bits, regard-
less of the value of CS.D. In 64-bit mode, the secondary source operand has 64 bits; however,
if bits 63:32 of the secondary source operand are not zero, VMWRITE will fail due to an attempt
to access an unsupported VMCS component (see operation section).

The effective size of the primary source operand, which may be a register or in memory, is
always 32 bits outside 1A-32e mode (the setting of CS.D is ignored with respect to operand size)
and 64 bits in 64-bit mode. If the VMCS field specified by the secondary source operand is
shorter than this effective operand size, the high bits of the primary source operand are ignored.
If the VMCS field is longer, then the high bits of the field are cleared to 0.

Note that any faults resulting from accessing a memory source operand occur after determining,
in the operation section below, that the VMCS pointer is valid but before determining if the
destination VMCS field is supported.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL>0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF register destination operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by register destination operand is read-only)
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE
VMCS field indexed by register destination operand «— SRC;
VMsucceed:;
Fl;

5-22 Vol. 2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Treated normally

Operand size Causes #UD

Address size Treated normally

REX Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If a memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS segment
limit.

If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMWRITE instruction is not recognized outside VMX oper-
ation.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.

VMWRITE—Write Field to Virtual-Machine Control Structure Vol. 2B 5-23

VMX INSTRUCTION REFERENCE

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the memory source operand is in the CS, DS, ES, FS, or GS segments
and the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the memory
address is in a non-canonical form.

#UD If not in VMX operation.

5-24 Vol. 2B VMWRITE—Write Field to Virtual-Machine Control Structure

VMX INSTRUCTION REFERENCE

VMXOFF—Leave VMX Operation

Opcode Instruction Description
OF01C4 VMXOFF Leaves VMX operation.
Description

Takes the logical processor out of VMX operation, unblocks INIT signals, re-enables A20M,
and clears any address-range monitoring.

Operation

IF (not in VMX operation) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L =0)
THEN #UD;

ELSIF in VMX non-root operation
THEN VMexit;

ELSIFCPL>0
THEN #GP(0);

ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMIs and SMM);
ELSE

leave VMX operation;
unblock INIT;
unblock and enable A20M;
clear address-range monitoring;
VMsucceed;

Fl;

Flags Affected
See the operation section and Section 5.2.

Use of Prefixes

LOCK Causes #UD

REP* Cause #UD (includes REPNE/REPNZ and REP/REPE/REPZ)
Segment overrides Ignored

Operand size Causes #UD

3. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Manage-
ment,” of the 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3A.

VMXOFF—Leave VMX Operation Vol. 2B 5-25

VMX INSTRUCTION REFERENCE

Address size Ignored
REX Ignored

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions

#UD A logical processor cannot be in real-address mode while in VMX opera-
tion and the VMXOFF instruction is not recognized outside VMX opera-
tion.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

5-26 Vol. 2B VMXOFF—Leave VMX Operation

VMX INSTRUCTION REFERENCE

VMXON—Enter VMX Operation

Opcode Instruction Description
OF OFC7 /6 VMXON m64 Enter VMX root operation.
Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals,
disagles A20M, and clears any address-range monitoring established by the MONITOR instruc-
tion.

The operand of this instruction is a 4KB-aligned physical address (the VMXON pointer) that
references the VMXON region, which the logical processor may use to support VIMX operation.
This operand is always 64 bits and is always in memory.

Operation
IF (register operand) or (CR4.VMXE = 0) or (CRO.PE = 0) or (RFLAGS.VM = 1) or
(IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF not in VMX operation
THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CRO and CR4 are supported in VMX operation®) or
(bit O (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(bit 2 of IA32_FEATURE_CONTROL MSR is clear)
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
(processor supports Intel EM64T and
addr sets any bits beyond the VMX physical-address width) or
(processor does not support Intel EM64T and
addr sets any bits in the range 63:32)
THEN VMfaillnvalid;
ELSE
rev < 32 hits located at physical address addr;
IF rev = VMCS revision identifier supported by processor
THEN VMfaillnvalid;
ELSE
current-VMCS pointer « FFFFFFFF_FFFFFFFFH;

4. See the information on MONITOR/MWAIT in Chapter 7, “Multiple-Processor Management,” of the IA-32
Intel® Architecture Software Developer’s Manual, Volume 3A.

5. See Section 19.8 of the 1A-32 Intel® Architecture Software Developer’'s Manual, Volume 3B.

VMXON—Enter VMX Operation Vol. 2B 5-27

VMX INSTRUCTION REFERENCE

Fl;
Fl;

enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
VMsucceed;
FI;

ELSIF in VMX non-root operation

THEN VMexit;
ELSIFCPL>0
THEN #GP(0);

ELSE VMfail(“"VMXON executed in VMX root operation”);

Fl;

Flags Affected

See the operation section and Section 5.2.

Use of Prefixes
LOCK

REP*

Segment overrides
Operand size
Address size

REX

Causes #UD

Ignored (includes REPNE/REPNZ and REP/REPE/REPZ)
Treated normally

Ignored

Treated normally

Register extensions treated normally; operand-size overrides ignored

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

5-28 Vol. 2B

If executed outside VMX operation with CPL>0 or with invalid CRO or
CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

If a page fault occurs in accessing the memory source operand.

IIf the memory source operand effective address is outside the SS segment
imit.

If the SS register contains an unusable segment.

VMXON—Enter VMX Operation

VMX INSTRUCTION REFERENCE

#UD If operand is a register.
If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions

#UD The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0) If executed outside VMX operation with CPL > 0 or with invalid CRO or
CR4 fixed bits.

If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments and the
memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory source operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a
non-canonical form.

#UD If operand is a register.
If executed with CR4.VMXE = 0.

VMXON—Enter VMX Operation Vol. 2B 5-29

VMX INSTRUCTION REFERENCE

5-30 Vol. 2B VMXON—Enter VMX Operation

A

Opcode Map

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret A-32 architecture object code. Instructions are
divided into encoding groups:

o 1l-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX
technology, SSE/SSE2/SSE3, and VMX instructions. Maps for these instructions are given
in Table A-2 through Table A-6.

e [Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for
floating-point instructions. The maps for these instructions are provided in Table A-7
through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not depend
on the operation of undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, op-
code extensions in associated ModR/M byte). Blank cells in the tables indicate opcodes that are
reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode
byte. For 1-byte encodings (Table A-2), use the four high-order bits of an opcode to index a row
of the opcode table; use the four low-order bits to index a column of the table. For 2-byte op-
codes beginning with OFH (Table A-3), skip any instruction prefixes, the OFH byte (OFH may
be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values of the next opcode
byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with OF38H or
OF3AH (Table A-4), skip any instruction prefixes, 0F38H or OF3AH and use the upper and low-
er 4-bit values of the third opcode byte to index table rows and columns. See Section A.2.4, “Op-
code Look-up Examples for One, Two, and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution.
For information on how an opcode extension in the ModR/M byte modifies the opcode map in
Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits
of opcodes at the top of each page. See Section A.5. If the accompanying ModR/M byte is in the
range of 00H-BFH, bits 3-5 (the top row of the third table on each page) along with the reg bits
of ModR/M determine the opcode. ModR/M bytes outside the range of 00H-BFH are mapped
by the bottom two tables on each page of the section.

Vol. 2B A-1

OPCODE MAP

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase
letter, specifies the addressing method; the second character, a lowercase letter, specifies the
type of operand.

A21

Codes for Addressing Method

The following abbreviations are used to document addressing methods:

A

Direct address: the instruction has no ModR/M byte; the address of the operand is en-
coded in the instruction. No base register, index register, or scaling factor can be ap-
plied (for example, far JIMP (EA)).

The reg field of the ModR/M byte selects a control register (for example, MOV (0F20,
0F22)).

The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

A ModR/M byte follows the opcode and specifies the operand. The operand is either a
general-purpose register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, a displacement.

EFLAGS/RFLAGS Register.
The reg field of the ModR/M byte selects a general register (for example, AX (000)).
Immediate data: the operand value is encoded in subsequent bytes of the instruction.

The instruction contains a relative offset to be added to the instruction pointer register
(for example, JMP (OE9), LOOP).

The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS,
LFS, LGS, CMPXCHGS8B).

The R/M field of the ModR/M byte selects a packed-quadword, MMX technology reg-
ister.

The instruction has no ModR/M byte. The offset of the operand is coded as a word or
double word (depending on address size attribute) in the instruction. No base register,
index register, or scaling factor can be applied (for example, MOV (A0-A3)).

The reg field of the ModR/M byte selects a packed quadword MMX technology register.

A ModR/M byte follows the opcode and specifies the operand. The operand is either
an MMX technology register or a memory address. If it is a memory address, the ad-
dress is computed from a segment register and any of the following values: a base reg-
ister, an index register, a scaling factor, and a displacement.

The R/M field of the ModR/M byte may refer only to a general register (for example,
MOV (0F20-0F23)).

A-2 Vol. 2B

OPCODE MAP

S The reg field of the ModR/M byte selects a segment register (for example, MOV
(8C,8E)).

U The R/M field of the ModR/M byte selects a 128-bit XMM register.

\% The reg field of the ModR/M byte selects a 128-bit XMM register.

W A ModR/M byte follows the opcode and specifies the operand. The operand is either a
128-bit XMM register or a memory address. If it is a memory address, the address is
computed from a segment register and any of the following values: a base register, an
index register, a scaling factor, and a displacement.

X Memory addressed by the DS:rSl register pair (for example, MOVS, CMPS, OUTS, or
LODS).
Y Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS,

STOS, or SCAS).

A.2.2 Codes for Operand Type

The following abbreviations are used to document operand types:

a Two one-word operands in memory or two double-word operands in memory, depend-
ing on operand-size attribute (used only by the BOUND instruction).

b Byte, regardless of operand-size attribute.

c Byte or word, depending on operand-size attribute.

d Doubleword, regardless of operand-size attribute.

dq Double-quadword, regardless of operand-size attribute.

p 32-bit or 48-bit pointer, depending on operand-size attribute.

pi Quadword MMX technology register (for example: mmo0).

ps 128-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

S 6-byte or 10-byte pseudo-descriptor.

SS Scalar element of a 128-bit packed single-precision floating data.

Si Doubleword integer register (for example: eax).

% Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.

w Word, regardless of operand-size attribute.

z Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

Vol. 2B A-3

OPCODE MAP

A.2.3 Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for
example, AX, CL, or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the oper-
and-size attribute. eXX is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32,
or 64-bit sizes are possible. For example: eAX indicates that the AX register is used when the
operand-size attribute is 16 and the EAX register is used when the operand-size attribute is 32.
rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this
fact is indicated by adding “/x” to the register name to indicate the additional possibility. For
example, rCX/r9 is used to indicate that the register could either be rCX or r9. Note that the size
of r9 in this case is determined by the operand size attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes
is arranged by row (the least-significant 4 bits of the hexadecimal value) and column (the most-
significant 4 bits of the hexadecimal value). Each entry in the table lists one of the following
types of opcodes:

e Instruction mnemonics and operand types using the notations listed in Section A.2
o Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting
the byte following the primary opcode fall into one of the following cases:

e A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. Operand types are listed according to notations
listed in Section A.2.

e A ModR/M byte is required and includes an opcode extension in the reg field in the
ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

o Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction prefix or entries for instructions without operands that use ModR/M (for
example: 60H, PUSHA; 06H, PUSH ES).

A-4 Vol. 2B

OPCODE MAP

Example A-1. Look-up Example for 1-Byte Opcodes

Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map
(Table A-2) as follows:

e The first digit (0) of the opcode indicates the table row and the second digit (3) indicates
the table column. This locates an opcode for ADD with two operands.

e The first operand (type Gv) indicates a general register that is a word or doubleword
depending on the operand-size attribute. The second operand (type Ev) indicates a
ModR/M byte follows that specifies whether the operand is a word or doubleword general-
purpose register or a memory address.

e The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows
(00000000H). The reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the
EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table).
Group numbers indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an
opcode extension (refer to Section A.4).

A.2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two
bytes or three bytes in length. Primary opcodes that are 2 bytes in length begin with an escape
opcode OFH. The upper and lower four bits of the second opcode byte are used to index a par-
ticular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H)
and the escape opcode (OFH). The upper and lower four bits of the third byte are used to index
a particular row and column in Table A-3 (except when the second opcode byte is the 3-byte
escape opcodes 38H or 3AH; in this situation refer to Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary op-
code fall into one of the following cases:

e A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the 1A-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. The operand types are listed according to
notations listed in Section A.2.

e A ModR/M byte is required and includes an opcode extension in the reg field in the
ModR/M byte. Use Table A-6 when interpreting the ModR/M byte.

o Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an
instruction without operands that are encoded using ModR/M (for example: OF77H,
EMMS).

Vol. 2B A-5

OPCODE MAP

Example A-2. Look-up Example for 2-Byte Opcodes
Look-up opcode 0FA4050000000003H for a SHLD instruction using Table A-3.

e Theopcode is located in row A, column 4. The location indicates a SHLD instruction with
operands Ev, Gv, and Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.
— Gv: The reg field of the ModR/M byte selects a general-purpose register.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

e The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M
indicate that a 32-bit displacement is used to locate the first operand in memory and eAX
as the second operand.

e The next part of the opcode is the 32-bit displacement for the destination memory operand
(00000000H). The last byte stores immediate byte that provides the count of the shift
(03H).

e By this breakdown, it has been shown that this opcode represents the instruction: SHLD
DS:00000000H, EAX, 3.

A.2.4.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that
are either 3 or 4 bytes in length. Primary opcodes that are 3 bytes in length begin with two escape
bytes OF38H or OF3A. The upper and lower four bits of the third opcode byte are used to index
a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H)
and two escape bytes (OF38H or OF3AH). The upper and lower four bits of the fourth byte are
used to index a particular row and column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary op-
code fall into the following case:

e A ModR/M byte is required and is interpreted according to the abbreviations listed in
Section A.1 and Chapter 2, “Instruction Format,” of the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 2A. The operand types are listed according to
notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes
Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

e 66H is a prefix and OF3AH indicate to use Table A-5. The opcode is located in row 0,
column F indicating a PALIGNR instruction with operands VVdq, Wdg, and 1b. Interpret the
operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.

A-6 Vol. 2B

OPCODE MAP

— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or
memory location.

— Ib: Immediate data is encoded in the subsequent byte of the instruction.

e The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is
XMMO. The mod shows that the R/M field specifies a register and the R/M indicates that
the second operand is XMML1.

e The last byte is the immediate byte (08H).

e By this breakdown, it has been shown that this opcode represents the instruction:
PALIGNR XMMO0, XMM1, 8.

A.2.5 Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following op-
code maps by superscripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript Meaning of Symbol

Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4,
“Opcode Extensions For One-Byte And Two-byte Opcodes”).

1B Use the OFOB opcode (UD2 instruction) or the OFB9H opcode when deliberately
trying to generate an invalid opcode exception (#UD).

1C Some instructions added in the Pentium Ill processor may use the same two-byte
opcode. If the instruction has variations, or the opcode represents different
instructions, the ModR/M byte will be used to differentiate the instruction. For the
value of the ModR/M byte needed to decode the instruction, see Table A-6.

These instructions include SFENCE, STMXCSR, LDMXCSR, FXRSTOR, and
FXSAVE, as well as PREFETCH and its variations.

64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte
INC and DEC) are REX prefix combinations when in 64-bit mode (use FE/FF Grp 4
and 5 for INC and DEC).

064 Instruction is only available when in 64-bit mode.

de4 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode
32-bit operand size.

f64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes
that change operand size are ignored for this instruction in 64-bit mode).

Vol. 2B A-7

OPCODE MAP

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and
columns with sequential relationships are placed on facing pages to make look-up tasks easier.
Note that table footnotes are not presented on each page. Table footnotes for each table are pre-
sented on the last page of the table.

A-8 Vol. 2B

OPCODE MAP

Table A-2. One-byte Opcode Map: (00H — F7H) *

0 | 1 | 2 | 3 | 4 | 5 6 7
ADD PUSH POP
ES|64 ES|64
Eb, Gb ‘ Ev, Gv ‘ Gb, Eb ‘ Gv, Ev ’ AL, Ib ‘ rAX, Iz
ADC PUSH POP
| |
Eb, Gb | EV, Gv | Gb, Eb | Gv, Ev | AL, b | TAX, Iz Ss Ss
AND SEG=ES DAAIG4
Ebcb | EvGv | obEb | ovEv | ALb | Xz (Prefix)
XOR SEG=SS AAATB4
EbGb | Evev | oebeb | evuev | aLb | mx (Prefix)
INC'64 general register / REX%* prefixes
eAX eCX eDX eBX eSP eBP eS| eDI
REX REX.B REX.X REX.XB REX.R REX.RB REX.RX REX.RXB
PUSHU64 general register
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/r14 rDI/r15
PUSHA®Y | poPAi®4/ BOUND®4 ARPLI%4 SEG=FS SEG=GS Operand Address
PUSHAD®4 | POPAD®4 Gv, Ma Ew, Gw (Prefix) (Prefix) Size Size
MOvsxDpP84 (Prefix) (Prefix)
Gy, Ev
Jcc™®, Jb - Short-displacement jump on condition
o NO | BINAE/C | NB/AE/NC ZIE | NZ/NE BE/NA | NBE/A
Immediate Grp 1*A TEST XCHG
Eb, Ib Ev, Iz | Eb, Ib'64 | Ev, Ib Eb, Gb | Ev, Gv Eb, Gb | Ev, Gv
NOP XCHG word, double-word or quad-word register with rAX
PAUSE(FS) CXIr9 DX/r10 BX/r1l SP/r12 BP/r13 Slir14 DI/r15
XCHG f8, FAX r T ‘ Il T ‘ Il r I r. Il r r T Il r.
MOV MOVS/B [MOVS/W/DIQ| CMPS/B CMPS/W/D
AL, Ob | rAX, Ov | Ob, AL | ov, rAX Xb, Yb XV, Y Xb, Yb xv. Y
MOV immediate byte into byte register
AL/RSL, Ib | CL/RIL, Ib | DL/RIOL, Ib | BL/RIIL, Ib | AH/RI2L, Ib | CH/RI3L, Ib | DH/R14L, Ib | BH/RI5L, Ib
Shift Grp 21A RETN4 RETN4 LES®4 LDS'®4 Grp 11!A - MOV
Eblb | Evib Iw Gz, Mp Gz, Mp Eb, Ib Ev, Iz
Shift Grp 24 AAMIB4 AADI®4 XLAT/
Eb, 1 Ev, 1 Eb, CL Ev, CL b Ib XLATE
LOOPNEZ‘:/ LoopEff‘;i/ Loopf4 Jrcxz4 IN ouT
LOGPNZ LOOPZ b Jb AL, Ib eAX, Ib Ib, AL Ib, eAX
Jb Jb
LOCK REPNE REP/ HLT CcMC Unary Grp 34
(Prefix) (Prefix) REPE
(Prefix) ED B

Vol. 2B A-9

OPCODE MAP

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 | 9 | A | B | c | D E F
0 OR PUSH 2-byte
Eb, Gb ‘ Ev, Gv ’ Gb, Eb ’ Gv, Ev ‘ AL, Ib ’ TAX, Iz cs (Tiiffpi.:.;)
1 SBB PUSH POP
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, b | rAX, Iz bs' DS’
2 suB SEG=CS DAS'®4
Ebcb | Evoy | GbEb | ovEv | ALb | mxkz (Prefix)
3 CcMP SEG=DS AASE4
EbGb | Evey | ebEp | evev | aLb | maxe (Prefix)
4 DEC%4 general register / REX°%4 Prefixes
eAX eCX eDX eBX eSP eBP eS| eDI
REX.W REX.WB REX.WX REX.WXB REX.WR REXWRB | REXWRX | REX.WRXB
5 POPY%4 jnto general register
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/ri4 rDI/r15
6 PUSH64 IMUL pUSHI64 IMUL INS/ INS/ ouTS/ ouTS/
1z Gv, Ev, Iz Ib Gv, Ev, Ib INSB INSW/ OUTSB oUTSW/
Yb, DX INSD DX, Xb OUTSD
Yz, DX DX, Xz
7 Jcc™®, Jb- Short displacement jump on condition
S NS PIPE NP/PO L/NGE NL/GE LE/NG NLE/G
8 MOV MOV LEA MOV Grp 1A
Eb. Gb Ev. Gv Gb, Eb v, Ev Ev, Sw Gv, M Sw, Ew popd%4 Ey
9 cBW/ CcwWD/ CALLF%4 FWAIT/ PUSHF/D/Q | POPF/DIQ SAHF LAHF
CWDE/ cDQ/ Ap WAIT 64, 64,
CDQE CQO Fv Fv
A TEST STOS/B | STOS/W/D/Q| LODS/B |LODS/MW/D/Q| SCAS/B |SCAS/W/D/Q
AL Ib (AX, Iz Yb, AL Yv, rAX AL, Xb rAX, Xv AL, Yb rAX, Xv
B MOV immediate word or double into word, double, or quad register
rAX/r8, Iv rCX/r9, lv rDX/r10, v rBX/r11, v rSP/r12, Iv rBP/r13, Iv rSl/rl4, lv DIfr15, Iv
[¢ ENTER LEAVEY4 RETF RETF INT 3 INT INTO'64 IRET/DIQ
Iw, Ib Iw Ib
D ESC (Escape to coprocessor instruction set)
E CALL™4 IJMP IN ouT
Jz nearf®4 far'®4 shortf®4 AL, DX eAX, DX DX, AL DX, eAX
Jz AP Jb
F cLC sSTC cLI STI CLD STD INC/DEC INC/DEC
Grp 414 Grp 514

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-10 Vol. 2B

OPCODE MAP

Table A-3. Two-byte Opcode Map: O0OH — 77H (First Byte is OFH) *

0 1 2 3 4 5 6 7
Grp 614 Grp 71A LAR LSL SYSCALL%%4 CLTS SYSRET%4
Gy, Ew Gv, Ew
movups movups movips movips unpcklps unpckhps movhps movhps
Vps, Wps Wps, Vps Vqg, Mg Mg, Vg Vps, Wq Vps, Wq Vqg, Mg Mq, Vg
movss (F3) movss (F3) movlipd (66) movlpd (66) | unpcklpd (66) | unpckhpd (66) | movhpd (66) | movhpd(66)
Vss, Wss Wss, Vss Va, Mg Ma, Vq Vpd, Wq Vpd, Wq Vqg, Mg Mg, Vg
movupd (66) | movupd (66) movhlps movlhps
Vpd, Wpd Wpd, Vpd Vg, Ug Va, Ug
movsd (F2) movsd (F2) | movddup(F2) movshdup(F3)
Vsd, Wsd Vsd, Wsd Vg, Wq Vag, Wq
movsldup(F3)
Vg, Wg
MOV MOV MOV MOV
Rd, Cd Rd, Dd Cd, Rd Dd, Rd
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT

CMOVcc, (Gv, Ev) - Conditional Move

(e} NO B/C/INAE AE/NB/NC E/z NE/NZ BE/NA AINBE
movmskps sqrtps rsqrtps rcpps andps andnps orps Xorps
Gd, Ups Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps Vps, Wps
movmskpd sqrtss (F3) rsqrtss (F3) rcpss (F3) andpd (66) andnpd (66) orpd (66) xorpd (66)
(66) Vss, Wss Vss, Wss Vss, Wss Vpd, Wpd Vpd, Wpd Vpd, Wpd Vpd, Wpd
Gd, Upd sqgrtpd (66)
Vpd, Wpd
sqrtsd (F2)
Vsd, Wsd
punpcklbw punpcklwd punpckldq packsswb pcmpgtb pcmpgtw pcmpgtd packuswb
Pg, Qd Pg, Qd Pg, Qd Pg, Qq Pg, Qq Pg, Qq Pg, Qq Pg, Qq
punpcklbw punpckiwd | punpckldq (66) | packsswb (66) | pcmpgtb (66) | pcmpgtw (66) | pcmpgtd (66) | packuswb (66)
(66) (66) Vdg, Wdq Vdg, Wdq Vdg, Wdq Vdg, Wdq Vdg, Wdq Vdg, Wdq
Vdqg, Wdq Vdqg, Wdq
pshufw (Grp 1214 (Grp 1314 (Grp 1414 pcmpeqgb pcmpeqw pcmpeqd emms
Pa, Qq, Ib Pg, Qq Pg, Qq Pg, Qq
pshufd (66) pcmpeqb (66) | pcmpeqw (66) | pcmpeqd (66)
Vdq,wdg,lb Vdg, Wdq Vdg, Wdq Vdg, Wdq
pshufhw(F3)
Vdg,Wdg,lb
pshuflw (F2)
Vdq Wdg,lb

Vol. 2B A-11

OPCODE MAP

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is OFH) *

8 9 A B C D E | F
0 INVD WBINVD 2-byte lllegal NOP Ev
Opcodes
uD2!8
1 Prefetch'C NOP Ev
(Grp 161
2 movaps movaps cvipi2ps movntps cvttps2pi cvtps2pi ucomiss comiss
Vps, Wps Wps, Vps Vps, Qq Mps, Vps Qq, Wps Qq, Wps Vss, Wss Vps, Wps
movapd (66) | movapd (66) | cvtsi2ss (F3) | movntpd (66) | cvttss2si (F3) | cvtss2si (F3) | ucomisd (66) comisd (66)
Vpd, Wpd Wpd, Vpd Vss, Ed/q Mpd, Vpd Gd, Wss Gd/q, Wss Vsd, Wsd Vsd, Wsd
cvtpi2pd (66) cvttpd2pi (66) | cvtpd2pi (66)
Vpd, Qq Qdg, Wpd Qdq, Wpd
cvtsi2sd (F2) cvttsd2si (F2) | cvtsd2si (F2)
Vsd, Ed/q Gd, Wsd Gd/g, Wsd
3 | 3-byte escape 3-byte escape
(Table A-4) (Table A-5)
4 CMOVcc(Gy, Ev) - Conditional Move
S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
5 addps mulps cvtps2pd cvtdg2ps subps minps divps maxps
Vps, Wps Vps, Wps Vpd, Wps Vps, Wdq Vps, Wps Vps, Wps Vps, Wps Vps, Wps
addss (F3) mulss (F3) | cvtss2sd (F3) | cvtps2dq (66) | subss (F3) minss (F3) divss (F3) maxss (F3)
Vss, Wss Vss, Wss Vss, Wss Vdqg, Wps Vss, Wss Vss, Wss Vss, Wss Vss, Wss
addpd (66) mulpd (66) cvtpd2ps (66) | cvttps2dqg (F3) | subpd (66) minpd (66) divpd (66) maxpd (66)
Vpd, Wpd Vpd, Wpd Vps, Wpd Vdq, Wps Vpd, Wpd Vpd, Wpd Vpd, Wpd Vpd, Wpd
addsd (F2) mulsd (F2) cvtsd2ss (F2) subsd (F2) minsd (F2) divsd (F2) maxsd (F2)
Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd Vsd, Wsd
6 punpckhbw punpckhwd punpckhdq packssdw punpcklqdg | punpckhqgdq movd/qg/ movq
Pq, Qd Pq, Qd Pq, Qd Pq, Qd (66) (66) Pd, Ed/q Pg, Qq
punpckhbw punpckhwd punpckhdg | packssdw (66) [Vdg, Wdq Vdq, Wdq movd/q (66) movdga (66)
(66) (66) (66) Pdq, Qdq Vdgq, Ed/q Vdg, Wdq
Pdq, Qdq Pdqg, Qdq Pdq, Qdq movdqu (F3)
Vdaq, Wdq
7 VMREAD VMWRITE haddps(F2) hsubps(F2) movd/q movq
Ed/q, Gd/q Gd/q, Ed/q Vps, Wps Vps, Wps Ed/q, Pd Qq, Pq
haddpd(66) hsubpd(66) movd/q (66) movdga (66)
Vpd, Wpd Vpd, Wpd Ed/q, Vdq Wdg, Vdq
movq (F3) movdqu (F3)
Vqg, Wq Wdgq, Vdq

A-12 Vol. 2B

OPCODE MAP

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is OFH) *

0 | 1 2 | 3 | 4 | 5 | 6 7
Jec™®4, Jz - Long-displacement jump on condition
o | NO BICNAE | AENBINC | Bz | nNemz | BENA AINBE
SETcc, Eb - Byte Set on condition
[e] NO B/C/INAE AE/NB/NC E/lz NE/NZ BE/NA AINBE
PUSHY64 popde4 CPUID BT SHLD SHLD
FS FS Ev, Gv Ev, Gv, Ib Ev, Gy, CL
CMPXCHG LSS BTR LFS LGS MOVZX
Eb, Gb Ev, Gv Gv. Mp Bv, Gv Gv. Mp Gv. Mp Gv, Eb Gv, Ew
XADD XADD cmpps movnti pinsrw pextrw shufps Grp 9'A
Eb, Gb Ev, Gv Vps, Wps, Ib Md/q, Gd/q Pq, Ew, Ib Gd, Ng, Ib Vps, Wps, |b
cmpss (F3) pinsrw (66) pextrw (66) shufpd (66)
Vss, Wss, Ib Vdqg, Ew, Ib Gd, Udgq, Ib Vpd, Wpd, Ib
cmppd (66)
Vpd, Wpd, Ib
cmpsd (F2)
Vsd, Wsd, Ib
addsubps(F2) psriw psrid psriq paddq pmullw movq (66) pmovmskb
Vps, Wps Pg, Qq Pg, Qq Pg, Qq Pqg, Qq Pg, Qq Wg, Vg Gd, Nq
addsubpd(66) psriw (66) psrld (66) psrlq (66) paddq (66) pmullw (66) | movg2dq (F3) |pmovmksb (66)
Vpd, Wpd Vdg, Wdq Vdg, Wdq Vdq, Wdq Vdq, Wdq Vdq, Wdq Vdg, Ng Gd, Udg
movdg2q (F2)
Pg, Uq
pavgb psraw psrad pavgw pmulhuw pmulhw cvtpd2dq (F2) movntq
Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pg, Qq Vda, Wpd Mq, Pq
pavgb (66) psraw (66) psrad (66) pavgw (66) pmulhuw (66) | pmulhw (66) | cvitpd2dq (66) | movntdq (66)
Vdq, Wdg Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdq, Wpd Mdq, Vdq
cvtdg2pd (F3)
Vpd, Wdq
Iddqu (F2) psliw pslid pslig pmuludg pmaddwd psadbw maskmovq
Vdg, Mdq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pg, Qq Pg, Nq
psliw (66) pslid (66) pslig (66) pmuludq (66) | pmaddwd (66) | psadbw (66) | maskmovdqu
Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdq, Wdq (66)
Vdq, Udq

Vol. 2B A-13

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is OFH) *

8 | 9 | A | B | C | D | E F
8 Jcc®4, Jz - Long-displacement jump on condition
s | ns | PPE | NePO | UNGE | NUGE | LEWG NLE/G
9 SETcc, Eb - Byte Set on condition
S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
A PUSHY64 popdt4 RSM BTS SHRD SHRD (Grp 151A4)1€ IMUL
GS GS Ev, Gv Ev, Gy, Ib Ev, Gy, CL Gy, Ev
B Grp 104 Grp 8'A BTC BSF BSR MOVSX
Invalid Ev, Ib Ev, Gv Gy, Ev Gy, Ev
Opcode® Gv, Eb Gv, Ew
C BSWAP
RAX/EAX/ RCX/ECX/ RDX/EDX/ RBX/EBX/ RSP/ESP/ RBP/EBP/ RSI/ESI/ RDI/EDI/
R8/R8D R9/R9D R10/R10D R11/R11D R12/R12D R13/R13D R14/R14D R15/R15D
D psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
Pqg, Qq Pg, Qq Pg, Qq Pg, Qq Pqg, Qq Pqg, Qq Pqg, Qq Pg, Qq
psubusb (66) | psubusw (66) | pminub (66) pand (66) paddusb (66) | paddusw (66) | pmaxub (66) pandn (66)
Vdg, Wdq Vdq, Wdq Vdg, Wdq Vdq, Wdq Vdg, Wdq Vdg, Wdq Vdq, Wdq Vdg, Wdq
E psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
Pqg, Qq Pg, Qq Pqg, Qq Pg, Qq Pqg, Qq Pg, Qq Pqg, Qq Pg, Qq
psubsb (66) psubsw (66) pminsw (66) por (66) paddsb (66) paddsw (66) | pmaxsw (66) pxor (66)
Vdqg, Wdq Vdqg, Wdq Vdq, Wdq Vdqg, Wdq Vdqg, Wdq Vdg, Wdq Vdq, Wdg Vdg, Wdq
F psubb psubw psubd psubqg paddb paddw paddd
Pg, Qq Pq, Qq Pg, Qq Pg, Qq Pg, Qq Pg, Qq Pg, Qq
psubb (66) psubw (66) psubd (66) psubq (66) paddb (66) paddw (66) paddd (66)
Vdqg, Wdg Vdq, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdqg, Wdq Vdq, Wdg
NOTES:

*

undefined or reserved locations.

A-14 Vol. 2B

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

OPCODE MAP

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *
0 1 2 3 4 5 6 7
0 pshufb phaddw phaddd phaddsw pmaddubsw phsubw phsubd phsubsw
Pqg, Qq Pg, Qq Pg, Qq Pg, Qq Pg, Qq Pg, Qq Pqg, Qq Pg, Qq
pshufb (66) phaddw (66) phaddd (66) | phaddsw (66) | pmaddubsw | phsubw (66) phsubd (66) | phsubsw (66)
Vdg, Wdq Vdq, Wdq Vdg, Wdq Vdg, Wdq (66) Vdg, Wdq Vdq, Wdq Vdq, Wdq
Vdq, Wdq

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Vol. 2B A-15

OPCODE MAP

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) *

8 9 A B C D E F
0 psignb psignw psignd pmulhrsw
Pg, Qq Pg, Qq Pg, Qq Pg, Qq
psignb (66) psignw (66) psignd (66) | pmulhrsw (66)
Vdg, Wdq Vdg, Wdq Vdg, Wdq Vdq, Wdq
1 pabsb pabsw pabsd
Pa, Qq Pa, Qq Pg, Qq
pabsb (66) pabsw (66) pabsd (66)
Vdq, Wdg Vdqg, Wdq Vdg, Wdq

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

A-16 Vol. 2B

OPCODE MAP

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *

0

1

2

3

4

5

6

7

m|m[O|0|w|(>|o|o|(N|o|u|s|w|N |-

Vol. 2B A-17

OPCODE MAP

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 3AH) *

8 9 A B C D E F
0 palignr
Pg, Qq, Ib
palignr(66)
Vdq, Wdq, Ib
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

A-18 Vol. 2B

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE
OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1)
as an extension of the opcode.

mod nnn ‘ R/IM

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number.
Group numbers (from 1 to 16, second column) provide a table entry point. The encoding for the
r/m field for each instruction can be established using the third column of the table.

A.4.1 Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-3. Interpreting an ADD Instruction
An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:

e Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this
instruction is 000B.

e The r/m field can be encoded to access a register (11B) or a memory address using a
specified addressing mode (for example: mem = 00B, 01B, 10B).

Example A-4. Looking Up OF01C3H

Look up opcode 0F01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and
Table A-6:

e OF tells us that this instruction is in the 2-byte opcode map.
e 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

e C3isthe ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second
of the Group 7 rows in Table A-6.

e The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.

e Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME
instruction.

Vol. 2B A-19

OPCODE MAP

A.4.2

See Table A-6 below.

Opcode Extension Tables

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
Opcode | Group | Mod 7,6 000 001 010 011 100 101 110 111
80-83 1 mem, 11B| ADD OR ADC SBB AND suB XOR CMP
8F 1A | mem, 11B POP
CO, C1 reg, mem, 11B ROL ROR RCL RCR SHL/SAL | SHR SAR
imm 2
DO, Dlreg, 1
D2, D3 reg, CL
F6, F7 3 mem, 11B | TEST NOT NEG MUL IMUL DIV IDIV
Ib/1z ALIFAX | ALIFAX | ALIFAX AL/TAX
FE 4 mem, 11B INC DEC
Eb Eb
FF 5 mem, 11B INC DEC |CALLN™4| CALLF | JMPN®4 | JMPF | pusHY®4
Ev Ev Ev Ep Ev Ep Ev
OF 00 6 mem, 11B | SLDT STR LLDT LTR VERR VERW
Rv/IMw Rv/Mw Ew Ew Ew Ew
OF 01 7 mem SGDT SIDT LGDT LIDT SMSW LMSW INVLPG
Ms Ms Ms Ms Mw/Rv Ew Mb
11B VMCALL | MONITOR SWAPGS
(001) (000) 64000)
VMLAUNCH MWAIT
(010) (001)
VMRESUME
(011)
VMXOFF
(100)
OF BA 8 mem, 11B BT BTS BTR BTC
OF C7 9 mem CMPXCH8B VMPTRLD | VMPTRST
Mg Mq Mq
CMPXCHG16B VMCLEAR
Mdg (66)
Mg
VMXON (F3)
Mq
11B
OF B9 10 mem
118
cé 11 mem, 1B | MOV
Eb, Ib
Cc7 mem MoV
Ev, Iz
11B

A-20 Vol. 2B

OPCODE MAP

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

Opcode | Group [Mod 7,6 000 001 010 011 100 101 110 111
OF 71 12 mem
11B psriw psraw psliw
Ng, Ib Ng, Ib Ng, Ib
psriw (66) psraw (66) psliw (66)
Udgq, Ib Udg, Ib Udgq, Ib
OF 72 13 mem
11B psrid psrad pslid
Ng, Ib Ng, Ib Ng, Ib
psrid (66) psrad (66) pslid (66)
Udgq, Ib Udg, Ib Udgq, Ib
OF 73 14 mem
11B psrig psridqg (66) pslig pslidg (66)
Ng, Ib Udg, Ib Ng, Ib Udg, Ib
psrlg (66) pslig (66)
Udgq, Ib Udgq, Ib
OF AE 15 mem fxsave fxrstor Idmxcsr stmxcsr clflush
11B Ifence mfence sfence
OF 18 16 mem prefetch prefetch prefetch | prefetch
NTA TO T1 T2
11B
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 2B A-21

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction op-
codes) are in Table A-7 through Table A-22. These maps are grouped by the first byte of the
opcode, from D8-DF. Each of these opcodes has a ModR/M byte. If the ModR/M byte is within
the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as an opcode extension, similar to
the technique used for 1-and 2-byte opcodes (see Section A.4). If the ModR/M byte is outside
the range of O0H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction
Opcodes

Examples are provided below.

Example A-5. Opcode with ModR/M Byte in the 00H through BFH Range
DD0504000000H can be interpreted as follows:

e The instruction encoded with this opcode can be located in Section . Since the ModR/M
byte (05H) is within the O0H through BFH range, bits 3 through 5 (000) of this byte
indicate the opcode for an FLD double-real instruction (see Table A-9).

e The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows
and belongs to this opcode).

Example A-6. Opcode with ModR/M Byte outside the O0OH through BFH Range

D8C1H can be interpreted as follows:

e This example illustrates an opcode with a ModR/M byte outside the range of 00H through
BFH. The instruction can be located in Section A.4.

e In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction
using ST(0), ST(1) as operands).

A.5.2 Escape Opcode Instruction Tables

Tables are listed below.

A-22 Vol. 2B

OPCODE MAP

A5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table
A-7 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B

FADD single- | FMUL single- | FCOM single- | FCOMP single-] FSUB single- | FSUBR single- |FDIV single-real] FDIVR single-
real real real real real real real

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

C FADD

ST(0),ST(0) ST(0),ST(1) I ST(0),ST(2) I ST(0),ST(3) I ST(0),ST(4) I ST(0),ST(5) I ST(0),ST(6) I ST(0),ST(7)

D FCOM
ST(0),ST(0) | ST(0),ST(1) | ST(0),T(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
E FSuUB

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

ST(0),ST(3) | ST(0),ST(4)

F FDIV

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) | ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 | o | a | 8 | ¢ | o | e | F

C FMUL

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) | ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCOMP

ST(0),ST(0) ST(0),ST(1) | ST(0),T(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)

E FSUBR

ST(0),ST(0)

ST(0),ST(1) I ST(0),ST(2) I ST(0),ST(3) I ST(0),ST(4) I ST(0),ST(5) I ST(0),ST(6) I ST(0),ST(7)

F FDIVR

ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Vol. 2B A-23

OPCODE MAP
A.5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-
9 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-9. D9 Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte
000B 001B 010B 011B 100B 101B 110B 111B
FLD FST FSTP FLDENV FLDCW FSTENV FSTCW
single-real single-real single-real 14/28 bytes 2 bytes 14/28 bytes 2 bytes
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
c FLD
ST(0),ST(0) | ST(0),ST(L) | ST(0),ST(2) | ST(0),ST() | ST(0),ST@) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
D FNOP
E FCHS FABS FTST FXAM
F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP
8 9 A B c D E F
c FXCH
ST(0),ST(O) | ST(0),ST(W) | ST(0),ST() | ST(0),ST@) | ST(0).ST@) | ST(0).STE) | ST(0).ST6) | ST(0),5T(7)
D
E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ
F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-24 Vol. 2B

OPCODE MAP

A.5.2.3 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table
A-11 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-11. DA Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 1108 111B

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
dword-integer | dword-integer | dword-integer | dword-integer | dword-integer | dword-integer | dword-integer | dword-integer

NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-11 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the
ModR/M byte selects the table row and the second digit selects the column.

Table A-12. DA Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FCMOVB
ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
D FCMOVBE
ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
E
F
8 | 9 | A | B | C | D | E | F
C FCMOVE
ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
D FCMOVU
ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)
E FUCOMPP
F
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Vol. 2B A-25

OPCODE MAP

A5.2.4 Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table
A-13 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-13. DB Opcode Map When ModR/M Byte is Within OOH to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FILD FISTTP dword- FIST FISTP FLD FSTP
dword-integer integer dword-integer | dword-integer extended-real extended-real
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first
digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-14. DB Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

C FCMOVNB

ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)

D FCMOVNBE

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

E FCLEX FINIT

F FCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

8 | 9 | A | B | C | D | E | F

C FCMOVNE

ST(0),ST(0) ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FCMOVNU

ST(0),ST(0) ST(0),ST(1) ST(0),ST(6) ST(0),ST(7)

ST(0),ST(2) I ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5)

E FUCOMI

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-26 Vol. 2B

OPCODE MAP

A.5.25 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table
A-15 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-15. DC Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B
FADD double- | FMUL double- FCOM FCOMP FSUB double- FSUBR FDIV double- FDIVR
real real double-real double-real real double-real real double-real
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case
the first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-16. DC Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FADD
ST(0),ST(0) ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) ST(4),ST(0) | ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)
D
E FSUBR
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
F FDIVR
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
8 | 9 | A | B | C | D | E | F
C FMUL
ST(0),ST(0) ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) ST(4),ST(0) | ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)
D
E FSuUB
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
F FDIV
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Vol. 2B A-27

OPCODE MAP

A.5.2.6 Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table
A-17 shows the map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5
(the nnn field in Figure A-1) selects the instruction.

Table A-17. DD Opcode Map When ModR/M Byte is Within O0H to BFH '
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD double- FISTTP FST double- FSTP double- FRSTOR FSAVE FSTSW 2
real integer64 real real 98/108bytes 98/108bytes bytes
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit
of the ModR/M byte selects the table row and the second digit selects the column.

Table A-18. DD Opcode Map When ModR/M Byte is Outside 00H to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
c FFREE
ST(0) | ST(1) | ST(2) | ST(3) | ST(4) | ST(5) | ST(6) | ST(7)
D FST
ST(0) | ST(1) | ST(2) | ST(3) | ST(4) | ST(5) | ST(6) | ST(7)
E FUCOM

ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)

8 9 A B C D E F

C
D FSTP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)
E FUCOMP

ST(0) ST(1) ST(2) ST(3) ST(4) ST(5) ST(6) ST(7)
F

NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

A-28 Vol. 2B

OPCODE MAP

A.5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH.
Table A-19 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. In this case,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-19. DE Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 1108 111B
FIADD FIMUL FICOM FICOMP word- FISUB FISUBR word- FIDIV FIDIVR
word-integer word-integer word-integer integer word-integer integer word-integer word-integer
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or reserved locations.

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-20. DE Opcode Map When ModR/M Byte is Outside O0OH to BFH *

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FADDP
ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)
D
E FSUBRP
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
F FDIVRP
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
8 | 9 | A | B | C | D | E | F
C FMULP
ST(0),ST(0) ST(1),ST(0) ST(2),ST(0) ST(3),ST(0) ST(4),ST(0) ST(5),ST(0) ST(6),ST(0) ST(7),ST(0)
D FCOMPP
E FSUBP
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0) | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)
F FDIVP
ST(0),ST(0) | ST(1),ST(0) | ST(2),ST(0). | ST(3),ST(0) | ST(4),ST(0) | ST(5),ST(0) | ST(6),ST(0) | ST(7),ST(0)

NOTES:

* All blanks in all opcode maps are reserved and must not be used.
undefined or reserved locations.

Do not depend on the operation of

Vol. 2B A-29

OPCODE MAP

A.5.2.8 Escape Opcodes with DF As First Byte

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with
DFH. Table A-21 shows the opcode map if the ModR/M byte is in the range of 00H-BFH. Here,
the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-21. DF Opcode Map When ModR/M Byte is Within O0OH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 1108 111B
FILD FISTTP FIST FISTP FBLD packed- FILD FBSTP packed- FISTP
word-integer word-integer word-integer | word-integer BCD qgword-integer BCD qword-integer
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The
first digit of the ModR/M byte selects the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH '

0 1 2 3 4 5 6 7
c
D
E FSTSW
AX
F FCOMIP
ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST@) | ST(0).ST(5) | ST(0),ST(6) | ST(0),ST(7)
8 9 A B c D E F
c
D
E FUCOMIP
ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST@) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
F
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of

undefined or reserved locations.

A-30 Vol. 2B

B

Instruction Formats
and Encodings

APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS

This appendix provides machine instruction formats and encodings of IA-32 architecture in-
structions. The first section describes the 1A-32 architecture’s machine instruction format. The
remaining sections show the formats and encoding of general-purpose, MMX, P6 family,
SSE/SSE2/SSE3, x87 FPU instructions, and VMX instructions. Instruction formats used in
64-bit mode are provided as supersets of the above.

B.1 MACHINE INSTRUCTION FORMAT

All Intel Architecture instructions are encoded using subsets of the general machine instruction
format shown in Figure B-1. Each instruction consists of;:

an opcode

a register and/or address mode specifier consisting of the ModR/M byte and sometimes the
scale-index-base (SIB) byte (if required)

a displacement and an immediate data field (if required)

76543210 76543210 76543210
Legacy Prefixes | REX Prefixes |TTTTTTTT‘TTTTTTTT’TTTTTTTT’i'
Grp 1, Grp 2, (optional)

Grp 3,Grp 4
(optional)

1, 2, or 3 Byte Opcodes (T = Opcode bit)

76 53 20 76 53 20
‘ Mod Reg* R/M ‘Scale Index Base ‘ d32|16|8|None d32]|16|8]|None
M S N

ModR/M Byte SIBByte Address Displacement Immediate Data
~ (4, 2, 1 Bytes or None) (4,2,1 Bytes or None)
Register and/or Address NOTE:
Mode Specifier * The Reg Field may be used as an opcode

extension field (TTT) and as a way to encode
diagnostic registers (eee).

Figure B-1. General Machine Instruction Format

The following sections discuss this format.

Vol. 2B B-1

INSTRUCTION FORMATS AND ENCODINGS

B.1.1 Legacy Prefixes

The legacy prefixes noted in Figure B-1 include 66H, 67H, F2H and F3H. They are optional,
except when F2H, F3H and 66H are used in new instruction extensions. Legacy prefixes must
be placed before REX prefixes.

Refer to Chapter 2, “Instruction Format,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on legacy prefixes.

B.1.2 REX Prefixes

REX prefixes are a set of 16 opcodes that span one row of the opcode map and occupy entries
40H to 4FH. These opcodes represent valid instructions (INC or DEC) in legacy | A-32 operating
modes and in compatibility mode. In 64-bit mode, the same opcodes represent the instruction
prefix REX and are not treated as individual instructions.

Refer to Chapter 2, “Instruction Format,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on REX prefixes.

B.1.3 Opcode Fields

The primary opcode for an instruction is encoded in one to three bytes of the instruction. Within
the primary opcode, smaller encoding fields may be defined. These fields vary according to the
class of operation being performed.

Almost all instructions that refer to a register and/or memory operand have a register and/or ad-
dress mode byte following the opcode. This byte, the ModR/M byte, consists of the mod field
(3 bits), the reg field (3 bits; this field is sometimes an opcode extension), and the R/M field
(2 bits). Certain encodings of the ModR/M byte indicate that a second address mode byte, the
SIB byte, must be used.

If the addressing mode specifies a displacement, the displacement value is placed immediately
following the ModR/M byte or SIB byte. Possible sizes are 8, 16, or 32 bits. If the instruction
specifies an immediate value, the immediate value follows any displacement bytes. The imme-
diate, if specified, is always the last field of the instruction.

Refer to Chapter 2, “Instruction Format,” in the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 2A, for more information on opcodes.

B.1.4 Special Fields

Table B-1 lists bit fields that appear in certain instructions, sometimes within the opcode bytes.
All of these fields (except the d bit) occur in the general-purpose instruction formats in Table B-13.

Vol. 2B B-2

INSTRUCTION FORMATS AND ENCODINGS

Table B-1. Special Fields Within Instruction Encodings

Number of
Field Name Description Bits
reg General-register specifier (see Table B-4 or B-5) 3
w Specifies if data is byte or full-sized, where full-sized is 16 or 32 bits 1
(see Table B-6)
s Specifies sign extension of an immediate field (see Table B-7) 1
sreg2 Segment register specifier for CS, SS, DS, ES (see Table B-8) 2
sreg3 Segment register specifier for CS, SS, DS, ES, FS, GS (see Table B-8) 3
eee Specifies a special-purpose (control or debug) register (see Table B-9) 3
tttn For conditional instructions, specifies a condition asserted or negated 4
(see Table B-12)
d Specifies direction of data operation (see Table B-11) 1
B.1.4.1 Reg Field (reg) for Non-64-Bit Modes

The reg field in the ModR/M byte specifies a general-purpose register operand. The group of
registers specified is modified by the presence and state of the w bit in an encoding (refer to Sec-
tion B.1.4.3). Table B-2 shows the encoding of the reg field when the w bit is not present in an

encoding; Table B-3 shows the encoding of the reg field when the w bit is present.

Table B-2. Encoding of reg Field When w Field is Not Present in Instruction

Register Selected during Register Selected during
reg Field 16-Bit Data Operations 32-Bit Data Operations
000 AX EAX
001 CX ECX
010 DX EDX
011 BX EBX
100 SP ESP
101 BP EBP
110 Sl ESI
111 DI EDI

Vol. 2B B-3

INSTRUCTION FORMATS AND ENCODINGS

Table B-3. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field Register Specified by reg Field
During 16-Bit Data Operations During 32-Bit Data Operations
Function of w Field Function of w Field
reg Whenw =0 Whenw =1 reg When w =0 Whenw =1
000 AL AX 000 AL EAX
001 CL CX 001 CL ECX
010 DL DX 010 DL EDX
011 BL BX 011 BL EBX
100 AH SP 100 AH ESP
101 CH BP 101 CH EBP
110 DH Sl 110 DH ESI
111 BH DI 111 BH EDI
B.1.4.2 Reg Field (reg) for 64-Bit Mode

Just like in non-64-bit modes, the reg field in the ModR/M byte specifies a general-purpose reg-
ister operand. The group of registers specified is modified by the presence of and state of the w
bit in an encoding (refer to Section B.1.4.3). Table B-4 shows the encoding of the reg field when
the w bit is not present in an encoding; Table B-5 shows the encoding of the reg field when the
w bit is present.

Table B-4. Encoding of reg Field When w Field is Not Present in Instruction

Register Selected during | Register Selected during | Register Selected during
reg Field 16-Bit Data Operations 32-Bit Data Operations 64-Bit Data Operations
000 AX EAX RAX
001 CX ECX RCX
010 DX EDX RDX
011 BX EBX RBX
100 SP ESP RSP
101 BP EBP RBP
110 Sl ESI RSI
111 DI EDI RDI

Vol. 2B B-4

INSTRUCTION FORMATS AND ENCODINGS

Table B-5. Encoding of reg Field When w Field is Present in Instruction

Register Specified by reg Field Register Specified by reg Field
During 16-Bit Data Operations During 32-Bit Data Operations
Function of w Field Function of w Field
reg When w =0 Whenw =1 reg Whenw =0 Whenw =1
000 AL AX 000 AL EAX
001 CL CX 001 CL ECX
010 DL DX 010 DL EDX
011 BL BX 011 BL EBX
100 AH1 SP 100 AH* ESP
101 CH! BP 101 CH* EBP
110 DH! Sl 110 DH* ESI
111 BH1 DI 111 BH* EDI
NOTES:
1. ﬁ;iteCH DH, BH can not be encoded when REX prefix is used. Such an expression defaults to the low
B.1.4.3 Encoding of Operand Size (w) Bit

The current operand-size attribute determines whether the processor is performing 16-bit, 32-bit
or 64-bit operations. Within the constraints of the current operand-size attribute, the operand-
size bit (w) can be used to indicate operations on 8-bit operands or the full operand size specified
with the operand-size attribute. Table B-6 shows the encoding of the w bit depending on the cur-
rent operand-size attribute.

Table B-6. Encoding of Operand Size (w) Bit

Operand Size When Operand Size When
w Bit Operand-Size Attribute is 16 Bits Operand-Size Attribute is 32 Bits
0 8 Bits 8 Bits
1 16 Bits 32 Bits
B.1.4.4 Sign-Extend (s) Bit

The sign-extend (s) bit occurs in instructions with immediate data fields that are being extended
from 8 bits to 16 or 32 bits. See Table B-7.

Vol. 2B B-5

INSTRUCTION FORMATS AND ENCODINGS

Table B-7. Encoding of Sign-Extend (s) Bit

Effect on 8-Bit Effect on 16- or 32-Bit
s Immediate Data Immediate Data
0 None None
1 Sign-extend to fill 16-bit or 32-bit destination None

B.1.4.5 Segment Register (sreg) Field

When an instruction operates on a segment register, the reg field in the ModR/M byte is called
the sreg field and is used to specify the segment register. Table B-8 shows the encoding of the
sreg field. This field is sometimes a 2-bit field (sreg2) and other times a 3-bit field (sreg3).

Table B-8. Encoding of the Segment Register (sreg) Field

Segment Register Segment Register

2-Bit sreg?2 Field Selected 3-Bit sreg3 Field Selected
00 ES 000 ES
01 Cs 001 Cs
10 SS 010 SS
11 DS 011 DS
100 FS
101 GS

110 Reserved!

111 Reserved

NOTES:
1. Do not use reserved encodings.

Vol. 2B B-6

INSTRUCTION FORMATS AND ENCODINGS

B.1.4.6 Special-Purpose Register (eee) Field

When control or debug registers are referenced in an instruction they are encoded in the eee
field, located in bits 5 though 3 of the ModR/M byte (an alternate encoding of the sreg field).
See Table B-9.

Table B-9. Encoding of Special-Purpose Register (eee) Field

eee Control Register Debug Register
000 CRO DRO

001 Reserved?! DR1

010 CR2 DR2

011 CR3 DR3

100 CR4 Reserved
101 Reserved Reserved
110 Reserved DR6

111 Reserved DR7

NOTES:
1. Do not use reserved encodings.
B.1.4.7 Condition Test (tttn) Field

For conditional instructions (such as conditional jumps and set on condition), the condition test
field (tttn) is encoded for the condition being tested. The ttt part of the field gives the condition
to test and the n part indicates whether to use the condition (n = 0) or its negation (n = 1).

e For 1-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the opcode byte.

e For 2-byte primary opcodes, the tttn field is located in bits 3, 2, 1, and 0 of the second
opcode byte.

Table B-10 shows the encoding of the tttn field.

Table B-10. Encoding of Conditional Test (tttn) Field

tttn Mnemonic Condition
0000 (0] Overflow

0001 NO No overflow

0010 B, NAE Below, Not above or equal
0011 NB, AE Not below, Above or equal
0100 E, Z Equal, Zero

0101 NE, NZ Not equal, Not zero

0110 BE, NA Below or equal, Not above
0111 NBE, A Not below or equal, Above

Vol. 2B B-7

INSTRUCTION FORMATS AND ENCODINGS

Table B-10. Encoding of Conditional Test (tttn) Field (Contd.)

tttn Mnemonic Condition

1000 S Sign

1001 NS Not sign

1010 P, PE Parity, Parity Even

1011 NP, PO Not parity, Parity Odd

1100 L, NGE Less than, Not greater than or equal to
1101 NL, GE Not less than, Greater than or equal to
1110 LE, NG Less than or equal to, Not greater than
1111 NLE, G Not less than or equal to, Greater than

B.1.4.8 Direction (d) Bit

In many two-operand instructions, a direction bit (d) indicates which operand is considered the
source and which is the destination. See Table B-11.

e When used for integer instructions, the d bit is located at bit 1 of a 1-byte primary opcode.
Note that this bit does not appear as the symbol “d” in Table B-13; the actual encoding of
the bitas 1 or 0 is given.

o When used for floating-point instructions (in Table B-16), the d bit is shown as bit 2 of the
first byte of the primary opcode.

Table B-11. Encoding of Operation Direction (d) Bit

d Source Destination
0 | reg Field ModR/M or SIB Byte
1 | ModR/M or SIB Byte reg Field

B.1.5 Other Notes

Table B-12 contains notes on particular encodings. These notes are indicated in the tables shown
in the following sections by superscripts.

Table B-12. Notes on Instruction Encoding

Symbol Note

A A value of 11B in bits 7 and 6 of the ModR/M byte is reserved.

Vol. 2B B-8

INSTRUCTION FORMATS AND ENCODINGS

B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND
ENCODINGS FOR NON-64-BIT MODES

Table B-13 shows machine instruction formats and encodings for general purpose instructions
in non-64-bit modes.

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes

Instruction and Format Encoding
AAA — ASCII Adjust after Addition 0011 0111
AAD — ASCII Adjust AX before Division 1101 0101 : 0000 1010
AAM — ASCII Adjust AX after Multiply 1101 0100 : 0000 1010
AAS — ASCII Adjust AL after Subtraction 0011 1111

ADC — ADD with Carry

registerl to register2 0001 000w : 11 regl reg2

register2 to registerl 0001 001w : 11 regl reg2

memory to register 0001 001w : mod reg r/m

register to memory 0001 000w : mod reg r/m

immediate to register 1000 00sw : 11 010 reg : immediate data

immediate to AL, AX, or EAX 0001 010w : immediate data

immediate to memory 1000 00sw : mod 010 r/m : immediate data
ADD - Add

registerl to register2 0000 000w : 11 regl reg2

register2 to registerl 0000 001w : 11 regl reg2

memory to register 0000 001w : mod reg r/m

register to memory 0000 000w : mod reg r/m

immediate to register 1000 00sw : 11 000 reg : immediate data

immediate to AL, AX, or EAX 0000 010w : immediate data

immediate to memory 1000 00sw : mod 000 r/m : immediate data

AND - Logical AND

registerl to register2 0010 000w : 11 regl reg2

register2 to registerl 0010 001w : 11 regl reg2

memory to register 0010 001w : mod reg r/m

register to memory 0010 000w : mod reg r/m

immediate to register 1000 00sw : 11 100 reg : immediate data
immediate to AL, AX, or EAX 0010 010w : immediate data

immediate to memory 1000 00sw : mod 100 r/m : immediate data

Vol. 2B B-9

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

ARPL — Adjust RPL Field of Selector

from register 0110 0011 : 11 regl reg2
from memory 0110 0011 : mod reg r/m

BOUND — Check Array Against Bounds 0110 0010 : modA reg r/m

BSF - Bit Scan Forward
registerl, register2 0000 1111 : 1011 1100 : 11 regl reg2
memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR — Bit Scan Reverse
registerl, register2 0000 1111 : 1011 1101 : 11 regl reg2
memory, register 0000 1111 : 1011 1101 : mod reg r/m

BSWAP — Byte Swap 0000 1111 : 1100 1 reg

BT — Bit Test
register, immediate 0000 1111 : 1011 1010 : 11 100 reg: imm8 data
memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : imm8 data
registerl, register2 0000 1111 : 1010 0011 : 11 reg2 regl
memory, reg 0000 1111 : 1010 0011 : mod reg r/m

BTC - Bit Test and Complement
register, immediate 0000 1111 : 1011 1010 : 11 111 reg: imm8 data
memory, immediate 0000 1111 : 1011 1010 : mod 111 r/m : imm8 data
registerl, register2 0000 1111 : 1011 1011 : 11 reg2 regl
memory, reg 0000 1111 : 1011 1011 : mod reg r/m

BTR — Bit Test and Reset
register, immediate 0000 1111 : 1011 1010 : 11 110 reg: imm8 data
memory, immediate 0000 1111 : 1011 1010 : mod 110 r/m : imm8 data
registerl, register2 0000 1111 : 1011 0011 : 11 reg2 regl
memory, reg 0000 1111 : 1011 0011 : mod reg r/m

BTS - Bit Test and Set
register, immediate 0000 1111 : 1011 1010 : 11 101 reg: imm8 data
memory, immediate 0000 1111 : 1011 1010 : mod 101 r/m : imm8 data
registerl, register2 0000 1111 : 1010 1011 : 11 reg2 regl
memory, reg 0000 1111 : 1010 1011 : mod reg r/m

Vol. 2B B-10

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

CALL — Call Procedure (in same segment)
direct
register indirect
memory indirect
CALL — Call Procedure (in other segment)
direct
indirect
CBW — Convert Byte to Word
CDQ - Convert Doubleword to Qword
CLC —Clear Carry Flag
CLD - Clear Direction Flag
CLI - Clear Interrupt Flag
CLTS — Clear Task-Switched Flag in CRO
CMC - Complement Carry Flag
CMP — Compare Two Operands
registerl with register2
register2 with registerl
memory with register
register with memory
immediate with register
immediate with AL, AX, or EAX
immediate with memory

CMPS/CMPSB/CMPSW/CMPSD — Compare
String Operands

CMPXCHG — Compare and Exchange
registerl, register2
memory, register
CPUID — CPU Identification
CWD - Convert Word to Doubleword
CWDE - Convert Word to Doubleword
DAA — Decimal Adjust AL after Addition
DAS - Decimal Adjust AL after Subtraction

1110 1000 : full displacement
1111 1111 : 11 010 reg
1111 1111 : mod 010 r/m

1001 1010 : unsigned full offset, selector
1111 1111 : mod 011 r/m

1001 1000

1001 1001

1111 1000

1111 1100

1111 1010

0000 1111 : 0000 0110

1111 0101

0011 100w : 11 regl reg2

0011 101w : 11 regl reg2

0011 100w : mod reg r/m

0011 101w : mod reg r/m

1000 00sw : 11 111 reg : immediate data
0011 110w : immediate data

1000 00sw : mod 111 r/m : immediate data
1010 011w

0000 1111 : 1011 000w : 11 reg?2 regl
0000 1111 : 1011 000w : mod reg r/m
0000 1111 : 1010 0010

1001 1001

1001 1000

0010 0111

0010 1111

Vol. 2B B-11

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
DEC — Decrement by 1
register 1111 111w : 11 001 reg
register (alternate encoding) 0100 1 reg
memory 1111 111w : mod 001 r/m
DIV — Unsigned Divide
AL, AX, or EAX by register 1111 011w : 11 110 reg
AL, AX, or EAX by memory 1111 011w : mod 110 r/m
ENTER — Make Stack Frame for High Level 1100 1000 : 16-bit displacement : 8-bit level (L)
Procedure
HLT — Halt 1111 0100
IDIV — Signed Divide
AL, AX, or EAX by register 1111 011w : 11 111 reg
AL, AX, or EAX by memory 1111 011w : mod 111 r/m
IMUL — Signed Multiply
AL, AX, or EAX with register 1111 011w : 11 101 reg
AL, AX, or EAX with memory 1111 011w : mod 101 reg
registerl with register2 0000 1111 : 1010 1111 : 11 : regl reg2
register with memory 0000 1111 : 1010 1111 : mod reg r/m
registerl with immediate to register2 0110 10s1: 11 regl reg2 : immediate data
memory with immediate to register 0110 10s1 : mod reg r/m : immediate data
IN — Input From Port
fixed port 1110 010w : port number
variable port 1110 110w
INC — Increment by 1
reg 1111 111w : 11 000 reg
reg (alternate encoding) 0100 0 reg
memory 1111 111w : mod 000 r/m
INS — Input from DX Port 0110 110w
INT n — Interrupt Type n 1100 1101 : type
INT — Single-Step Interrupt 3 1100 1100
INTO — Interrupt 4 on Overflow 1100 1110
INVD — Invalidate Cache 0000 1111 : 0000 1000

Vol. 2B B-12

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
INVLPG - Invalidate TLB Entry 0000 1111 : 0000 0001 : mod 111 r/m
IRET/IRETD — Interrupt Return 1100 1111
Jcc —Jump if Condition is Met
8-bit displacement 0111 tttn : 8-bit displacement
full displacement 0000 1111 : 1000 tttn : full displacement
JCXZ/JECXZ — Jump on CX/ECX Zero 1110 0011 : 8-bit displacement
Address-size prefix differentiates JCXZ
and JECXZ
JMP — Unconditional Jump (to same segment)
short 1110 1011 : 8-bit displacement
direct 1110 1001 : full displacement
register indirect 1111 1111 : 11 100 reg
memory indirect 1111 1111 : mod 100 r/m
JMP — Unconditional Jump (to other segment)
direct intersegment 1110 1010 : unsigned full offset, selector
indirect intersegment 1111 1111 : mod 101 r/m
LAHF — Load Flags into AHRegister 1001 1111
LAR — Load Access Rights Byte
from register 0000 1111 : 0000 0010 : 11 regl reg2
from memory 0000 1111 : 0000 0010 : mod reg r/m
LDS — Load Pointer to DS 1100 0101 : modA reg r/m
LEA — Load Effective Address 1000 1101 : modA reg r/m
LEAVE — High Level Procedure Exit 1100 1001
LES — Load Pointer to ES 1100 0100 : modA reg r/m
LFS — Load Pointer to FS 0000 1111 : 1011 0100 : modA reg r/m
LGDT - Load Global Descriptor Table Register 0000 1111 : 0000 0001 : mod” 010 r/m
LGS - Load Pointer to GS 0000 1111 : 1011 0101 : modA reg r/m
LIDT - Load Interrupt Descriptor Table Register | 0000 1111 : 0000 0001 : modA 011 r/m
LLDT — Load Local Descriptor Table Register
LDTR from register 0000 1111 : 0000 0000 : 11 010 reg
LDTR from memory 0000 1111 : 0000 0000 : mod 010 r/m

Vol. 2B B-13

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

LMSW - Load Machine Status Word

from register 0000 1111 : 0000 0001 : 11 110 reg
from memory 0000 1111 : 0000 0001 : mod 110 r/m
LOCK — Assert LOCK# Signal Prefix 1111 0000
LODS/LODSB/LODSW/LODSD - Load String 1010 110w
Operand
LOOP - Loop Count 1110 0010 : 8-bit displacement
LOOPZ/LOOPE - Loop Count while Zero/Equal 1110 0001 : 8-bit displacement
LOOPNZ/LOOPNE - Loop Count while not 1110 0000 : 8-bit displacement
Zero/Equal
LSL — Load Segment Limit
from register 0000 1111 : 0000 0011 : 11 regl reg2
from memory 0000 1111 : 0000 0011 : mod reg r/m
LSS — Load Pointer to SS 0000 1111 : 1011 0010 : modA reg r/m
LTR — Load Task Register
from register 0000 1111 : 0000 0000 : 11 011 reg
from memory 0000 1111 : 0000 0000 : mod 011 r/m
MOV — Move Data
registerl to register2 1000 100w : 11 regl reg2
register2 to registerl 1000 101w : 11 regl reg2
memory to reg 1000 101w : mod reg r/m
reg to memory 1000 100w : mod reg r/m
immediate to register 1100 011w : 11 000 reg : immediate data
immediate to register (alternate encoding) 1011 w reg : immediate data
immediate to memory 1100 011w : mod 000 r/m : immediate data
memory to AL, AX, or EAX 1010 000w : full displacement
AL, AX, or EAX to memory 1010 001w : full displacement
MOV — Move to/from Control Registers
CRO from register 0000 1111 : 0010 0010 : 11 000 reg
CR2 from register 0000 1111 : 0010 0010 : 11 010reg
CR3 from register 0000 1111 : 0010 0010 : 11 011 reg
CR4 from register 0000 1111 : 0010 0010 : 11 100 reg
register from CR0O-CR4 0000 1111 : 0010 0000 : 11 eee reg

Vol. 2B B-14

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

MOV — Move to/from Debug Registers

DRO0-DR3 from register 0000 1111 : 0010 0011 : 11 eee reg

DR4-DR5 from register 0000 1111 : 0010 0011 : 11 eee reg

DR6-DR7 from register 0000 1111 : 0010 0011 : 11 eee reg

register from DR6-DR7 0000 1111 : 0010 0001 : 11 eee reg

register from DR4-DR5 0000 1111 : 0010 0001 : 11 eee reg

register from DRO-DR3 0000 1111 : 0010 0001 : 11 eee reg
MOV — Move to/from Segment Registers

register to segment register 1000 1110 : 11 sreg3 reg

register to SS 1000 1110 : 11 sreg3 reg

memory to segment reg 1000 1110 : mod sreg3 r/m

memory to SS 1000 1110 : mod sreg3 r/m

segment register to register 1000 1100 : 11 sreg3 reg

segment register to memory 1000 1100 : mod sreg3 r/m
MOVS/MOVSB/MOVSW/MOVSD — Move Data 1010 010w

from String to String
MOVSX — Move with Sign-Extend

register2 to registerl 0000 1111 : 1011 111w : 11 regl reg2

memory to reg 0000 1111 : 1011 111w : mod reg r/m
MOVZX — Move with Zero-Extend

register2 to registerl 0000 1111 : 1011 011w : 11 regl reg2

memory to register 0000 1111 : 1011 011w : mod reg r/m
MUL — Unsigned Multiply

AL, AX, or EAX with register 1111 011w : 11 100 reg

AL, AX, or EAX with memory 1111 011w : mod 100 reg

NEG — Two's Complement Negation

register 1111 011w : 11 011 reg
memory 1111 011w : mod 011 r/m
NOP — No Operation 1001 0000
NOP — Multi-byte No Operation?®
register 0000 1111 0001 1111 : 11 00O reg
memory 0000 1111 0001 1111 : mod 000 r/m

Vol. 2B B-15

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

NOT — One's Complement Negation

register 1111 011w : 11 010 reg
memory 1111 011w : mod 010 r/m
OR - Logical Inclusive OR
registerl to register2 0000 100w : 11 regl reg2
register2 to registerl 0000 101w : 11 regl reg2
memory to register 0000 101w : mod reg r/m
register to memory 0000 100w : mod reg r/m
immediate to register 1000 00sw : 11 001 reg : immediate data
immediate to AL, AX, or EAX 0000 110w : immediate data
immediate to memory 1000 00sw : mod 001 r/m : immediate data

OUT — Output to Port

fixed port 1110 011w : port number
variable port 1110 111w

OUTS - Output to DX Port 0110 111w

POP — Pop a Word from the Stack
register 1000 1111 : 11 000 reg
register (alternate encoding) 0101 1reg
memory 1000 1111 : mod 000 r/m

POP — Pop a Segment Register from the Stack
(Note: CS cannot be sreg2 in this usage.)

segment register DS, ES 000 sreg2 111

segment register SS 000 sreg2 111

segment register FS, GS 0000 1111: 10 sreg3 001
POPA/POPAD — Pop All General Registers 0110 0001
POPF/POPFD - Pop Stack into FLAGS or 1001 1101

EFLAGS Register
PUSH — Push Operand onto the Stack

register 1111 1111 : 11 110 reg
register (alternate encoding) 0101 O reg

memory 1111 1111 : mod 110 r/m
immediate 0110 10s0 : immediate data

Vol. 2B B-16

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

PUSH — Push Segment Register onto the Stack
segment register CS,DS,ES,SS
segment register FS,GS

PUSHA/PUSHAD - Push All General Registers

PUSHF/PUSHFD — Push Flags Register onto the
Stack

RCL - Rotate thru Carry Left

register by 1

memory by 1

register by CL

memory by CL

register by immediate count

memory by immediate count
RCR - Rotate thru Carry Right

register by 1

memory by 1

register by CL

memory by CL

register by immediate count

memory by immediate count
RDMSR — Read from Model-Specific Register

RDPMC - Read Performance Monitoring
Counters

RDTSC — Read Time-Stamp Counter
REP INS — Input String

REP LODS — Load String

REP MOVS — Move String

REP OUTS — Output String

REP STOS — Store String

REPE CMPS — Compare String
REPE SCAS — Scan String

REPNE CMPS — Compare String

000 sreg2 110
0000 1111: 10 sreg3 000

0110 0000
1001 1100

1101 000w :
1101 000w :
1101 001w :
1101 001w :
1100 000w : 11 010 reg : imm8 data
1100 000w :

11 010 reg
mod 010 r/m
11 010 reg
mod 010 r/m

mod 010 r/m : imm8 data

1101 000w :
1101 000w :
1101 001w :
1101 001w :
1100 000w : 11 011 reg : imm8 data
1100 000w : mod 011 r/m : imm8 data
0000 1111 : 0011 0010

0000 1111 : 0011 0011

11 011 reg
mod 011 r/m
11 011 reg
mod 011 r/m

0000 1111 :
1111 0011 :
1111 0011 :
1111 0011 :
1111 0011 :
1111 0011 :
1111 0011 :
1111 0011 :

0011 0001
0110 110w
1010 110w
1010 010w
0110 111w
1010 101w
1010 011w
1010 111w

1111 0010 : 1010 011w

Vol. 2B B-17

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

REPNE SCAS — Scan String
RET — Return from Procedure (to same segment)
no argument
adding immediate to SP
RET — Return from Procedure (to other segment)
intersegment
adding immediate to SP
ROL — Rotate Left
register by 1
memory by 1
register by CL
memory by CL
register by immediate count
memory by immediate count
ROR - Rotate Right
register by 1
memory by 1
register by CL
memory by CL
register by immediate count
memory by immediate count
RSM — Resume from System Management Mode
SAHF — Store AH into Flags
SAL — Shift Arithmetic Left
SAR - Shift Arithmetic Right
register by 1
memory by 1
register by CL
memory by CL
register by immediate count

memory by immediate count

1111 0010 : 1010 111w

1100 0011
1100 0010 : 16-bit displacement

1100 1011
1100 1010 : 16-bit displacement

1101 000w : 11 000 reg

1101 000w : mod 000 r/m

1101 001w : 11 000 reg

1101 001w : mod 000 r/m

1100 000w : 11 000 reg : imm8 data
1100 000w : mod 000 r/m : imm8 data

1101 000w : 11 001 reg

1101 000w : mod 001 r/m

1101 001w : 11 001 reg

1101 001w : mod 001 r/m

1100 000w : 11 001 reg : imm8 data
1100 000w : mod 001 r/m : imm8 data
0000 1111 : 1010 1010

1001 1110

same instruction as SHL

1101 000w : 11 111 reg

1101 000w : mod 111 r/m

1101 001w : 11 111 reg

1101 001w : mod 111 r/m

1100 000w : 11 111 reg : imm8 data
1100 000w : mod 111 r/m : imm8 data

Vol. 2B B-18

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding

SBB - Integer Subtraction with Borrow

registerl to register2 0001 100w : 11 regl reg2
register2 to registerl 0001 101w : 11 regl reg2
memory to register 0001 101w : mod reg r/m
register to memory 0001 100w : mod reg r/m
immediate to register 1000 00sw : 11 011 reg : immediate data
immediate to AL, AX, or EAX 0001 110w : immediate data
immediate to memory 1000 00sw : mod 011 r/m : immediate data
SCAS/SCASB/SCASW/SCASD — Scan String 1010 111w
SETcc — Byte Set on Condition
register 0000 1111 : 1001 tttn : 11 000 reg
memory 0000 1111 : 1001 tttn : mod 000 r/m

SGDT - Store Global Descriptor Table Register 0000 1111 : 0000 0001 : modA 000 r/m
SHL — Shift Left

register by 1 1101 000w : 11 100 reg

memory by 1 1101 000w : mod 100 r/m

register by CL 1101 001w : 11 100 reg

memory by CL 1101 001w : mod 100 r/m

register by immediate count 1100 000w : 11 100 reg : imm8 data
memory by immediate count 1100 000w : mod 100 r/m : imm8 data

SHLD — Double Precision Shift Left

register by immediate count 0000 1111 : 1010 0100 : 11 reg2 regl : imm8
memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8
register by CL 0000 1111 : 1010 0101 : 11 reg2 regl
memory by CL 0000 1111 : 1010 0101 : mod reg r/m

SHR — Shift Right
register by 1 1101 000w : 11 101 reg
memory by 1 1101 000w : mod 101 r/m
register by CL 1101 001w : 11 101 reg
memory by CL 1101 001w : mod 101 r/m
register by immediate count 1100 000w : 11 101 reg : imm8 data
memory by immediate count 1100 000w : mod 101 r/m : imm8 data

Vol. 2B B-19

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
SHRD - Double Precision Shift Right
register by immediate count 0000 1111 : 1010 1100 : 11 reg2 regl : imm8
memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8
register by CL 0000 1111 : 1010 1101 : 11 reg2 regl
memory by CL 0000 1111 : 1010 1101 : mod reg r/m
SIDT — Store Interrupt Descriptor Table Register | 0000 1111 : 0000 0001 : modA 001 r/m
SLDT - Store Local Descriptor Table Register
to register 0000 1111 : 0000 0000 : 11 000 reg
to memory 0000 1111 : 0000 0000 : mod 000 r/m
SMSW - Store Machine Status Word
to register 0000 1111 : 0000 0001 : 11 100 reg
to memory 0000 1111 : 0000 0001 : mod 100 r/m
STC - Set Carry Flag 1111 1001
STD — Set Direction Flag 1111 1101
STI — Set Interrupt Flag 1111 1011
STOS/STOSB/STOSW/STOSD - Store String Data | 1010 101w

STR — Store Task Register
to register
to memory

SUB - Integer Subtraction
registerl to register2
register2 to registerl
memory to register
register to memory
immediate to register
immediate to AL, AX, or EAX
immediate to memory

TEST - Logical Compare
registerl and register2
memory and register
immediate and register

immediate and AL, AX, or EAX

0000 1111 : 0000 0000 : 11 001 reg
0000 1111 : 0000 0000 : mod 001 r/m

0010 100w :
0010 101w :

0010 101w

0010 100w :
1000 00sw :
0010 110w :
1000 00sw :

1000 010w :
1000 010w :
1111 011w :

1010 100w

11 regl reg2
11 regl reg2

> mod reg r/m

11 101 reg

mod reg r/m
: immediate data
immediate data

mod 101 r/m : immediate data

11 regl reg2
mod reg r/m

11 000 reg :

immediate data

:immediate data

Vol. 2B B-20

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format

Encoding

immediate and memory
UD2 — Undefined instruction
VERR - Verify a Segment for Reading
register
memory
VERW - Verify a Segment for Writing
register
memory
WAIT — Wait
WBINVD — Writeback and Invalidate Data Cache
WRMSR — Write to Model-Specific Register
XADD - Exchange and Add
registerl, register2
memory, reg

XCHG - Exchange Register/Memory with
Register

registerl with register2
AX or EAX with reg
memory with reg
XLAT/XLATB — Table Look-up Translation
XOR - Logical Exclusive OR
registerl to register2
register2 to registerl
memory to register
register to memory
immediate to register
immediate to AL, AX, or EAX
immediate to memory
Prefix Bytes
address size
LOCK

operand size

1111 011w : mod 000 r/m : immediate data
0000 FFFF : 0000 1011

0000 1111 : 0000 0000 :
0000 1111 : 0000 0000 :

11 100 reg
mod 100 r/m

0000 1111 :
0000 1111 :
1001 1011
0000 1111 :
0000 1111 :

0000 0000 :
0000 0000 :

11 101 reg
mod 101 r/m

0000 1001
0011 0000

0000 1111 :
0000 1111 :

1100 000w :
1100 000w :

11 reg2 regl

mod reg r/m

1000 011w :
1001 O reg
1000 011w :
1101 0111

11 regl reg2

mod reg r/m

0011 000w :
0011 001w :
0011 001w :
0011 000w :
1000 00sw :
0011 010w :

11 regl reg2

11 regl reg2

mod reg r/m

mod reg r/m

11 110 reg : immediate data
immediate data

1000 00sw : mod 110 r/m : immediate data

0110 0111
1111 0000
0110 0110

Vol. 2B B-21

INSTRUCTION FORMATS AND ENCODINGS

Table B-13. General Purpose Instruction Formats and Encodings
for Non-64-Bit Modes (Contd.)

Instruction and Format Encoding
CS segment override 0010 1110
DS segment override 0011 1110
ES segment override 0010 0110
FS segment override 0110 0100
GS segment override 0110 0101
SS segment override 0011 0110

NOTES:

1. The multi-byte NOP instruction does not alter the content of the register and will not issue a memory
operation.

B.2.1 General Purpose Instruction Formats and Encodings for
64-Bit Mode

Table B-15 shows machine instruction formats and encodings for general purpose instructions
in 64-bit mode.

Table B-14. Special Symbols

Symbol Application

S If the value of REX.W. is 1, it overrides the presence of 66H.

w The value of bit W. in REX is has no effect.

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode

Instruction and Format Encoding
ADC — ADD with Carry

registerl to register2 0100 OROB : 0001 000w : 11 regl reg2
gwordregisterl to qwordregister2 0100 1ROB : 0001 0001 : 11 gwordregl gwordreg2
register2 to registerl 0100 OROB : 0001 001w : 11 regl reg2
gwordregisterl to qwordregister2 0100 1ROB : 0001 0011 : 11 gwordregl qwordreg2
memory to register 0100 ORXB : 0001 001w : mod reg r/m

memory to gwordregister 0100 1RXB : 0001 0011 : mod qwordreg r/m
register to memory 0100 ORXB : 0001 000w : mod reg r/m

Vol. 2B B-22

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

gwordregister to memory
immediate to register
immediate to qwordregister
immediate to qwordregister
immediate to AL, AX, or EAX
immediate to RAX
immediate to memory
immediate32 to memory64
immediate8 to memory64

ADD - Add
registerl to register2
qwordregisterl to qwordregister2
register2 to registerl
qwordregisterl to qwordregister2
memory to register
memory64 to qwordregister
register to memory
gwordregister to memory64

immediate to register

immediate32 to gwordregister
immediate to AL, AX, or EAX
immediate to RAX
immediate to memory
immediate32 to memory64
immediate8 to memory64
AND - Logical AND
registerl to register2
gwordregisterl to qwordregister2
register2 to registerl
registerl to register2

memory to register

0100 1RXB : 0001 0001 : mod qwordreg r/m

0100 000B : 1000 00sw : 11 010 reg : immediate
0100 100B : 1000 0001 : 11 010 gwordreg : imm32
0100 1ROB : 1000 0011 : 11 010 gwordreg : imm8
0001 010w : immediate data

0100 1000 : 0000 0101 : imm32

0100 00XB : 1000 00sw : mod 010 r/m : immediate
0100 10XB : 1000 0001 : mod 010 r/m : imm32
0100 10XB : 1000 0031 : mod 010 r/m : imm8

0100 OROB : 0000 000w : 11 regl reg2

0100 1R0OB 0000 0000 : 11 qwordregl qwordreg2
0100 OROB : 0000 001w : 11 regl reg2

0100 1R0OB 0000 0010 : 11 qwordregl qwordreg2
0100 ORXB : 0000 001w : mod reg r/m

0100 1RXB : 0000 0000 : mod gwordreg r/m
0100 ORXB : 0000 000w : mod reg r/m

0100 1RXB : 0000 0011 : mod qwordreg r/m

0100 0000B : 1000 00sw : 11 000 reg : immediate
data

0100 100B : 1000 0001 : 11 010 gwordreg : imm
0000 010w : immediate8

0100 1000 : 0000 0101 : imm32

0100 00XB : 1000 00sw : mod 000 r/m : immediate
0100 10XB : 1000 0001 : mod 010 r/m : imm32
0100 10XB : 1000 0011 : mod 010 r/m : imm8

0100 OROB 0010 000w : 11 regl reg2
0100 1R0B 0010 0001 : 11 gwordregl gwordreg2
0100 OROB 0010 001w : 11 regl reg2
0100 1R0OB 0010 0011 : 11 gwordregl qwordreg2
0100 ORXB 0010 001w : mod reg r/m

Vol. 2B B-23

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

memory64 to qwordregister
register to memory
gwordregister to memory64

immediate to register

immediate to AL, AX, or EAX
immediate32 to RAX
immediate to memory

immediate32 to memory64

immediate8 to memory64
BSF - Bit Scan Forward
registerl, register2

gwordregisterl, qwordregister2

memory, register

memory64, gwordregister

BSR — Bit Scan Reverse

registerl, register2

memory, register

memory64, gwordregister

BSWAP — Byte Swap
BSWAP — Byte Swap
BT — Bit Test

register, immediate

gwordregister, immediate8

memory, immediate

memory64, immediate8

immediate32 to qwordregister

gwordregisterl, qwordregister2

0100 1RXB : 0010 0011 : mod gwordreg r/m
0100 ORXB : 0010 000w : mod reg r/m

0100 1RXB : 0010 0001 : mod gwordreg r/m
0100 000B : 1000 00sw : 11 100 reg : immediate
0100 100B 1000 0001 : 11 100 gwordreg : imm32
0010 010w : immediate

0100 1000 0010 1001 : imm32

0100 00XB : 1000 00sw : mod 100 r/m : immediate

0100 10XB : 1000 0001 : mod 100 r/m :
immediate32

0100 10XB : 1000 0011 : mod 100 r/m : imm8

0100 OROB 0000 1111 : 1011 1100 : 11 regl reg2

0100 1ROB 0000 1111 : 1011 1100 : 11 gwordregl
gwordreg2

0100 ORXB 0000 1111 : 1011 1100 : mod reg r/m

0100 1RXB 0000 1111 : 1011 1100 : mod
gwordreg r/m

0100 OROB 0000 1111 : 1011 1101 : 11 regl reg2

0100 1R0OB 0000 1111 : 1011 1101 : 11 gwordregl
gwordreg?2

0100 ORXB 0000 1111 : 1011 1101 : mod reg r/m

0100 1RXB 0000 1111 : 1011 1101 : mod
gwordreg r/m

0000 1111 : 1100 1 reg
0100 100B 0000 1111 : 1100 1 gwordreg

0100 000B 0000 1111 : 1011 1010 : 11 100 reg:
imm8

0100 100B 1111 : 1011 1010 : 11 100 qwordreg:
imm8 data

0100 00XB 0000 1111 : 1011 1010 : mod 100 r/m :
imm8

0100 10XB 0000 1111 : 1011 1010 : mod 100 r/m :
imm8 data

Vol. 2B B-24

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

registerl, register2

qwordregisterl, qwordregister2

memory, reg

memory, gwordreg

BTC - Bit Test and Complement

register, immediate

gwordregister, immediate8

memory, immediate

memory64, immediate8

registerl, register2

gwordregisterl, qwordregister2

memory, register

memory, gwordreg

BTR — Bit Test and Reset

register, immediate

gwordregister, immediate8

memory, immediate

memory64, immediate8

registerl, register2

qwordregisterl, qwordregister2

memory, register

memory64, gwordreg

0100 OROB 0000 1111 :

0100 1ROB 0000 1111 :
gwordregl

gwordreg r/m

0100 000B 0000 1111 :
imm8

0100 100B 0000 1111 :
gwordreg: imm8

0100 00XB 0000 1111 :
imm8

0100 10XB 0000 1111 :
imm8

0100 OROB 0000 1111 :

0100 1R0B 0000 1111
gwordregl

gwordreg r/m

0100 000B 0000 1111 :
imm8

0100 100B 0000 1111 :
gwordreg: imm8

0100 00XB 0000 1111
imm8

0100 10XB 0000 1111 :
imm8

0100 OROB 0000 1111 :

0100 1ROB 0000 1111 :
gwordregl

0100 ORXB 0000 1111 :

0100 1RXB 0000 1111 :
gwordreg r/m

0100 ORXB 0000 1111 :
0100 1RXB 0000 1111 :

0100 ORXB 0000 1111 :
0100 1RXB 0000 1111 :

1010 0011 :
1010 0011 :

1010 0011 :
1010 0011 :

1011 1010:

1011 1010:

1011 1010:

1011 1010:

1011 1011 :
1011 1011

1011 1011 :
1011 1011 :

1011 1010:

1011 1010:

: 1011 1010:

1011 1010:

1011 0011 :
1011 0011 :

1011 0011 :
1011 0011 :

11 qwordreg2

11 reg2 regl
11 qwordreg2

mod reg r/m

mod

11 111 reg:

11111

mod 111 r/m :

mod 111 r/m :

11 reg2 regl

mod reg r/m

mod

11 110 reg:

11 110

mod 110 r/m :

mod 110 r/m :

11 reg2 regl
11 qwordreg2

mod reg r/m

mod

Vol. 2B B-25

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding

BTS — Bit Test and Set

register, immediate 0100 000B 0000 1111 : 1011 1010 : 11 101 reg:

imm8

gwordregister, immediate8 0100 100B 0000 1111 : 1011 1010: 11 101

gwordreg: imm8

0100 00XB 0000 1111 : 1011 1010 : mod 101 r/m :
imm8

memory, immediate

memory64, immediate8 0100 10XB 0000 1111 : 1011 1010 : mod 101 r/m :

imm8
registerl, register2 0100 OROB 0000 1111 : 1010 1011 : 11 reg2 regl

gwordregisterl, qwordregister2 0100 1ROB 0000 1111 : 1010 1011 : 11 gwordreg2

memory, register

memory64, gwordreg

CALL — Call Procedure (in same segment)
direct
register indirect

memory indirect

CALL - Call Procedure (in other segment)
indirect

indirect

CBW - Convert Byte to Word

CDQ - Convert Doubleword to Qword+
CDQE - RAX, Sign-Extend of EAX

CLC - Clear Carry Flag

CLD - Clear Direction Flag

CLI - Clear Interrupt Flag

CLTS — Clear Task-Switched Flag in CRO
CMC - Complement Carry Flag

gwordregl
0100 ORXB 0000 1111 : 1010 1011 : mod reg r/m

0100 1RXB 0000 1111 : 1010 1011 : mod
gwordreg r/m

1110 1000 : displacement32
0100 WROOW 1111 1111 : 11 010 reg
0100 WOXBW 1111 1111 : mod 010 r/m

1111 1111 : mod 011 r/m
0100 10XB 0100 1000 1111 1111 : mod 011 r/m

1001 1000
1001 1001
0100 1000 1001 1001
1111 1000
1111 1100
1111 1010
0000 1111 : 0000 0110
1111 0101

Vol. 2B B-26

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

CMP — Compare Two Operands
registerl with register2
qgwordregisterl with gwordregister2
register2 with registerl
qgwordregister2 with gwordregisterl
memory with register
memory64 with qwordregister
register with memory
gwordregister with memory64
immediate with register
immediate32 with qwordregister
immediate with AL, AX, or EAX
immediate32 with RAX
immediate with memory
immediate32 with memory64

immediate8 with memory64

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ —
Compare String Operands

compare string operands [X at DS:(E)SI with Y at
ES:(E)DI]

gword at address RSI with qword at address RDI

CMPXCHG - Compare and Exchange
registerl, register2

byteregisterl, byteregister2

qwordregisterl, qwordregister2

memory, register

memory8, byteregister

memory64, gwordregister

0100 OROB 0011 100w :
0100 1RO0B 0011 1001 :
0100 OROB 0011 101w :
0100 1ROB 0011 101w : 11 qwordregl qwordreg2
0100 ORXB 0011 100w :
0100 1RXB 0011 1001 : mod gwordreg r/m

0100 ORXB 0011 101w : mod reg r/m

0100 1RXB 0011 101wl : mod qwordreg r/m
0100 000B 1000 00sw : 11 111 reg : imm

0100 100B 1000 0001 : 11 111 qwordreg : imm64
0011 110w : imm

0100 1000 0011 1101 : imm32

0100 00XB 1000 00sw : mod 111 r/m : imm

0100 1RXB 1000 0001 : mod 111 r/m : imm64
0100 1RXB 1000 0011 : mod 111 r/m : imm8

11 regl reg2
11 gwordregl qwordreg2
11 regl reg2

mod reg r/m

1010 011w

0100 1000 1010 0111

0000 1111 : 1011 000w : 11 reg?2 regl

0100 000B 0000 1111 : 1011 0000 : 11 bytereg2
regl

0100 100B 0000 1111 : 1011 0001 : 11 qwordreg2
regl

0000 1111 : 1011 000w : mod reg r/m

0100 00XB 0000 1111 : 1011 0000 : mod bytereg
r/m

0100 10XB 0000 1111 : 1011 0001 : mod gwordreg
r/m

Vol. 2B B-27

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

CPUID — CPU Identification
CQO - Sign-Extend RAX
CWD - Convert Word to Doubleword
CWDE - Convert Word to Doubleword
DEC — Decrement by 1
register
gwordregister
memory
memory64
DIV — Unsigned Divide
AL, AX, or EAX by register
Divide RDX:RAX by qwordregister
AL, AX, or EAX by memory
Divide RDX:RAX by memory64

ENTER — Make Stack Frame for High Level
Procedure

HLT — Halt

IDIV — Signed Divide
AL, AX, or EAX by register
RDX:RAX by qwordregister
AL, AX, or EAX by memory
RDX:RAX by memory64

IMUL - Signed Multiply
AL, AX, or EAX with register
RDX:RAX <- RAX with qwordregister
AL, AX, or EAX with memory
RDX:RAX <- RAX with memory64
registerl with register2

gwordregisterl <- gwordregisterl with
gwordregister2

register with memory

gwordregister <- qwordregister with memory64

0000 1111 : 1010 0010
0100 1000 1001 1001
1001 1001
1001 1000

0100 000B 1111 111w : 11 001 reg
0100 100B 1111 1111 : 11 001 qwordreg
0100 00XB 1111 111w : mod 001 r/m
0100 10XB 1111 1111 : mod 001 r/m

0100 000B 1111 011w : 11 110 reg

0100 100B 1111 0111 : 11 110 qwordreg

0100 00XB 1111 011w : mod 110 r/m

0100 10XB 1111 0111 : mod 110 r/m

1100 1000 : 16-bit displacement : 8-bit level (L)

1111 0100

0100 000B 1111 011w
0100 100B 1111 0111

0100 000B 1111 011w :
0100 100B 1111 0111 :

0100 00XB 1111 011w

0100 10XB 1111 0111 :
0000 1111 :1010 1111 :
0100 1ROB 0000 1111 :

gwordregl gwordreg2
0100 ORXB 0000 1111

0100 1RXB 0000 1111 :

r/m

:11 111 reg

: 11 111 gwordreg
0100 00XB 1111 011w :
0100 10XB 1111 0111 :

mod 111 r/m
mod 111 r/m

11 101 reg

11 101 qwordreg
:mod 101 r/m
mod 101 r/m

11 : regl reg2
1010 1111 : 11 :

11010 1111 : mod reg r/m
1010 1111 : mod gwordreg

Vol. 2B B-28

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

registerl with immediate to register2

qgwordregisterl <- gwordregister2 with sign-
extended immediate8

qwordregisterl <- gwordregister2 with
immediate32

memory with immediate to register

gwordregister <- memory64 with sign-extended
immediate8

gwordregister <- memory64 with immediate32

IN — Input From Port
fixed port

variable port

INC — Increment by 1
reg
qwordreg
memory
memory64
INS — Input from DX Port
INT n — Interrupt Type n
INT — Single-Step Interrupt 3
INTO — Interrupt 4 on Overflow
INVD — Invalidate Cache
INVLPG - Invalidate TLB Entry
IRETO — Interrupt Return
Jcc —Jump if Condition is Met
8-bit displacement
displacements (excluding 16-bit relative offsets)

JCXZ/JECXZ — Jump on CX/ECX Zero
Address-size prefix differentiates JCXZ
and JECXZ

JMP — Unconditional Jump (to same segment)
short

direct

0100 OROB 0110 10s1 : 11 regl reg2 : imm

0100 1ROB 0110 1011 : 11 gwordregl qwordreg?2 :
imm8

0100 1ROB 0110 1001 : 11 gwordregl qwordreg?2 :
imm32

0100 ORXB 0110 10s1 : mod reg r/m : imm
0100 1RXB 0110 1011 : mod gwordreg r/m : imm8

0100 1RXB 0110 1001 : mod qwordreg r/m :
imm32

1110 010w : port number
1110 110w

0100 000B 1111 111w : 11 000 reg
0100 100B 1111 1111 : 11 000 gwordreg
0100 00XB 1111 111w : mod 000 r/m
0100 10XB 1111 1111 : mod 000 r/m
0110 110w

1100 1101 : type

1100 1100

1100 1110

0000 1111 : 0000 1000

0000 1111 : 0000 0001 : mod 111 r/m
1100 1111

0111 tttn : 8-bit displacement
0000 1111 : 1000 tttn : displacement32
1110 0011 : 8-bit displacement

1110 1011 : 8-bit displacement
1110 1001 : displacement32

Vol. 2B B-29

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

register indirect

memory indirect

JMP — Unconditional Jump (to other segment)
indirect intersegment
64-bit indirect intersegment

LAR — Load Access Rights Byte
from register

from dwordregister to gwordregister, masked by
00FxFFOOH

from memory
from memory32 to qwordregister, masked by
00FxFFOOH
LEA — Load Effective Address
in wordregister/dwordregister
in qwordregister
LEAVE — High Level Procedure Exit
LFS — Load Pointer to FS

FS:r16/r32 with far pointer from memory

FS:r64 with far pointer from memory

LGDT - Load Global Descriptor Table Register

LGS - Load Pointer to GS
GS:r16/r32 with far pointer from memory

GS:r64 with far pointer from memory

LIDT — Load Interrupt Descriptor Table Register

LLDT — Load Local Descriptor Table Register
LDTR from register

LDTR from memory

0100 WOOBW : 1111 1111 : 11 100 reg
0100 WOXBW : 1111 1111 : mod 100 r/m

0100 00XB : 1111 1111 : mod 101 r/m
0100 10XB : 1111 1111 : mod 101 r/m

0100 OROB : 0000 1111 : 0000 0010 : 11 regl reg2

0100 WROB : 0000 1111 : 0000 0010 : 11
gwordregl dwordreg2

0100 ORXB : 0000 1111 : 0000 0010 : mod reg r/m
0100 WRXB 0000 1111 : 0000 0010 : mod r/m

0100 ORXB : 1000 1101 : modA reg r/m
0100 1RXB : 1000 1101 : modA gwordreg r/m
1100 1001

0100 ORXB : 0000 1111 : 1011 0100 : modA reg
r/m

0100 1RXB : 0000 1111 : 1011 0100 : modA
gwordreg r/m

0100 10XB : 0000 1111 : 0000 0001 : modA 010
r/m

0100 ORXB : 0000 1111 : 1011 0101 : modA reg
r/m

0100 1RXB : 0000 1111 : 1011 0101 : modA
gwordreg r/m

0100 10XB : 0000 1111 : 0000 0001 : modA 011
r/m

0100 000B : 0000 1111 : 0000 0000 : 11 010 reg
0100 00XB :0000 1111 : 0000 0000 : mod 010 r/m

Vol. 2B B-30

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format

Encoding

LMSW - Load Machine Status Word
from register
from memory

LOCK — Assert LOCK# Signal Prefix

LODS/LODSB/LODSW/LODSD/LODSQ - Load
String Operand

at DS:(E)SI to AL/EAX/EAX
at (R)SI to RAX
LOOP — Loop Count
if count != 0, 8-bit displacement

if count =0, RIP + 8-bit displacement sign-
extended to 64-bits

LOOPE - Loop Count while Zero/Equal
if count = 0 & ZF =1, 8-bit displacement

if count =0 & ZF = 1, RIP + 8-bit displacement
sign-extended to 64-bits

LOOPNE/LOOPNZ — Loop Count while not
Zero/Equal

if count 1= 0 & ZF = 0, 8-bit displacement

if count =0 & ZF = 0, RIP + 8-bit displacement
sign-extended to 64-bits

LSL — Load Segment Limit
from register

from qwordregister
from memory16
from memory64
LSS - Load Pointer to SS

SS:r16/r32 with far pointer from memory

SS:r64 with far pointer from memory

0100 000B : 0000 1111 : 0000 0001 : 11 110 reg
0100 00XB :0000 1111 : 0000 0001 : mod 110 r/m
1111 0000

1010 110w
0100 1000 1010 1101

1110 0010
0100 1000 1110 0010

1110 0001
0100 1000 1110 0001

1110 0000
0100 1000 1110 0000

0000 1111 : 0000 0011 : 11 regl reg2

0100 1R00 0000 1111 : 0000 0011 : 11 qwordregl
reg2

0000 1111 : 0000 0011 : mod reg r/m

0100 1RXB 0000 1111 : 0000 0011 : mod
gwordreg r/m

0100 ORXB : 0000 1111 : 1011 0010 : modA reg
r/m

0100 1WXB : 0000 1111 : 1011 0010 : modA
gwordreg r/m

Vol. 2B B-31

INSTRUCTION FORMATS AND ENCODINGS

Table B-15. General Purpose Instruction Formats and Encodings
for 64-Bit Mode (Contd.)

Instruction and Format Encoding
LTR — Load Task Register
from register 0100 ORO0O : 0000 1111 : 0000 0000 : 11 011 reg
from memory 0100 00XB : 0000 1111 : 0000 0000 : mod 011 r/m
MOV — Move Data
registerl to register2 0100 OROB : 1000 100w : 11 regl reg2
gwordregisterl to gwordregister2 0100 1ROB 1000 1001 : 11 qwordegl qwordreg2
register2 to registerl 0100 OROB : 1000 101w : 11 regl reg2
gwordregister2 to gwordregisterl 0100 1ROB 1000 1011 : 11 gwordregl qwordreg2
memory to reg 0100 ORXB : 1000 101w : mod reg r/m
memory64 to qwordregister 0100 1RXB 1000 1011 : mod gwordreg r/m
reg to memory 0100 ORXB : 1