
EECS 579 Fall 03 Homework 4 Solutions 1

EECS 579 Fall 2003 Homework No.4 Solutions (J.P. Hayes)
Problem 1 (20 points) Pseudoexhaustive testing

(a) Output X is a function of 5 inputs A,B,C,D,E and so requires 25 = 32 tests, while output Y is a function
of 4 inputs C,D,E,F, requiring 24 = 16 tests. It’s easy to overlap these tests, i.e., apply them in parallel,
leading to the result that 32 tests patterns are needed to pseudoexhaustively test the entire circuit.
(b) Subcircuit TUW has 3 inputs and requires 23 = 8 tests, while all the other subcircuits have just 2 inputs
and require 4 tests each. We must also propagate the test responses from the internal subcircuits TUW and
V to at least one of the 2 primary outputs. For example, we can propagate all the responses of TUW to pri-
mary output Y by setting F = 1. This will also apply 2 of its 4 tests, namely WF = 01 and 11, to subcircuit
(AND gate) Y. We then require two additional tests that make WF = 10 and 10 to complete the testing of
subcircuit Y. This leads to 10 tests overall. These 10 patterns can easily be overlapped with the tests needed
by subcircuits V and X, which must be propagated to primary output X, and so are largely independent of
the tests being propagated to output Y.

As most of you noted, we can test the entire circuit with just 9 tests if we propagate one of the responses
of TUW to output X and the other responses to output Y. This is the minimum possible, since the 8 patterns
that exhaustively test TUW produce only one 0 on line W, so at least one additional test pattern is needed
to ensure that subcircuit Y has both 00 and 01 applied to it.

Problem 2 (20 points) Memory tests
These problems are easy, but they require an understanding of the text’s shorthand notation for memory
faults and tests.
(a) Text, p.308, Prob.9.12. The MATS++ algorithm is described concisely as follows (see text p. 286):

{⇑⇓(w0); ⇑(r0,w1); ⇓(r1,w0,r0)}
It consists of three “march elements” M0, M1 and M2. MATS++ is exactly the same as MATS+ (which
is given in full detail on p. 264) with the addition of an extra r0 step in M2.

Proof that MATS++ detects all cell stuck-at-0/1 faults: Element M0 writes 0 into every cell of the
memory. If any cell is stuck-at-1, that fault will be detected by r0 in M1. Element M1 also writes 1 into
every cell, so a stuck-at-0 fault will be detected by r1 in M2. It can also be proven that stuck-at faults af-
fecting various lines such as an address or data line are also detected by MATS++.
(b) Text, p.308, Prob.9.22. We need to construct tests for the specific pair of passive neighborhood pattern
sensitive faults (PNPSFs) < 1, 0, 1,0; ↑/0 > and < 0, 1, 0, 1; ↓/1 >. Observe that ↑/0 denotes an up transition
fault, where the base cell fails to perform the 0-to-1 transition; ↓/1 denotes the corresponding down tran-
sition fault (see p. 268). Each such fault requires two writes (to create a transition) followed by a read.
Some of you used just one write, in effect, testing only for (pattern-sensitive) stuck-at faults.

Any clear, program-like shorthand is acceptable as the pseudocode. The main test steps are listed below.
They can easily be put into an iterative (loop) structure to match any given memory array type.

C

D

F

T

W

X
V

Y

X

Fig. 1
Y

U

A
B

E

0
2 3
4

1

Base cell

EECS 579 Fall 03 Homework 4 Solutions 2

Write 0 to base cell 2; Write 1 to base cell 2;
Write 1010 to cells 0,1,3,4; Write 0101 to cells 0,1,3,4;
Write 1 to base cell 2; Write 0 to base cell 2;
Read base cell (The test fails if 0 is read); Read base cell (The test fails if 1 is read);

Problem 3 (20 points) Combinational SCOAP (Text, p. 151, Prob. 6.5)

Problem 4 (20 points) Combinational and sequential SCOAP (Text, p. 153, Prob.6.13)
As several of you noticed and brought to my attention, the first printing of the book in 2000 has testability
formulas on p. 141 which contain many small errors. These errors were corrected in the 2001 printing. Al-
gorithm 6.2 on p. 142 is the same in both printings, but the different controllability/observability formulas
lead to two different sets of answers. The authors’ errata sheets for the book ignore this major group of
errors, which is surprising. It turns out, however, that the “right” and “wrong” answers are fairly close to
each other. For example, in the case of line A2 on the bottom right of the circuit, the “wrong” formulas
yield (2,6)0; [1,2]0, whereas the “right” formulas yield (3,7)0; [1,2]0. Either set of formulas would prob-
ably be OK to use in practice as a guide in ATPG or DFT procedures. In any case, I accepted either set and
graded the problem generously.

The main steps in calculating the testability measures according to the “right” formulas from the 2001
printing are shown in the four figures below. The combinational measures are written as (CC0,CC1)CO
and the sequential measures as [SC0,SC1]SO.

EECS 579 Fall 03 Homework 4 Solutions 3

Problem 5 (20 points) C-testability
Observe that this ILA is a (ripple-carry) incrementer, which computes
the arithmetic function f(A) = A + 1.
(a) The incrementer is not C-testable, which is surprising because the
more general ripple-carry adder discussed in class, which computes
f(A,B) = A + B, is C-testable. This can be seen from the fact that it is not
possible to apply the pattern ab = 01 to more than one cell of the ILA at a time. Each of the other three ab
patterns can be applied to all cells simultaneously.
Another proof comes from redrawing C’s truth table in the sequential, state-table format shown above. We
see that S0 is a “trap state” which C can never exit once it enters it, and S1 is a transient state to which C
can never return once it leaves it. Applying ab = 01 to C corresponds to applying a = 0 in state S1 which
causes S1 to be exited, so the pattern ab = 01 can only be applied to one cell at a time. See Theorem 8.2 in
the Abramovici et al. text for the general conditions for C-testability, which cell C does not meet.
(b) From the above discussion, we can easily construct a complete test set for an N-cell ILA. The minimum
number of tests required is N + 3.

Test Comment
aN–1aN–2 … a1a0bin

 0 0 … 0 0 0 Applies 00 to every cell simultaneously
 1 1 … 1 1 0 Applies 10 to every cell simultaneously
 1 1 … 1 1 1 Applies 11 to every cell simultaneously
 x x … x 0 1 Applies 01 to cell 0
 x x … 0 1 1 Applies 01 to cell 1
 …
 0 1 … 1 1 1 Applies 01 to cell N – 1

 a=0 a=1

b= 0 S0 S0,0 S0,1
b= 1 S1 S0,1 S1,0

