
EECS 579 Fall 03 Homework 4 1

EECS 579 Fall 2003 Homework No.4 (J.P. Hayes)
>>>>>>>>>> Distribution Date: Tuesday Nov. 4, 2003. Due Date: Tuesday Nov. 11, 2003

Instructions:
1. Homework assignments will be distributed via the course web page.
2. Completed homework should be given to the instructor during class on the due date (or earlier if you
expect to miss class). Late work will not be accepted without a valid written excuse, such as illness.
3. To ease handling, print your name on the top right corner of the front page of your solutions. Staple
your sheets at the top left corner. Do not fold the sheets.
4. Show all your work, and state any special assumptions you make about a problem. The reasons behind
each non-obvious step should be stated.
5. You should not discuss your methods or answers with other students; the solutions you submit must
be your own. The College of Engineering Honor Code applies to all work in this course.
6. Graded homework will be handed out once in class. If you miss the class, you can pick up your home-
work from the instructor during office hours. Full solutions to homeworks will be put on the web.

This assignment covers material from the lectures and the text Chapters 6 and 9.

Problem 1 (20 points) Pseudoexhaustive testing

(a) Let C be a combinational circuit with n primary inputs (PIs) and m primary outputs (POs) z1,z2,…,zm.
Each PO zi depends on (is a function of) ni PIs, where ni < n. C is said to be exhaustively tested if we apply

all 2n input combinations to its n PIs. C is said to be pseudoexhaustively tested if we apply all input
vectors to all PIs feeding every PO zi. Since we can have ni < n, and the PI sets of two different POs can
overlap, it’s possible for the total number of pseudoexhaustive tests needed by C to be significantly less
than 2n. How many tests are needed to pseudoexhaustively test the circuit of Fig.1 above?
(b) A related testing method involves exhaustively testing a subcircuit SC with respect to its own inputs
rather than with respect to the overall circuit C’s PIs. (This corresponds the “cell fault” model that we dis-
cussed earlier.) In this case, we have to apply (possibly via other circuits) every possible input pattern to
SC and propagate any resulting error (possibly via other circuits) to a PO.

Suppose we want to test each of the four subcircuits (partitions) indicated by dotted lines in Fig. 1 in
this way. Find the smallest number of tests needed, and construct a minimum test set. If you’re not sure if
your test set is minimal, construct the smallest test you can and estimate how close it is to being minimal.

C

D

F

T

W

X
V

Y

X

Fig. 1

Y

U

A
B

E

2
ni

EECS 579 Fall 03 Homework 4 2

Problem 2 (20 points) Memory tests
(a) Text, page 308, Problem 9.12.
(b) Text, page 308 Problem 9.22.

Problem 3 (20 points) Combinational SCOAP
Text, Page 151, Problem 6.5.
In this problem, put your testability figures on the circuit diagram using the same notation (CC0,CC1)CO
as the text, e.g., Fig. 6.10.

Problem 4 (20 points) Combinational and sequential SCOAP
Text, Page 153, Problem 6.13.
Again, put your testability figures on the circuit diagram using the combinational measures (CC0,CC1)CO
and the sequential measures [SC0,SC1]SO as in the text.

Problem 5 (20 points) C-testability
Figure 2a below shows a 2-input, 2-output functional cell C, whose behavior is described by the truth table
of Fig. 2b. It can be used to form an iterative logic array (ILA) as shown in Fig. 2c.
(a) Determine whether or not the ILA is C-testable, assuming that each individual cell must be tested ex-
haustively for all functional faults. Give clear reasons for your answer.
(b) If the ILA is C-testable, show how to construct a complete test set for an N-cell ILA using the minimum
(constant) number of test patterns. If it is not C-testable, then also show how to construct a complete test
set for an N-cell ILA using the minimum (non-constant) number of test patterns.

End of Homework No. 4 (5 problems, 100 points)

a
bc

d

C

a
bc

d

C
a

bc
d

C. . .
a

bc
d

C

a0a1aN–1

d0d1dN–1

cout
bin

a b c d

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) (b)

(c)

Fig. 2

