EECS 579 Homework No. 5 Solutions

Problem 1 (30 points) Scan design of a modulo-5 counter. Text p.486, Prob. 14.5 and p.487, Prob. 14.6.
(a) A modulo-5 counter is a simple exercise in logic design using K-maps; some of you used the CAD tool
Espresso (available on CAEN, but overkill for this problem) instead. As shown in the state transition graph
of Fig. 1, five states {S(,S1,S2,53,54} are needed. These can be encoded in the natural way as {000, 001, 010,

1,00

Fig. 1

1[)
00 00
Inputs: C, CLR

011, 100} using three flip-flops. The three unused state patterns {101, 110, 111} imply don’t care values
that can be simplify the combinational logic.The count-up input C = 1 (with CLR = 0) increments the state
at every clock tick. The second input CLR = 1 initializes the circuit to the 000 state. The primary output Z
remains 0 with the exception of the state 100, which produces output Z = 1.

Non-scan test generation was done by the class in three ways: manually via the low-level PODEM
or DALG algorithms, manually using high-level functional tests, or automatically using the TetraMax or
FlexScan ATPG programs available on CAEN. Because of the unused (redundant) states, some stuck-at-
faults may be undetectable. The number of tests needed to cover all detectable faults depends on the spe-
cific logic design and ATPG method used, and can be as small as six tests, so this was not a huge problem.

Untestable

/T

Combinational
logic

C ¥

>0 2
Potentially) l_ .
dete;ltaule : Fig. 2
S—a— *r
/]

CLR

PO

EECS 579 Homework 5 1

Figure 2 has the “official” solution generated by Bushnell and Agrawal, which is actually more
complicated than most of the solutions found by this class. The combinational part (the grey box) has 62
faults including five (they may mean four) redundant faults, which were found by the authors® ATPG pro-
gram (Gentest?). That program produced 62 test vectors to obtain a coverage of (57/62) x 100 = 92.98%.
Untestable faults were all of the s-a-1 type and are marked in Fig. 2.

TC
Untargeted
SCANIN Combina‘tiona| / S_a_1 fault
z
C | Qo SCANOUT
Lemr:]
s{>Ce I .
= Fig. 3
[™ 21
[L/
CLR Do ==
PO
Q2
[

Scan flip-flops

(b) The basic counter is easily made scannable by adding three two-way muxes, one per flip-flop, as shown
in Fig. 3 for the design of Fig. 2. (Some students found a program DFTadvisor that adds scan automatical-
Iy!) Scan tests can be derived in various ways, either manually or using CAD tools. Note that any previ-
ously undetectable faults typically become detectable when scan testing is used. (Why?)

An interesting manual approach used by a couple of students is to generate functional tests, which
can be derived in much the same way as memory tests. The target function “count up modulo 5” is simple,
and can be deduced directly from the state transition graph (Fig. 1). There are five states {Sg,S1,52,53,54}
and for each we need to test that the following two functions are performed correctly: (1) Hold the current
state s;; (2) Increment s; t0 iy modulo 5)- The resulting ten or so scan tests then take the following form:

Initialize the circuit
fori=0to 4
Apply input vector that holds state s;;
Scan out and check the result:
Apply input vector that increments s;t0 Sj;1 (mod 5);
Scan out and check the result: }

This testing procedure takes about 25 scan clock cycles. Of course, it does not guarantee 100% coverage
of SSL faults; this has to be checked by (manual or automated) simulation. With additional functional tests,
one might want to check the reset function s; — s, for each state s;, thereby testing every transition appear-
ing in the state transition graph.

EECS 579 Homework 5 2

Again the number of scan cycles and tests will vary with the circuit and ATPG program. The fol-
lowing results were obtained by the authors of the text with their Gentest program targeting SSL faults in
Fig. 3. The combinational circuit, whose inputs are C, CLR, PO, P1 and P2, and outputs are Z, Q0,Q1 and
Q2, has a collapsed fault set of 57 faults. All these faults were detected by 16 vectors. Their complete scan
sequence consists of 74 vectors (see Equation 14.1 in the text), which includes 7 vectors for testing the
scan register. The scan circuit contains a collapsed set of 79 faults. Fault simulation of the 74-vector se-
quence showed that 78 faults were detected. The undetected s-a-1 fault is marked on Fig. 3, and is at the
output of the test control (TC) inverter in the first multiplexer. This fault was not detected is that it was
never targeted, since the scan register test holds TC at 0 in scan mode, thus preventing the fault from being
activated. The fault is, however, activated every time the circuit is set in the normal mode during the ap-
plication of the scan sequence. Since in the normal mode the state of SCANIN is considered irrelevant,
SCANIN was arbitrarily set to 0. That prevented the propagation of the fault effect. A suitable strategy for
detecting this fault is to set QO outputs of the combinational logic to 0 by applying CLR = 1. At the same
time, the circuit is set in the normal mode by applying TC = 1. The fault effect is now propagated to the
flip-flop and can be scanned out. Note that similar faults in the other two multiplexers were detected when
TC =1, which would place the fault effect in the flip-flop. TC = 1 was always followed by scan-out that
detected the fault. In general, it is recommended that SCANIN be set to 1 whenever the circuit goes to the
normal mode (TC = 1), provided the AND-OR type of multiplexer is used

Problem 2 (20 points) Partial scan and S-graphs
(a) Text, page 487, Problem 14.8. The S-graph of the circuit in Figure 14.16 is given below (Fig. 4). By
scanning F1, all cycles can be eliminated.

‘@—@ Fig. 4

(b) Text, page 487, Problem 14.11. From the definition of a strongly connected component (SCC), every
vertex in this graph lies on one or more cycles. A good heuristic is to select a vertex that is likely to be on
a large number of cycles. Deletion of this vertex then eliminates those cycles. Note that computing the ex-
act or approximate number of cycles on which any vertex lies is not simple.

A simple selection rule suggested by many of you is to select a vertex v with the largest degree,
since large degree implies many paths, and possibly many cycles, passing through v. Degrees are very sim-
ple to compute. Better (and slightly less simple) selection rules would consider the direction of the edges
through v, for example, a v with large indegree and large outdegree. Several of you suggested selecting the
v with the maximum sum of indegree and outdegree, which is a good choice. It turns out, however, that
the vertex with the highest product of indegree and outdegree is even better. [For further discussion of this,
see the paper by S. Bhawmik et al.: “PASCANT: A Partial Scan and Test Generation System,” Proc. IEEE
Custom Integrated Circuits Conf., May 1991, pp.17.3.1 - 17.3.4.] Once a vertex v and all its edges are de-
leted, the remaining s-graph may have one or more smaller SCCs. The same procedure of finding and de-
leting the vertex with the largest indegree-by-outdegree product is recursively applied until the remaining
s-graph has no SCCs.

As is the case with most heuristics, determining how good a particular heuristic is would require
carrying out comparative experiments with lots of representative data.

Problem 3 (10 points) ATE

(a) The three waveform formats in question, DNRZ, RZ and R1, are clearly defined in the handout for the
HP 82000 tester used by Jay Sivagnaname for his lab demo class. Applying them to 11001 gives the an-
swer shown in Fig. 5.

EECS 579 Homework 5 3

1 1 0 0 1
[___ / " DNRZ Fig. 5
/ \[[\ RZ

/T R1

(b) This problem can be tackled by thoughtfully analyzing the somewhat obscure information in the tester
handout. Basically, the key issue is that “NR” formats like DNRZ and NRZ (which is not mentioned ex-
plicitly here) define level signals, whereas the “R” formats define pulse signals. Each format type therefore
has a fundamental advantage when describing level or pulse data. RZ (R1) require a positive (negative)
edge or transition at the start of all clock cycles with 1 (0) data values, as is clearly seen in Fig. 5, which
may be needed to operate or test synchronous, edge-triggered devices.

Some additional facts: Consider ATE applying a test signal x to some pin of a DUT. The NRZ for-
mat specifies a stable 1 or 0 signal level for an entire ATE clock cycle, and only allows x to change at the
start of a cycle. DNRZ or “delayed NRZ” additionally allows a predefined delay to be inserted between
the start of the test cycle and a change in x. If the ATE handles an “R” format, then several data transitions
can occur during a single test cycle. RZ might be used to specify a clock or similar enabling control signal
generated by the ATE and applied to the DUT; then each occurrence of 1 in an RZ-formatted test will cause
a triggering positive edge to be applied to the DUT. This requires the 1 to return to O at the end of each test
cycle so a new positive edge can be produced by a 1 in the next test cycle.

RZ and R1 are basically complementary formats that reverse the roles of positive and negative edg-
es. They have nothing to do with testing for stuck-at-0 versus stuck-at-1 faults, as some of you suggested.
Power consumption is also not an issue, although it is true that because they cause more signal transitions,
I.e., more switching activity, the RZ/R1 formats tend to consume more power than DNRZ.

Problem 4 (30 points) Pseudorandom test pattern generator

(a) i) There is a table of primitive polynomials on text p. 620, where we find P(x) = x8 +x8 +x° + x + 1.
ii) Below is the corresponding Type 1 LFSR version which most people used; the least significant bit is
on the right. Not shown are the CLOCK and (asynchronous) RESET inputs to the eight flip-flops.

(D=

: v W

X7 X6 X5 X4 X3 X2 X1 Xo

iii) From clocking the LFSR (manual simulation), the required state sequence is easily found to be:
00000001 — 10000000 — 01000000 — 10100000 — 110100000

Several of you computed the states via the circuit matrix, which is ok but more work.

(b) The problemis to insert the state S; = 00000000 between some two consecutive states S; and S, with-
out altering any other state transitions. It’s desirable to pick the i so that only a little extra logic is needed.
A systematic design approach, which most people used, is to add a circuit that recognizes S; and Sy and
makes the corresponding next states Sy and S;, 1, respectively. In other words, replace some state transition
Si - Si+l by Si - So - Si+1'

EECS 579 Homework 5 4

To select S;, we can look at the possible state transitions and take advantage of the fact that C is a
shift register. For example, we see from part (a) that if S; = 00000001, then S;;; = 10000000, and Sy can
be interpolated between them just by controlling the signal y shifted into the leftmost flip-flip of C. The
desired result S; —» Sy — Sj41 then becomes

00000001 — 00000000 — 10000000 — ...

There are several ways to achieve this, and the necessary circuits can always be implemented in NANDs
since NAND is a universal logic element. Here’s one design. We need to perform the following functions:

If X7XgX5X4X3XoX1Xg = 00000001 then 'y = 0 else y is unchanged

If X7XgX5X4X3XoX1Xg = 00000000 theny = 1 else y is unchanged
The two if functions reduce to a simpler one

if X7XgX5X4X3XoX1 = 0000000 then y = X else y is unchanged
and can be implemented directly as shown in Fig. 7.

fan MNa
y
% M % PSR R
X7 Xe X5 Xg X3 Xo X1 Xp
NOR
] s
X7XeX5XgX3X0Xq

You can also replace the last if by
If X7XgX5X4X3XoX1 = 0000000 then y is inverted else y is unchanged
in which case Mux is replaced by an XOR gate. This was the design that most people came up with.

All the class designs had about the same cost in terms of (2-input) NAND gates. There are much
cheaper solutions, which require more effort to find, however. Note that all designs involve non-linear
FSRs and there’s no known minimization theory for NLFSRs.

Note: A couple of you attempted to introduce the all-O state S into the state-transition cycle by applying
signals to the flip-flops’ RESET input, or by temporarily turning off the clock. RESET is an asynchronous
control line, so asserting it in the middle of synchronous (clocked) operation will seriously mess up timing,
and almost certainly cause the circuit to fail. Putting gates in the clock distribution network (“gated clock”
design) is also dangerous and should normally be avoided.

1] b C f,], ood 'fg,,”_,' ."!‘__,N_,Jr,' .‘}',lm i
0 0 0 { 0 000 000
o 0 1 l 0 (00 000
01 0 0 0 001 000 Fig. 8
0o 1 1 0 0 (10 000
0 0 {0 0 100 (00
0 1 1] 101 (00
10 1 0 110 000
l 0 (00 (00
(011 (00

EECS 579 Homework 5 5

Problem 5 (10 points) Compression testing. Text, page 545, Problem 15.12.

For multiple fault {b s-a-0, ¢ s-a-0}, we have the table of Fig. 8 (see the text, p.520, Table 5.4 for some of
the same information). After 7 clock periods the LFSR signatures are Syqq4 = 001 and Spaq = 000. The cor-
responding transition count (TC) signatures are Sqqoq = 3 and Sp,q = 0. Hence both TC and LFSR com-
pression detect this particular multiple fault.

EECS 579 Homework 5 6

