
Intel XScale® Microarchitecture
Programmer Model for Big
Endian
Application Note

June 2001

Order Number: 278402-001

ii Application Note

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may
be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001

Intel and Intel XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contents
Contents
1.0 Introduction..5

2.0 Endian Configuration ..6

3.0 Data transfer ..6

3.1 Word Accesses...7
3.1.1 Word Load (LDR)...7
3.1.2 Word Store (STR) ..8
3.1.3 Word Swap (SWP)...9

3.2 Half-Word Access ...10
3.2.1 Half Word Load (LDRH)...10
3.2.2 Half Word Store (STRH) ..11

3.3 Byte Access ..12
3.3.1 Byte Load (LDRB)..12
3.3.2 Byte Store (STRB) ...13
3.3.3 Byte Swap (SWPB)..14

3.4 Endianness Test Code ...14

Figures

1 Big Endian Byte, Half Word, and Word Memory Mapping..5
2 Little Endian Byte, Half Word, and Word Memory Mapping ...6
Application Note iii

Intel XScale® Microarchitecture Programmer Model for Big Endian
1.0 Introduction

This document describes the configuration and behavior of the Intel XScale® Microarchitecture
in big endian mode. The memory data transfer instruction sets being discussed are load, store, and
swap in word, half word and byte with aligned and unaligned access. Section 3.4, “Endianness Test
Code” on page 14 is an example code for system endianness testing.

Intel XScale® Microarchitecture has the option to operate in either little or big endian mode.
This refers to the way how the memory is being accessed. Big endian byte ordering assigns the
lowest byte address to the most significant byte of a 32-bit memory word, where the little endian
byte order is the reverse. For an example, a decimal word of 1025 is represented as

00000000 00000000 00000100 00000001

This is represented in the different modes:

• Big Endian

• Little Endian

Figures 1 and 2 show memory mapping for big and little endian modes respectivly. Both of these
figures assume that address X is word aligned.

31 24 23 16 15 8 7 0

00000001 00000100 00000000 00000000

31 24 23 16 15 8 7 0

00000000 000000000 00000100 00000001

Figure 1. Big Endian Byte, Half Word, and Word Memory Mapping

A8989-01

Word at Address X

Half Word at Address X Half Word at Address X+2

Byte at Address X Byte at Address X+3Byte at Address X+2Byte at Address X+1

31 24 823 7 0

31 16 15

16 15

0

31 0
Application Note 5

Intel XScale® Microarchitecture Programmer Model for Big Endian
2.0 Endian Configuration

The big and little endian modes are controlled by the B-bit of the Control Register (Coprocessor
15, register1, bit 7). The default mode at reset is little endian. To enable the big endian mode, the B
bit must be set before performing any sub-word accesses to memory, or undefined results would
occur. The bit takes effect even if the MMU is disabled. The following is assembly code to enable
B-bit.

MACRO BIGENDIAN

MRC p15,0,a1,c1,c0,0

ORR a1,a1,#0x80 ;set bit7 of register1 cp15

MCR p15,0,a1,c1,c0,0

ENDM

The application code built to run on the system must be compiled to match the endianness. To
produce the object code which is targeted for big endian system, the compiler must be specified to
work in big endian mode. For example, -mbig-endian switch must be specified for GNU CC
because the default is in little endian. For GNUPro assembler, -EB switch would assemble the code
for big endian. The library being used must have been compiled in the big endian mode.

3.0 Data transfer

This section describes the behavior of the Big Endian Intel XScale® Microarchitecture in data
transfer instructions.

Figure 2. Little Endian Byte, Half Word, and Word Memory Mapping

A9005-01

Word at Address X

Half Word at Address X+2 Half Word at Address X

Byte at Address X+3 Byte at Address X+2 Byte at Address X+1 Byte at Address X

31 24 823 7 0

31 16 15

16 15

0

31 0
6 Application Note

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.1 Word Accesses

The endianness applies when byte or half-word accesses are made to memory. For a 32-bit word
memory access, the bit pattern in the memory must match the bit pattern in the processor register,
regardless if the system is big or little endian.

3.1.1 Word Load (LDR)

If the address is not word aligned, the loaded value is rotated right by 8 times the value of bits[1:0]
of the address.

Code segment:

LDR r4, [r10] ; word load in aligned access

LDR r5, [r10, #1] ; word load in unaligned access with 1 byte offset

LDR r6, [r10, #2] ; word load in unaligned access with 2 byte offset

LDR r7, [r10, #3] ; word load in unaligned access with 3 byte offset

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x0

• r5 = 0x0

• r6 = 0x0

• r7 = 0x0

• r10 = 0x0

0x0 AA BB CC DD

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r5 = 0xDDAABBCC

• r6 = 0xCCDDAABB

• r7 = 0xBBCCDDAA

• r10 = 0x0

0x0 AA BB CC DD
Application Note 7

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.1.2 Word Store (STR)

In unaligned access, STR instruction ignores the least significant two bits of address.

Code segment:

STR r4, [r10] ;word store in aligned access

STR r4, [r11, #1] ;word store in unaligned access

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r10 = 0x0

• r11 = 0x4

0x0 00 00 00 00

0x4 00 00 00 00

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r10 = 0x0

• r11 = 0x4

0x0 AA BB CC DD

0x4 AA BB CC DD
8 Application Note

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.1.3 Word Swap (SWP)

A SWP instruction performs the load and store operation. If the address is not word aligned, the
loaded value is rotated right by 8 times the bits [1:0] of the address. The stored value is not rotated.

Code segment:

SWP r4, r4, [r10] ; word swap in aligned access

SWP r5, r5, [r11, #1] ; word swap in unaligned access with 1 byte offset

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x11223344

• r5 = 0x55667788

• r10 = 0x0

• r11 = 0x4

0x0 AA BB CC DD

0x4 EE FF 00 99

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r5 = 0x99EEFF00

• r10 = 0x0

• r11 = 0x4

0x0 11 22 33 44

0x4 55 66 77 88
Application Note 9

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.2 Half-Word Access

3.2.1 Half Word Load (LDRH)

The loaded half word is zero-extended to a 32-bit word for half word aligned memory address. For
non half word aligned memory address, the loaded value is unpredictable.

Code segment:

LDRH r4, [r10] ; half word load in aligned access

LDRH r5, [r10, #1] ; half word load in unaligned access

LDRH r6, [r10, #2] ; half word load in aligned access

LDRH r7, [r10, #3] ; half word load in unaligned access

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x0

• r5 = 0x0

• r6 = 0x0

• r7 = 0x0

• r10 = 0x0

0x0 AA BB CC DD

After code execution:

Registersa

a. XX means unpredictable

Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x0000AABB

• r5 = 0xXXXXXXX

• r6 = 0x0000CCDD

• r7 = 0xXXXXXXX

• r10 = 0x0

0x0 AA BB CC DD
10 Application Note

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.2.2 Half Word Store (STRH)

An unaligned half word memory access would cause the stored value to be unpredictable.

Code segment:

STRH r4, [r10] ; halfword store in aligned access

STRH r4, [r11, #1] ; halfword store in unaligned access

STRH r4, [r12, #2] ; halfword store in aligned access

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r10 = 0x0

• r11 = 0x4

• r12 =0x8

0x0 00 00 00 00

0x4 00 00 00 00

0x8 00 00 00 00

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r10 = 0x0

• r11 = 0x4

• r12 = 0x8

0x0 CC DD 00 00

0x4 XX XX XX XX

0x8 00 00 CC DD
Application Note 11

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.3 Byte Access

3.3.1 Byte Load (LDRB)

The selected byte is placed at the [7:0] of the register and [31:8] of the register is zero extended.

Code segment:

LDRB r4, [r10] ; byte load in aligned access

LDRB r5, [r10, #1] ; byte load in unaligned access with 1 byte offset

LDRB r6, [r10, #2] ; byte load in unaligned access with 2 byte offset

LDRB r7, [r10, #3] ; byte load in unaligned access with 3 byte offset

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 =0x0

• r5 =0x0

• r6 = 0x0

• r7 =0x0

• r10 = 0x0

0x0 AA BB CC DD

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 =0x000000AA

• r5 = 0x000000BB

• r6 = 0x000000CC

• r7 = 0x000000DD

• r10 = 0x0

0x0 AA BB CC DD
12 Application Note

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.3.2 Byte Store (STRB)

Code segment:

STRB r4, [r8,#0]

STRB r4, [r9, #1]

STRB r4, [r10, #2]

STRB r4, [r11, #3]

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r8 = 0x0

• r9 = 0x4

• r10 = 0x8

• r11= 0xA

0x0 00 00 00 00

0x4 00 00 00 00

0x8 00 00 00 00

0xA 00 00 00 00

0x0 00 00 00 00

After code execution

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0xAABBCCDD

• r8 = 0x0

• r9 = 0x4

• r10 = 0x8

• r11 = 0xA

0x0 DD 00 00 00

0x4 00 DD 00 00

0x8 00 00 DD 00

0xA 00 00 00 DD

0x0 DD 00 00 00
Application Note 13

Intel XScale® Microarchitecture Programmer Model for Big Endian
3.3.3 Byte Swap (SWPB)

A SWPB instruction works as the LDRB and STRB.

Code segment:

SWPB r4, r4, [r10] ;byte swap

3.4 Endianness Test Code

The following is simple C code to test the endianness of the system.

This code would place character AB or ABCD in the memory array. Pointer is used to read back
the memory array. A big endian system would return the characters as the same byte order, where
the little endian system would return the characters in reverse order.

/* This program store a value of Return value of 1 if the byte for int is neither 2
or 4 bytes, OR neither little or big endian*/

#include <stdio.h>

static int w[1];

static char * bytes;

int main(void)

{

printf ("This is an Endianness test:\n");

if (sizeof (int) == 2)

{

w[0] = 0x4142;

bytes = (char *) w;

if (strcmp(bytes, "AB") == 0)

printf ("big endian\n");

Before code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x11223344

• r10 = 0x0
0x0 AA BB CC DD

After code execution:

Registers Memory
location Byte 0 Byte1 Byte 2 Byte 3

• r4 = 0x112233AA

• r10 = 0x0
0x0 44 BB CC DD
14 Application Note

Intel XScale® Microarchitecture Programmer Model for Big Endian
else if (strcmp(bytes, "BA") == 0)

printf ("little endian\n");

else

{

printf ("Not big nor little endian\n");

return 1;

}

}

else if (sizeof (int) == 4)

{

w[0] = 0x41424344;

bytes = (char *) w;

if (strcmp(bytes, "ABCD") == 0)

printf ("big endian\n");

else if (strcmp(bytes, "DCBA") == 0)

printf ("little endian\n");

else

{

printf ("Not big nor little endian\n");

return 1;

}

}

else

{

printf ("unexpected size of int\n");

return 1;

}
return 0;
Application Note 15

	Intel® XScale™ Microarchitecture Programmer Model for Big Endian
	Copyright
	Contents
	1.0 Introduction
	2.0 Endian Configuration
	3.0 Data transfer
	3.1 Word Accesses
	3.1.1 Word Load (LDR)
	3.1.2 Word Store (STR)
	3.1.3 Word Swap (SWP)

	3.2 Half-Word Access
	3.2.1 Half Word Load (LDRH)
	3.2.2 Half Word Store (STRH)

	3.3 Byte Access
	3.3.1 Byte Load (LDRB)
	3.3.2 Byte Store (STRB)
	3.3.3 Byte Swap (SWPB)

	3.4 Endianness Test Code

