
Author: Steve Gorman
Title: Programming with the Intel architecture in the flat memory model

Abstract: As the Intel architecture moves off the desktop into a variety of other
computing applications, developers will need to design their systems to take full
advantage of the architecture’s performance and extended addressing. Intel
architecture’s flat memory model provides for the fastest code execution and simplest
system configuration. This paper will discuss:
• How to initialize the Intel386 and Intel486 processors to run in protected mode

using the flat memory model.
• Issues, benefits and drawbacks associated with using the flat memory model.
• Tools available for programming in the flat memory model.

The flat memory model is Intel architecture’s answer to “No more segmentation.” This paper will cover
how to initialize a system as well as the advantages, and tools available for running in the flat memory
model. The paper will also compare flat memory model performance to real-mode and segmented
protected mode operation.

What is Flat Memory Model
When running in the flat memory model the system designer essentially “Turns-Off” the segmentation
feature of the 80386 architecture, by loading the segment registers with selectors for descriptors that
have a base addresses of 0, privilege level set to 0 (full access rights), and by setting the limits to allow
access the entire 32-bit address space. Once this is done there is no longer a need to change the
segment registers. The 32-bit offsets used by the 80386 instructions, in protected mode, are sufficient
to access the entire linear address space.

Why Would I Want to Use the Flat Memory Model
Here are some of the reasons:
• Extend the addressing capability beyond 1MB.
• Remove the 64KB barrier on segments.
• Eliminate segmentation.
• Improve the portability of applications to other architectures that support a flat linear address

space.
• Performance over 16-bit real-mode or segmented protected mode.
• The tools available for developing flat memory.
• Future Applications

Extending the addressing capabilities to over 1MB of memory, can be done on any system using tricks.
However, this typically hurts performance, adds to system cost, and is difficult to implement and
maintain. This makes the 386 protected mode a good solution to the problem. To remove the 64KB
segmentation barrier an 80386 architecture requires you to run the processor in 32-bit protected mode.
For both of these reasons your only remaining question is segmented or flat memory models (see
Protected Flat or Protected Segmented Model? section).

This leads to the third reason listed; eliminating segmentation. The desire to eliminate segmentation is
likely someone thats had to work around the 64KB segmentation limit of the 8086 or is not familiar
with a segmented architecture. Eliminating segmentation just for the sake of it, isn’t a very good
reason, but if it is to improve portability to other architectures that’s a more reasonable one (see
Protected Flat or Protected Segmented Model? section).

If moving to 32-bit protected mode because you believe it will boost your performance, requires you to
take a close look at your application to determine if you will actuall get a performance boost (see
Protected Mode Flat Memory Model over Real-Mode section). A performance boost this is not always
a given, even when running the processor in 16-bit mode the application still has access to the 32-bit
registers and instructions.

Tools are yet another interesting reason to choose segmented protected mode over flat protected mode.
A number of tool vendors have appeared that make excellent tools for developing applications under
the flat memory model, mainly due the popularity of DOS extenders. Many of these same tool vendors
also support the development of a segmented memory model.

Protected Mode Flat Memory Model over Real-Mode
If your application needs access to greater than 1MB of memory or it manipulates data objects of
greater than 64KB frequently, then protected mode is definitely the way to go. If you are looking at
flat memory model over real-mode to get extra performance the answer isn’t so obvious, you need to
look at what your application is doing. If most of its time is spent dealing with 32-bit objects and with
large data arrays then protected mode is likely to provide an advantage in performance over real mode,
if your application doesn’t have these 32-bit attributes then real-mode may prove to perform the best.

If you look closely at the instruction set you will see that instructions executed in real-mode are equal
to or faster than the same instruction when executed under protected mode. A few years back the main
advantage in performance that protected mode (specifically flat memory model) offered was due
primarily in the difference in compiler technology. The compilers that supported protected mode
programming were far more advanced at optimizing code for the 80386 processors instruction set than
the existing real-mode compilers. It is important to note here that even in real-mode you still have full
access to the 32-bit instructions. In recent years the real-mode compilers have come a long way in
optimizing its use of the 80386 processors instruction set. This could potentially significantly reduce
the performance advantage offered by the 32-bit specific compilers. All you may need to do is upgrade
your compiler or turn on the compiler switch that indicates a 386 target system.

Protected Flat or Protected Segmented Model?
What flat memory model offers over the segmented model is primarily, simplicity (eliminates
segmentation), improved portability to other flat 32-bit architectures, and possibly tools. Some might
argue that you also get greater performance, but I believe this to be negligible. The elimination of
segmentation is the main argument used to justify that performance is improved. It is true that using far
pointers, which would be required from time to time in the segmented model, is slower than using near
pointers (no segment register needed), but it seems that when people are comparing the segmented to
flat memory models they associated segmentation with the 8086’s segmentation. With the 8086 each
segment was limited to only 64KB and if an application wanted to work with objects greater than
64KB the programming became much more complex. With protected mode this limitation is removed,
allowing segments to be up to 4GB (or the full address space) each. With this limitation remove each
individual application worries little about segmentation which is typically only needed when
interfacing with the operating system. Assuming that interfacing to the operating system is done a very
small percentage of the time the performance difference between the two should be very little.

Simplicity is good for the obvious reason, but the negative is all of the protection lost. The protection
feature aids significantly in the debugging of the application and in the ability to produce a more secure
and stable system. Even if all of the protection features are not used, just having segmentation around
is a significant debugging advantage.

Portability is one of the better reasons to use the flat memory model. Most of the 32-bit architectures
available use a flat memory model. Therefore porting your memory manager, task managers, I/O
systems, and other software is easier to do when using the flat memory model.

Tools are yet another good reason you may want to use the flat memory model, especially if you are
embedding DOS and BIOS into your target system. There are a number of compilers and tools for
developing applications for the Intel architecture. When developing an application to run under the
DOS environment flat memory model development is enable by what is called a DOS extender, which
is produced by a number of different vendors. If DOS is not part of your system, then most of the
compilers and linkers/locators that support the flat memory model can also support the segmentation
memory model.

TOOLS
There are an abundant amount of development tools available for developing applications for the Intel
architecture. Of these tools, the tools designed for developing DOS based applications are by far the
most popular. For real-mode based development the Microsoft and Borland tools have been the most
popular, recently even these vendors have added support for 32-bit protected mode development. They
have also greatly improved the optimization for 80386 based processors for both real and protected
mode DOS and Windows based development. Other vendors like Watcom and Metaware have been
producing compilers for the 32-bit Intel processor for a greater period of time and have created quite a
following in the 32-bit environment. These compiler vendors primarily target DOS extender and 32-
bit Windows application development while other vendors provide tools that use these compiler
technologies to target the development to the embedded environment. Vendors like Pharlap, Systems
& Software Inc., Paradigm, and Concurrent Sciences provide the Linkers/Locators, and other tools that
enable the use of these compilers in the embedded world. Nearly all of the tool vendors provide
compilers and other tools for the Intel processors.

If DOS is expected to be part of the system, the use of a DOS extender is a easy way to get beyond the
1MB and 64KB segment barrier of DOS and real mode. These DOS extenders are available from a
number of different vendors and are typically shipped with the various compilers that support the
development of DOS extender applications. A good technical reference on DOS extenders and how
they work is DOS and Windows Protected Mode: Programming with DOS Extenders in C , by Al
Williams.

Initializing the Processor to Run Flat Memory Model
To use the flat memory model the processor must run in protected mode. To switch the processor into
protected mode:
• First a global descriptor table (GDT) must be created. This table is created by the tools used to

build the software (typically called a builder or locator) at run-time, or from within a source file.
The 32-bit protected mode compilers and builder / locator tools provide support for generating flat
memory model code.

• Next point the CPU register GDTR to the created GDT.
• Set the protect enable (PE) bit in the machine status word (MSW or CR0).
• Execute a short jump, to flush the processors prefetch queue.
• Initialize the data (DS, ES, FS, and GS) and stack (SS) segment registers with a selector for the

data segment.
• Initialize the ESP register to point to the top of the stack
• Execute a far jump (one that will load the CS register) to code that will initialize the rest of the

hardware like, serial ports, interrupt descriptor table, timers, interrupt controllers, etc...

Because this is the simplest protected mode configuration, the global descriptor table requires only a
few entries. Again, many of the tools have controls that will create the descriptor table for you for the
flat memory model. The following is a sample of what the GDT table could look like:

Global Descriptor Table
Base
31...24

Attributes Base
23...0

Limit
15...0

00 00 0000CF 98 FF FF

0

1

2 00 00 00008F 92 FF FF

CS = 8

DS,SS,ES,FS,GS=10h

This table could be more complex, but that is entirely up to the system developer. Typically you
would find aliases in the GDT for the GDT itself and the IDT, but they are not required.

Programming for the Flat memory model
If porting code from an architecture that is based on a 32-bit flat memory model, your biggest concern
is that of porting to any new architecture, but if moving from an 8086 or 16-bit environment there is
more than just the architecture you need to be concerned with. If most of the existing code is written in
a high level language, your major concern will be related to the size difference between data types. For
example, with most 16-bit “C” compilers the default size of an “int” is 16-bit, where as for a 32-bit “C”
compiler an “int” will most likely be 32-bits. This problem can be minimized by using good
programming practices, i.e. create user definable types (for example use typedef’s in “C”) for size
dependent variables. This increase in the size of an “int” can also have an impact on the overall
memory requirements and system performance. If data objects go from 16 to 32-bits, then obviously
cause the memory requirements to grow. This may be unnecessary and can be avoided by declaring
variables to be only as large as needed and not relying on the default size of a high level language.

Another 16 verses 32-bit concern is stack operations. Since for the 32-bit environment items are put
on to the stack aligned to 32-bits and for the 16-bit environment the stack would be aligned to 16-bits.
The main source of problems with the change in stack size is for assembly language source files that
must retrieve parameters from the stack. This is probably the biggest headache when moving from
8086 environment to the 32-bit protected mode environment. Essentially all assembly language
functions that retrieve parameters must be modified, i.e. MOV AX, [BP-2] must change to MOV AX,
[BP-4]. This will also have an effect on performance when dealing with 16-bit bus versions of the 386
processor. If you are dealing with a large amount of assembly language functions and find a lot of
these types of issues existing in your code, you may want to consider looking at 16-bit protected mode.
16-bit protected mode offers greater than 1MB of addressabiltiy and still has the 64KB segment limits,
but does not offer a flat memory model (16-bit protected mode is outside the scope of this paper).

Performance
To maximize your performance you should take a closer look at is how your program can be changed
to take full advantage of the extended addressing and the enhanced instruction set. One obvious
performance enhancement is in the 32-bit instructions, but remember real-mode applications also have
access to these 32-bit instruction. A more significant improvement is in the new 32-bit addressing
mode. This new addressing mode allows more CPU registers to be used as index addressing registers
and adds scaled index addressing. The 32-bit addressing mode is available in real-mode, but is
difficult to implement and most real-mode based compiler do not do a good job using this capability.
The programmer should also look at how they can take advantage of the greatly increase segment size
and memory space.

When using 16-bit bus versions of the 386 processor, like the Intel386 SX, CX, or EX processors,
performance can be significantly impacted when using the processor in 32-bit mode. On a 16-bit bus
system when using 32-bit data items the processor will perform a two fetch operation from memory
instead of one for 16-bit data items, this is obviously slower. This impact can be quite significant and
could void the performance gains of using a 32-bit processor. So, in the case of 16-bit systems, care
should be taken to declare 32-bit data items only when needed. It is also important to note that most
protected mode compilers do not take the 16-bit bus versions of the processor into consideration. This
can be best seen when moving from a 16-bit real mode compiler to a 32-bit protected mode compiler,
the default size of an “int” changes from 16-bits to 32-bits.

Next on the list of performance issues is interrupt response time. The interrupt process for protected
mode systems has more overhead associated with it than real-mode based systems, causing a slower
interrupt response time. The hope is that the 32-bit capabilities of protected mode make up the
difference.

If using a DOS extender to take advantage of the 32-bit capabilities of the 80386 processor, you
should consider the performance issues pointed out above with the additional overhead of interfacing
to a real-mode operating system from a protected mode application. When making operating systems
call to DOS or BIOS the protected mode DOS extender must switch the processor back into real-mode
to make the function call. Once the call is finished the processor must then be switched back into
protected mode. This has a considerably greater amount of overhead as compared to making the
system call from a real-mode DOS program, but since many programs make operating system calls a
small percentage of the time this many not be a significant performance hit.

Summary
As you can see, the 80386 processor offers the system developer a wide range of capabilities and
choices. The flat memory model is just one of these. The flat memory model does offer the easiest
development solution, but not necessarily the best. With the great popularity of the Intel architecture
there are plenty of tools that are available to help you develop the system you desire. Along with the
vast number of tools is also an abundance of reference materials on the Intel architecture. For more
information on the Intel architecture, I recommend the I48
i486(TM) Microprocessors Programmer’s Reference Manual and 80386 Systems Software Writer’s
Guide by Intel. For more information on how DOS extenders work, I recommend DOS and Windows
Protected Mode: Programming with DOS Extenders in C by Al Williams.

	Title Page - Abstract
	What is Flat Memory Model
	Why Would I Want to Use the Flat Memory Model
	Protected Mode Flat Memory Model over Real-Mode
	Protected Flat or Protected Segmented Model?

	TOOLS
	Initializing the Processor to Run Flat Memory Model
	Programming for the Flat memory model
	Performance

	Summary

