
Network PC System Design
Guidelines

A Reference for Designing

Net PC Systems for Use

with the Microsoft® Windows® and

Windows NT® Operating Systems

Version 1.0b — August 5, 1997

Co-authored by Compaq Computer Corporation,
Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation

Introduction to Network PC 2

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

This document is for informational purposes only. COMPAQ COMPUTER CORPORATION, DELL
COMPUTER CORPORATION, HEWLETT PACKARD COMPANY, INTEL CORPORATION, AND
MICROSOFT CORPORATION MAKE NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
DOCUMENT.

Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, or
Microsoft Corporation may have patents or pending patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. The furnishing of this document does not
give you any license to the patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Compaq Computer Corporation, Dell Computer
Corporation, Hewlett Packard Company, Intel Corporation, or Microsoft Corporation.

Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation,
and Microsoft Corporation do not make any representation or warranty regarding specifications in this
document or any product or item developed based on these specifications. Compaq Computer Corporation, Dell
Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft Corporation disclaim all
express and implied warranties, including but not limited to the implied warranties or merchantability, fitness
for a particular purpose and freedom from infringement. Without limiting the generality of the foregoing,
Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation,
and Microsoft Corporation do not make any warranty of any kind that any item developed based on these
specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other
intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for
such intellectual property rights where appropriate. Compaq Computer Corporation, Dell Computer
Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft Corporation shall not be liable for
any damages arising out of or in connection with the use of these specifications, including liability for lost profit,
business interruption, or any other damages whatsoever. Some states do not allow the exclusion or limitation of
liability or consequential or incidental damages; the above limitation may not apply to you.

ActiveX, BackOffice, Direct3D, DirectDraw, DirectInput, DirectMusic, DirectPlay, Direct Show, DirectSound,
DirectX, Microsoft, NetMeeting, Win32, Windows, and Windows NT are trademarks or registered trademarks
of Microsoft Corporation in the United States and/or other countries. Intel, Pentium, and MMX are trademarks
or registered trademarks of Intel Corporation. Other product and company names mentioned herein might be the
trademarks of their respective owners.

© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel
Corporation, and Microsoft Corporation. All rights reserved.

Revision History

Date Description
March 10, 1997 V. 0.9. First public review
April 21, 1997 V. 1.0
May 23, 1997 V. 1.0a. Inserted port number for DHCP Request and ACK reply
August 5, 1997 Version 1.0b. Updated references; added missing values for DHCP

Options in Appendix A; revised code samples in Appendixes C, D, E,
F, and G.

Introduction to Network PC 3

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Contents
Introduction to Network PC.. 4

Required vs. Recommended Features ... 4
Conventions and Terms Used in This Guide... 5

Network PC Hardware Requirements... 7
General System Requirements .. 7
BIOS and Remote New System Setup .. 8
Power Management Requirements ... 10
Platform Management Information Requirements .. 11

Overview of Platform Management Information Technologies............................... 11
Component Instrumentation Requirements... 13
Management Information Providers.. 15
Simple Network Management Protocol .. 16

Industrial Design Requirements.. 17
General Device Requirements... 18
System Buses .. 21
I/O Devices ... 23
Graphics Adapter and Multimedia Requirements... 25
Storage and Related Components ... 27
Hardware Security Features .. 29

References and Resources... 30
Checklist for Network PC Requirements.. 33
Attachment A: DHCP Extensions for New System Setup .. 37

Protocol Overview... 37
Relationship to the Standard DHCP Protocol ... 40
Client Behavior ... 42
Server Behavior... 49

Attachment B: Preboot Execution Environment ... 52
Client State at Bootstrap Execution Time ... 52
Preboot API Entry Point and Installation Check ... 56
Preboot Services API... 59
TFTP API Service Descriptions .. 62
UDP API Service Descriptions ... 64
UNDI API Service Descriptions ... 66

Attachment C: Preboot API Common Type Definitions ... 75
Attachment D: Preboot API Parameter Structure and Type Definitions 78
Attachment E: TFTP API Parameter Structure and Type Definitions................................ 83
Attachment F: UDP API Constant and Type Definitions ... 88
Attachment G: UNDI API Constant and Type Definitions... 91
Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details..................... 100
Attachment I: DMI Instrumentation Details ... 107
Attachment J: Possible DMI/CIM Mappings ... 110
Attachment K: UUIDs and GUIDs... 111
Attachment L: DHCP Options For Host System Characteristics 127
Hardware Glossary.. 132

Introduction to Network PC 4

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Introduction to Network PC
This guide presents information for engineers who build or plan to build personal
computers and expansion cards under the Network PC Design Initiative.

The Network PC is a new addition to the PC family— not a replacement — using
Intel architecture and other microprocessor architectures that run the Microsoft®
Windows® or Windows NT® Workstation operating systems. The Net PC will
reduce the cost of business computing by optimizing the design for users who do not
require the flexibility and expandability of the traditional PC, and by allowing
organizations to centrally manage their information technology. Although the types
of business users will vary, the Net PC will be ideally suited for those involved in
activities such as data entry, transaction processing, and intranet and Internet
access.

Following these design guidelines for the Net PC will allow PC manufacturers to
deliver products with a baseline level of manageability and interoperability, and
will offer greater certainty to information technology (IT) managers that specific
steps have been taken to reduce total cost of ownership (TCO).

The Net PC supports either Windows 95 or Windows NT Workstation; however,
more significant TCO reductions will be realized with Windows NT Workstation
4.0 and later versions. An important benefit of the Net PC design is its assurance of
a seamless migration path to the rich system-manageability capabilities that are part
of Windows NT Workstation 5.0.

The Net PC is designed to be a highly manageable platform, with instrumentation,
network boot capabilities, controlled and managed upgrade capabilities, and a
“sealed case” that prevents end-user access for changing the system hardware or
software configuration. However, the Net PC preserves the corporate investment in
existing Windows-based and Windows-compatible in-house application software
while extending the computing platform to support Internet and intranet software
based on Java and Microsoft ActiveX™ solutions.

The Net PC defined in these guidelines provides a complete hardware, software,
and operating system solution to address the PC manageability issues in corporate
environments, where the benefits of PC-based computing can be preserved and
enhanced through greater centralized control.

Required vs. Recommended Features
In this guide, hardware features are described as follows:

• Required: These are the basic hardware features that must be implemented.

• Recommended: These features support or improve manageability or add
functionality supported by the operating systems or software layers below the

Introduction to Network PC 5

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

operating system, such as the BIOS. Some recommendations apply to the
general system, such as recommendations for improved industrial design.

• Optional: These features are neither required nor recommended.

 In this guide, these terms have the following meanings:

• Must = Required

• Should = Recommended

 Note: The requirements defined in this guide provide guidelines for designing Net
PC systems. These design guidelines are not the basic system requirements for
running the Microsoft Windows or Windows NT operating system.

 Conventions and Terms Used in This Guide
 The following conventional terms, abbreviations, and acronyms are used throughout
this guide.

 Add-on devices
 Devices that are traditionally added to the base PC system to increase
functionality, such as audio, networking, graphics, SCSI controller, and so on.
Add-on devices fall into two categories: devices built onto the system board and
devices on expansion cards added to the system through a system board connector
such as ISA or PCI.

 Desktop Management Interface (DMI)
 A framework created by the Desktop Management Task Force (DMTF). DMTF
specifications define industry-standard interfaces for instrumentation providers
and management applications.

 End user
 The person who is using the Net PC to perform his or her job function, such as
inputting data or running applications.

 Instrumentation
 A mechanism for reporting information about the state of PC hardware and
software to enable management applications to ascertain and change the state of a
PC and to be notified of state changes.

 Intel architecture
 Refers to computers based on 32-bit microprocessors that use the Pentium
instruction set, such as Intel® Pentium®, Intel Pentium with MMX™ technology,
Pentium Pro microprocessors, or similar processors.

 Limited end-user access
 In this document, several features are defined as “not accessible to end users,”
meaning that the person who is using the system to input data or run other
applications does not have the ability to change the configuration, purposefully or

Introduction to Network PC 6

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

inadvertently. Specific design guidelines might be provided in some cases, but in
general, this term means that the configuration can only be changed, for example,
by an administrator or service technician who has special network logon
privileges, special software, or special tools. This term is equivalent to “no user-
serviceable parts” in consumer electronics.

 PC 97
 Refers to the set of design requirements defined for the “Designed for Microsoft
Windows” logo program, as specified in PC 97 Hardware Design Guide (Microsoft
Press, 1996). References to PC 97 requirements in this guide include all changes,
clarifications, and timelines for implementation of PC 97 requirements as published on
http://www.microsoft.com/hwdev/desguid/pc97faq.htm.

 RISC– based
 Refers to computers based on Windows NT– compatible implementations of
RISC processors, including computers with Digital Alpha 21064 (EV4) or higher
processors.

 System administrator
 The person who administers the corporate network, servers, and clients, including
configuration and management of Net PC systems.

 System devices
 Also system board devices. Devices on the system board, such as interrupt
controllers, keyboard controller, real-time clock, direct memory access (DMA)
page registers, DMA controllers, memory controllers, floppy disk controller
(FDC), IDE ports, serial and parallel ports, PCI bridges, and so on. In today’s
PCs, these devices are typically integrated in the supporting chip set.

 Web-Based Enterprise Management (WBEM)
 Technology under development by BMC Software, Inc., Cisco Systems, Inc.,
Compaq Computer Corporation, Intel Corporation, and Microsoft Corporation,
based on standards being developed by the DMTF and the Internet Engineering
Task Force (IETF), to provide a mechanism for managed components to specify
the information that they can provide to management applications and to provide
a mechanism that management applications can use to access the information.

 Win32 Driver Model (WDM)
 A driver model based on the Windows NT driver model that is designed to
provide a common set of I/O services and binary-compatible device drivers for
both Windows NT and future Windows operating systems for specific driver
classes. These driver classes include USB and IEEE 1394 buses, audio, still-
image capture, video capture, and HID-compliant devices such as USB mice,
keyboards, and joysticks.

 Windows
 Refers to the Microsoft Windows 95 operating system, including any add-on
capabilities and any later versions of the operating system.

Network PC Hardware Requirements 7

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Windows Management Instrumentation (WMI)
 Extensions to WDM being developed for Windows NT 5.0 and Windows 98 to
provide an operating system interface through which instrumented components
can provide information and notifications.

 Windows NT
 Refers to the Microsoft Windows NT 4.0 operating system, including any add-on
capabilities and any later versions of the operating system, unless specific design
issues are defined that relate to version 5.0. In this case, the version number is
specifically cited.

 Wired for Management (WfM)
 An initiative aimed at increasing the manageability of desktop PCs and servers
and improving the management software for these systems.

 Zero Administration Windows
 A Microsoft initiative that focuses on improving Windows and Windows NT for
maximum automation of administrative tasks with centralized control and
maximum flexibility.

 Network PC Hardware Requirements
 This section presents the system hardware requirements for Net PC design.

 General System Requirements
 This section presents the basic system requirements for Net PC design.

 Any requirements that are defined as specific architecture or hardware
implementations are stated in this way because there are no common industry-
accepted benchmark tests for system performance.

 1. Minimum CPU: 133-MHz Intel Pentium processor or compatible processor
with similar performance, or Windows NT – compatible RISC-based
processor
 Required

 This minimum computational capability is required to ensure that the customer is
purchasing a product optimized to run Windows-based applications.

 The requirement for Windows NT – compatible RISC-based systems includes
Digital Alpha 21064 (EV4) or higher processors.

 2. Level 2 cache with 256K minimum, for systems with Pentium or compatible
processors
 Required

 This minimum L2 cache is required for performance on Net PC systems that use
Pentium or compatible processors. This requirement does not apply for a Net PC

Network PC Hardware Requirements 8

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

system with a Pentium Pro or compatible processor with a built-in L2 cache, or
processors whose architecture permits equivalent performance without an L2 cache.

 3. Minimum RAM: 16 MB
 Required

 Recommended: 32 MB

 This minimum memory is required to ensure that the customer is purchasing a
product optimized to run Windows-based applications.

 4. Upgrade capabilities for RAM and CPU
 Optional

 If the capability for memory and CPU upgrade is provided, this capability must not
be end-user accessible.

 BIOS and Remote New System Setup
 A Net PC system must be capable of remote configuration and booting, even when
the operating system is not loaded. This section defines the requirements that
support this capability, which specify baseline capabilities required to support
remote boot and remote diagnostics.

 5. Limit user access in preboot modes
 Required

 For a Net PC system, the operating system provides the capability for centrally
enabling or disabling capabilities on the system. To ensure TCO objectives, security
to protect enable/disable capabilities for hardware components must also be
provided before the operating system boots. The purpose of this feature is to prevent
end users from accidentally or purposefully circumventing operating-system level
security as applied by an administrator.

 6. System BIOS support for boot devices, for Intel architecture
 Required

 For network adapters, the system BIOS must comply with the requirements defined
in Sections 3 and 4 (as they apply to Plug and Play devices) of the Compaq,
Phoenix, Intel BIOS Boot Specification, version 1.01 or higher, which describes the
requirements for Initial Program Load (IPL) devices.

 If a CD-ROM device is provided as a boot device in the system, the system must
support No Emulation mode in “El Torito — Bootable CD-ROM Format
Specification, Version 1.0” by Compaq, Intel, and Phoenix or an equivalent method
that supports the Windows NT CD-ROM installation process. For information
about requirements for remote management capabilities for CD-ROM, see the
“Platform Management Information Requirements” section and related attachments
later in this document.

Network PC Hardware Requirements 9

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 7. Support Int 13h Extensions in system BIOS and option ROMs, for Intel
architecture
 Required

 The Int 13h Extensions ensure correct support for high-capacity drives. Support for
the fixed-disk access subset of Int 13h Extensions must be provided in the system
BIOS and in any option ROMs for storage devices that include BIOS support.

 8. BIOS boot support for USB keyboard, if USB is the only keyboard
 Required

 For any system that uses the Intel architecture and has a USB keyboard as the only
keyboard in the system, the system BIOS must provide boot support for USB
keyboards. The specification for this support is defined in Universal Serial Bus PC
Legacy Compatibility Specification, Version 1.0 or higher, available from
http://www.teleport.com/~usb/data/usb_le9.pdf.

 9. Remote new system setup and service boot supported using DHCP and
TFTP as defined in Attachment A
 Required

 Dynamic Host Configuration Protocol (DHCP) is an open, industry standard
designed to reduce complexity of TCP/IP network administration. DHCP provides
methods for dynamic configuration of computers on TCP/IP networks. DHCP is
specified by IETF RFCs 1533, 1534, 1541, and 1542. Trivial File Transfer
Protocol (TFTP, Revision 2) to support boot image download is implemented under
IETF RFC 1350.

 The required implementation for remote new system setup is defined in
“Attachment A: DHCP Extensions for New System Setup” in these guidelines.

 10. Preboot execution environment
 Required

 The execution environment provided by the client for the downloaded code
described in the previous requirement must conform to the description given in
“Attachment B: Preboot Execution Environment” in these guidelines.

 11. Remote BIOS update and revision support
 Required

 Recommended: Implement a mechanism to validate that the program arrived intact
after download.

 BIOS ROMs must be implemented to allow them to be upgraded to a new image
through OEM-provided programs using either: 1) the remote new system setup
mechanism that will be downloaded and executed at boot time, or 2) normal file
access and execution methods when the system is fully booted into the normal
operating system environment.

 If they are provided, option ROMs must also be capable of being upgraded.

Network PC Hardware Requirements 10

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Power Management Requirements
 Net PC systems are power-managed systems based on solutions provided under the
OnNow design initiative, so that the platform enters a low-power state when not in
use. This section describes the requirements that ensure the Net PC system is power
managed.

 12. ACPI support meets PC 97 requirements
 Required

 The system board must support the Advanced Configuration and Power Interface
(ACPI) Specification, version 1.0 or higher. This requirement ensures that the
system correctly supports the ACPI-based Plug and Play and power management
functionality.

 For complete information about requirements for ACPI support, see item #4 in the
“Basic PC 97” chapter of PC 97 Hardware Design Guide. For information about
clarifications for implementation of ACPI, see
http://www.microsoft.com/hwdev/desguid/pc97faq.htm.

 13. Hardware support for the OnNow initiative
 Required

 Elements of the OnNow design initiative ensure that the operating system and
device drivers control the state of individual devices and the system board. For
complete design information and related requirements, see item #5 in the “Basic
PC 97” chapter of PC 97 Hardware Design Guide.

 14. BIOS support for the OnNow initiative, for Intel architecture
 Required

 This requirement applies only to systems that use the Intel architecture. For
complete design information and related requirements, see item #6 in the “Basic
PC 97” chapter of PC 97 Hardware Design Guide.

 15. Wakeup on LAN supported
 Recommended until 1/1/98; Required as of 1/1/98

 Until January 1, 1998, for Net PCs with Ethernet or token ring network adapters, it
is recommended that the system should be capable of being awakened from a lower
power state for services and management. Magic Packet capability is a possible
implementation. After January 1, 1998, wakeup capabilities are required for Net
PCs and must be based on matching patterns specified by the local networking
software, as described in “Network Wake-up Frames” and “Network Wake-up
Frame Details” in Network Device Class Power Management Reference
Specification, Version 1.0 or higher.

 Pattern matching-based wakeup enables any standard Windows network TCP/IP
access, such as connections to shared drives and WinSock connections, as well as
focused service and management applications, to “wake up” machines from lower
power states. Microsoft operating system support for wake on LAN capabilities

Network PC Hardware Requirements 11

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

will be compliant with this pattern matching solution. There is no guarantee of
functionality with these operating system services for wake on LAN solutions that
are not based on Network Device Class Power Management Reference
Specification pattern matching.

 This requirement applies specifically to Ethernet and token ring adapters. Network
Device Class Power Management Reference Specification does not support ATM
and ISDN adapters.

 For additional implementation guidelines, see items #34 – 35 in the “Network
Communications” chapter of PC 97 Hardware Design Guide. Implementation
details are described in “Network Wake-up Frames” and “Network Wake-up
Frame Details” in Network Device Class Power Management Reference
Specification, Version 1.0 or higher.

 Platform Management Information Requirements
 Each Net PC system must be able to provide consistent and dependable platform
information for use by any management application. The management solution must
ensure that the Net PC is manageable in heterogeneous networking environments
and that there is a basic set of management information that is guaranteed to be
available for management applications. This section defines the requirements to
support these capabilities.

 Overview of Platform Management Information Technologies
 This section briefly describes the platform management information technologies
referenced in these guidelines and gives references to full definitions and
descriptions of these technologies. To provide useful guidelines for products prior to
the availability of technologies under development, these guidelines include
specifications for both the currently available and the forthcoming technologies for
providing platform management information.

 To understand the relationships of the technologies referenced in these guidelines,
note that platform management information technologies generally have three key
elements:

• Component Instrumentation — an interface by which information is supplied by
manageable platform components.

• Management Information Provider — an interface used by applications to
access platform management information.

• Management Information Schema — the logical structure of the information
handled by the component instrumentation and the management information
provider.

Network PC Hardware Requirements 12

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 The platform management information technologies referenced in these guidelines
are the following, defined in alphabetical order:

• Common Information Model. CIM is the management information schema
for WBEM. It is an object-oriented schema that is being defined by a
subcommittee of the DMTF. CIM is designed to be extended for each operating
environment in which it is used; as an example of this extensibility, Windows
operating systems use the CIM and have added Win32 extensions.

 For CIM specifications, see http://www.dmtf.org/work/cim.html.

• Desktop Management Interface. DMI is a platform management information
framework created by the DMTF. DMTF specifications define industry-
standard interfaces for component instrumentation and management
applications.

 For specifications on DMI Management Information Interfaces, see Desktop
Management Interface Specification, Version 2.00. For specification of DMI
Component Interfaces, see Desktop Management Interface Specification,
Version 2.00. Compliance of Net PC platforms to the DMI specifications
referenced in these guidelines is measured by DMI Compliance Guidelines,
Version 1.0.

• CIM Object Manager. CIMOM is a software component that interacts with
the CIM schema and its extensions and in turn serves as a access point for
management data providers to acquire data from the schema. Microsoft will
implement CIMOM within Windows NT 5.0 and Windows 98 as well as other
Win32 platforms, and will create a portable, platform-independent reference
implementation. Versions of CIMOM for other operating systems may be
available from other vendors. CIMOM handles both schema interactions and
requests from management data providers.

 An example of use of CIMOM is its capability to integrate and associate
management data from different sources, as in the case where one would
associate a particular desktop application with its required network services,
which would in turn be associated with a particular network card and a
particular path through the network to the application running on a remote
server. For further explanation of this example, please see the conceptual
demonstration on http://wbem.freerange.com.

• Simple Network Management Protocol. SNMP is used widely throughout
the industry as the standard under which servers, routers, hubs, and other
network-based devices are managed. Enterprise-level management applications
have long used SNMP as their manageability protocol because of its stability,
flexibility, and wide-spread adoption.

• Web-Based Enterprise Management. WBEM is a set of platform
management information technologies originally proposed by BMC Software,
Inc., Cisco Systems, Inc., Compaq Computer Corporation, Intel Corporation,

Network PC Hardware Requirements 13

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

and Microsoft Corporation based on standards being developed in a number of
industry bodies, including the DMTF and the IETF. WBEM is being designed
to provide uniform access for management applications to management
information from a variety of sources, such as DMI, SNMP, and operating
system–specific component instrumentation.

 For specifications on WBEM, see http://wbem.freerange.com.

• Win32 Extensions Schema. This term is another name for the Win32
extensions to the CIM schema for Windows operating systems. For
specifications on the Win32 Extensions Schema, see
http://www.microsoft.com/management/wbem/.

• Windows Management Interface. WMI is an extension to WDM and is a
new component instrumentation approach for Microsoft operating systems.
WMI drivers have their schema built into the driver image as a resource, which
enables simple, dynamic “import” of specific driver schema data into the CIM
schema.

 WDM and WMI will be available in Windows NT 5.0 and Windows 98. For
specifications on WMI, see http://www.microsoft.com/management/wbem/.

 In the following sections, platform management information requirements are
divided into two categories:

• Component Instrumentation Requirements. Describes interfaces by which
instrumentation is supplied by manageable platform components.

• Management Information Providers. Describes interfaces used by applications
to access platform management information.

 Component Instrumentation Requirements
 To ensure a basic level of manageability, a baseline set of platform management
information for each Net PC needs to be available to management applications. This
section addresses how system components make this information available and
which information must be made available.

 16. Baseline platform management information capabilities
 Required

 The solution for Net PC component instrumentation for WMI-capable systems is
use of the WMI extensions to WDM that use the CIM and Win32 extensions
schema.

 The solution for advancing manageability and deploying manageable platforms with
operating systems that are not WMI-capable is the DMI 2.0-based instrumentation
solution. Intel and Microsoft are working together to ensure that there will be no
loss of functionality as Net PCs are upgraded to use WMI-enabled operating
systems.

Network PC Hardware Requirements 14

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 WMI Driver Instrumentation
 This section summarizes the requirements related to implementing instrumentation
for WMI-capable systems using the WMI extensions.

 17. Support WMI/CIM and Win32 extensions schema objects and data
 Required

 For Net PCs running WMI-capable operating systems, the CIM and Win32
extensions schema classes and associations listed in “Attachment H: WMI/CIM and
Win32 Extensions Instrumentation Details” must be supported through WMI.
Subsequent revisions of Network PC System Design Guidelines will incorporate
additions to this set of classes and associations.

 18. Support WMI alert generation for required events
 Optional

 None of the classes defined in the required schema have required events. Therefore,
support for WMI alert generation is not required at this time, but might become
required in subsequent revisions of Network PC System Design Guidelines.

 19. Compliant with WMI alert model for WMI alerts
 Required

 WMI alerts that fit within the size limitation of the alert buffer can be sent directly
with the alert packet. Larger alerts are required to send a global unique ID (GUID)
in the alert, which is then later queried to obtain the full alert data.

 All WMI alerts must supply a WMI alert severity level as recognized by the WMI
alert model.

 20. WMI instrumentation interface meets device-specific requirements
 Required

 WMI-based component instrumentation must comply with the device-specific
requirements that will be described in the Microsoft Windows Device Driver Kit
(DDK) WMI supplement.

 DMI Component Instrumentation
 This section summarizes the requirements if a DMI-based instrumentation solution
is implemented.

 21. DMI standard groups instrumented and deployed
 Required

 The standard groups listed in “Attachment I: DMI Instrumentation Details” must be
instrumented and deployed on DMI-instrumented Net PCs.

 22. Components compliant with DMI Component Interface
 Required

 DMI-instrumented components on Net PCs must comply with the Component
Interface (CI) as specified for DMI version 2.0. This interface includes compliance

Network PC Hardware Requirements 15

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

with the Service Provider API for Components and the Component Provider API.
The required DMI instrumentation must be deployed with each DMI-instrumented
platform and installed with the operating system. See the DMTF compliance
guidelines regarding backward compatibility for existing instrumentation
implemented using the DMI version 1.x block interface.

 23. DMI event generation for DMI events in required groups
 Optional

 Some of the required standard groups specified in “Attachment I: MI
Instrumentation Details” are associated with event generation groups. Event
generation for these groups is optional.

 24. Compliant with DMI event model for DMI events generated
 Required

 If DMI-based instrumentation generates events associated with a required group,
event generation must be compliant with the event model specification defined in
Desktop Management Interface Specification, Version 2.00.

 Management Information Providers
 To enable management applications to access the Net PC, each Net PC needs at
least one management information provider that makes management information
available to management applications using common mechanisms.

 25. At least one management information provider enabled
 Required

 When available, WBEM-based management information providers will provide
uniform access to management information from a variety of sources, including
platform component instrumentation. Net PCs for which WBEM-based
management information providers are available will employ those providers.

 Net PCs for which WBEM-based management information providers are not
available will employ DMI-based management information providers.

 Note that these guidelines define the minimum management information provider
functionality for a Net PC. Deployment of additional management information
providers on Net PCs, such as SNMP agents, might provide significant value in
certain environments.

 WBEM-based Management Information Provider
 Having a WBEM-based management information provider allows a Net PC to be
managed by applications that can access the platform through industry-standard
WBEM protocols and/or interfaces.

 Microsoft will implement HMMP (a protocol for which standardization is currently
being proposed to the IETF) for local and remote access to CIMOM and will also
implement Common Object Model (COM) for local CIMOM access in Windows

Network PC Hardware Requirements 16

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

NT 5.0 and Windows 98. Highest performance local accesses are achievable using
the COM interface; greatest portability is achieved using HMMP.

 Furthermore, newly developed applications for managing WBEM-capable Net PC
platforms should be written to access those platforms through industry-standard
WBEM protocols and/or interfaces.

 26. WBEM-based service provider enabled on system
 Required

 The CIMOM protocol and the CIM and Win32 extensions schema will be provided
automatically with WMI-instrumented Windows operating systems. For Net PC
systems that are pre-installed with these operating systems, these providers must be
enabled when the systems are shipped.

 DMI-based Management Information Provider
 Having a DMI-based management information provider allows a Net PC to be
managed by applications that can access the platform through the DMI
Management Interface (MI).

 To be guaranteed to be able to manage DMI-instrumented Net PCs compliant with
these guidelines, management applications must comply with the procedural version
of the MI as specified for DMI version 2.0. This includes compliance with Service
Provider API for Management Applications and Management Provider API. The
new procedural interface introduced with DMI version 2.0 is an interface that
supports remote access using Remote Procedure Call (RPC).

 27. DMI service provider present and configured in system
 Required

 On each DMI-instrumented Net PC, a DMI 2.0 service provider must be present
and configured to run whenever the operating system is running. This supports the
ability of any compliant DMI management application to access and manage a
DMI-instrumented Net PC as soon as the system is up and running.

 Simple Network Management Protocol
 Managing a Net PC in a corporate enterprise might require that these devices
integrate with current enterprise management applications. For this reason, SNMP
support can be provided in addition to DMI and WBEM providers.

 28. SNMP support in addition to DMI or WBEM providers
 Optional

 It is recommended that if SNMP support is provided, the same information
available through DMI or WMI interfaces should also be available through SNMP.

Network PC Hardware Requirements 17

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Industrial Design Requirements
 This section summarizes physical design requirements for Net PC systems. Actual
form factors are OEM design choices.

 29. Minimum set of user indicators
 Required

 The minimum indicator is a power light. Indicators for hard-disk activity and LAN
activity are optional and can be placed for access by service personnel only, with no
requirement for end users to be able to view indicators.

 30. End user can easily control power through switches and software
 Required

 The power control buttons must be implemented to meet PC 97 requirements for
hardware support for the OnNow design initiative, as defined in item #5 in the
“Basic PC 97” chapter of PC 97 Hardware Design Guide, plus changes and
clarifications published on http://www.microsoft.com/hwdev/desguid/pc97faq.htm.

 31. Minimal footprint
 Recommended

 In general, the form factor chosen for the Net PC should be small and should
accommodate the full processor range.

 32. Lockable or sealed-case design with no end-user accessible internal
expansion capabilities
 Required

 Net PC systems include no internal expansion slots that are accessible to end users.
The Net PC goals do not allow end users to add devices using traditional internal
expansion capabilities. The meaning of this requirement is the equivalent of
“no user-serviceable parts inside” for consumer electronics or appliances. It does
not preclude providing internal expansion slots to allow the OEM to provide
additional devices in manufacturing or to allow qualified service personnel to install
internal devices.

 See also the requirements and recommendations for external expansion buses in the
“System Buses” section later in this document.

 33. Thermal sensor for monitoring temperature in the chassis
 Optional

 This solution must be implemented under the ACPI specification, version 1.0 or
higher. If implemented in any Net PC system, this must provide support for
automatic shutdown in overtemp conditions.

 For information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this document
and the related attachments.

Network PC Hardware Requirements 18

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 General Device Requirements
 This section summarizes requirements for the devices and peripherals provided with
Net PC systems.

 34. Device driver and installation meet PC 97 requirements for Windows
operating systems
 Required

 Each device supplied with the system must meet PC 97 requirements for that device
class, and its drivers must be tested by Windows Hardware Quality Labs (WHQL).
The manufacturer does not need to supply a driver if a driver provided with the
operating system can be used. If the manufacturer supplies drivers, the requirements
for installation include:

• All devices and drivers must pass Microsoft WHQL testing.

• All configuration settings are stored in the registry. The driver must not use INI
files for configuration settings.

• The correct minidriver or any other manufacturer-supplied files specified in the
device’s INF must be installed in the correct locations. For manufacturer-
supplied files, the vendor must not be identified as Microsoft and all other
copyright and version information must be correct for the manufacturer.

• Driver installation and removal uses the Windows-based methods defined in
the appropriate Windows or Windows NT DDK. However, any software
applications included with the device can be installed using an alternative
Windows-based installation method.

• Driver files provided by the vendor must not use the same file names as used by
files included in Microsoft operating systems unless specifically agreed upon by
Microsoft.

• It must be possible for the device’s driver support to be installed without the
user being present, with required parameters supplied by way of a script or
other mechanism for predefining settings.

 For systems that come pre-installed with Windows NT:

• Only 32-bit protected-mode system-level components are installed. No real-
mode or 16-bit protected-mode system-level components are provided.

 For systems that come pre-installed with either Windows 98 or Windows NT 5.0,
the following requirements apply for drivers:

• For any device for which WDM-based support is provided in the operating
system, the driver supplied by the manufacturer must be a WDM minidriver.

• Every WDM driver (or minidriver) must support Plug and Play IRPs.

Network PC Hardware Requirements 19

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 For systems that come pre-installed with Windows 98, the following requirements
apply for drivers:

• Every VxD must support Plug and Play messages.

• Where power management support is provided in the operating system, the
VxD must implement device power management as defined in the DDK
information provided for Windows 98.

 For complete details about installation requirements for drivers, see item #22 in the
“Basic PC 97” chapter of PC 97 Hardware Design Guide.

 35. Each device complies with current Plug and Play specifications
 Required

 Each device provided in a Net PC system must meet the current Plug and Play
specifications related to its class, including requirements defined in the ACPI
specification and clarifications published for some Plug and Play specifications.
This includes requirements for automatic device configuration, resource allocation,
and dynamic disable capabilities.

 Standard system devices, such as interrupt controllers, timers, keyboard controllers,
RTC, DMA controllers 1 and 2 and page registers, and math
co-processors, are exempt from this requirement.

 For complete information about this requirement, see item #14 in the “Basic PC 97”
chapter of PC 97 Hardware Design Guide.

 For information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this document
and the related attachments.

 36. Unique Plug and Play device ID for each system device and add-on device
 Required

 Each device connected to an expansion bus must be able to supply its own unique
Plug and Play identifier. Each type of bus contains different information for
uniquely identifying devices on expansion cards, with guidelines and exceptions
defined in PC 97 Hardware Design Guide. For complete requirements, see item
#15 in the “Basic PC 97” chapter of PC 97 Hardware Design Guide.

 Methods for asset-number assignment and serial-number assignment for system
components are OEM specific, but must be reported using compliant
instrumentation technology. For more information, see the “Platform Management
Information Requirements” section earlier in this document and the related
attachments.

Network PC Hardware Requirements 20

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 37. Option ROMs meet Plug and Play requirements, for Intel architecture
 Required

 This requirement applies only for any devices that might use option ROMs on
systems based on Intel architecture, whether the device is present on the system
board or provided through an expansion card. Related option ROM requirements
are also defined for specific bus classes and specific devices, such as SCSI and
graphics adapters, respectively. For complete guidelines, see item #16 in the “Basic
PC 97” chapter of PC 97 Hardware Design Guide.

 38. All devices must support correct 16-bit decoding for I/O port addresses
 Required

 Each device must support a unique I/O port address in the 16-bit address range.
This requirement means that, at a minimum, the upper address lines A10 – A15 can
be used as device enable so the device does not respond to addresses outside of the
10-bit address range. For complete guidelines, see item #18 in the “Basic PC 97”
chapter of PC 97 Hardware Design Guide. CardBus controllers and cards, if
present, must meet the requirements defined in the “PC Card” chapter of PC 97
Hardware Design Guide.

 39. Users are protected from connecting devices incorrectly
 Required

 This requirement is to help ensure that the end user or service support personnel can
correctly make the physical connections required for adding a device to the system.
For implementation guidelines, see item #20 in the “Basic PC 97” chapter of PC 97
Hardware Design Guide.

 40. Minimal interaction required to install and configure devices
 Required

 After physically installing the device, qualified service personnel must not be
required to perform any action other than to provide a pointer to a source that
contains drivers and other files. For implementation guidelines, see item #21 in the
“Basic PC 97” chapter of PC 97 Hardware Design Guide.

 41. Multifunction add-on devices meet general device requirements for each
device
 Required

 This requirement is provided as a guideline for OEM-installed devices in a Net PC
system. When integrated into a Net PC system, multifunction add-on devices must
meet the PC 97 requirements referenced earlier in this section for automated
software-only settings for device configuration, device drivers, and Windows-based
installation. For implementation guidelines, see item #23 in the “Basic PC 97”
chapter of PC 97 Hardware Design Guide.

Network PC Hardware Requirements 21

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 42. Standard system board devices use ISA-compatible addresses, for Intel
architecture
 Required

 This includes devices with I/O port addresses within the reserved range 0h through
0ffh.

 System Buses
 This section defines requirements for buses provided in a Net PC system.

 43. Each bus complies with written specifications and PC 97 requirements
 Required

 Each bus used in the system must meet all the requirements for that bus as defined
in Part 3 of PC 97 Hardware Design Guide. This includes the requirement to meet
the current Plug and Play specifications related to its class, requirements defined in
the ACPI specification, and clarifications published for some Plug and Play
specifications. This also includes requirements for automatic device configuration,
resource allocation, and dynamic disable capabilities.

 44. Universal Serial Bus with one USB port, minimum
 Required

 The USB implementation in the system must meet the requirements defined in USB
specifications, plus the additional requirements for PC 97 as defined in the “USB”
chapter of PC 97 Hardware Design Guide.

 45. PCI bus meets PCI 2.1 specifications and PC 97 requirements
 Required

 If PCI is used in a Net PC system, the PCI bus must meet the requirements defined
in PCI version 2.1 or higher, plus the additional requirements for PC 97 as defined
in the “PCI” chapter of PC 97 Hardware Design Guide.

 Exceptions for particular devices are noted in Parts 3 and 4 of PC 97 Hardware
Design Guide. For example, add-on PCI IDE devices must comply with PCI 2.1
requirements and also must provide Subsystem IDs and Subsystem Vendor IDs, but
PCI-to-PCI bridges and core chip sets do not have to provide Subsystem IDs and
Subsystem Vendor IDs.

 July 1, 1997, is the compliance date for PCI motherboard devices and for PCI add-
on adapters for PCI 2.1 Subsystem IDs. For more information, see the guidelines on
http://www.microsoft.com/hwdev/busbios/idpnp.htm.

 46. Support for high-speed expansion buses meets PC 97 and Net PC
requirements, if present
 Required

 For Net PC systems, internal expansion capabilities that are accessible by the end
user are not allowed. However, if implemented in a Net PC system, all high-speed
expansion buses and expansion devices must meet the requirements as specified in

Network PC Hardware Requirements 22

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Parts 3 and 4 of PC 97 Hardware Design Guide. This includes requirements for
IEEE 1394 and CardBus, if implemented.

 The following are specifically required for Net PC systems:

• Any bus that supports hot plugging or a device designed to use such a bus must
support adding or removing devices while the system is fully powered.

• Any devices provided as expansion devices must be capable of being remotely
disabled, including the capability to disable drives (CD-ROM, floppy drive,
and so on), ensuring that control and TCO policies can be realized. For
information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this
document and the related attachments.

 47. Device Bay-capable bay and peripherals
 Recommended

 If implemented in a Net PC system, Device Bay capabilities must meet the
following requirements

• A Device Bay controller, compliant with Device Bay Interface Specification,
Version 1.0 and implemented as an ACPI device object on the system board.

• One USB controller and one IEEE 1394 controller to support all Device Bay-
capable bays in the system.

• One USB port and one IEEE 1394 port for each Device Bay-capable bay in the
system.

 Any Device Bay peripherals provided with a Net PC system must meet the
following requirements.

• Peripherals compliant with Device Bay Interface Specification, Version 1.0.

• Peripherals interface with either the USB or IEEE 1394 bus, or both.

• Support relevant USB device class specifications.

 The following is specifically required for Net PC systems:

• Any devices provided as expansion devices must be capable of being remotely
disabled, including the capability to disable drives (CD-ROM, floppy drive,
and so on), ensuring that control and TCO policies can be realized. For
information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this
document and the related attachments.

Network PC Hardware Requirements 23

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 48. ISA bus expansion slots must not be provided
 Required

 No ISA bus expansion slots are permitted in a Net PC system. The benefits of an
ISA-free Net PC system for administrative support personnel include easier and
more stable configuration, lower support costs, and improved performance.

 This requirement does not preclude the inclusion of embedded ISA devices in a
system board design. However, such devices, along with all other system board
devices and system boards in general, must fully comply with all Net PC
requirements for ACPI, OnNow, and system board device requirements. The end
result must always be that all devices on a system board are fully and completely
capable of software detection, configuration, and control.

 I/O Devices
 This section defines the general requirements for I/O devices.

 49. Keyboard connection and keyboard
 Required

 Recommended: USB

 The external connection requirements on any PC can also be met using a PS/2-style
port or wireless capabilities in the system. A mobile or all-in-one system that has a
built-in keyboard must also provide the capability for an external keyboard
connection, which can be implemented using a port replicator or a single PS/2-style
port with special cabling for both external keyboard and mouse. For complete
requirements for keyboard ports and peripherals, see the “Input Components”
chapter in PC 97 Hardware Design Guide.

 50. Pointing-device connection and pointing device
 Required

 Recommended: USB or other external bus

 The external connection requirements on any PC can also be met using a PS/2-style
port or wireless capabilities in the system. A mobile or all-in-one system that has a
built-in pointing device must also provide the capability for an external mouse
connection, which can be implemented using a port replicator or a single PS/2-style
port with special cabling for both external keyboard and mouse. A second serial
port is not permitted as the external connection for a pointing device. For complete
requirements for mouse ports and peripherals, see the “Input Components” chapter
of PC 97 Hardware Design Guide.

 51. Connection for external parallel devices
 Optional

 If a parallel port is present, it must be implemented as an Extended Capabilities
Port (ECP) mode parallel port. For information about requirements for remote

Network PC Hardware Requirements 24

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

management capabilities, see the “Platform Management Information
Requirements” section earlier in this document and the related attachments.

 52. Connection for external RS-232C or equivalent devices
 Optional

 If present, the RS-232C serial connection must be implemented using a 16550A
serial port or equivalent. For information about requirements for remote
management capabilities, see the “Platform Management Information
Requirements” section earlier in this document and the related attachments.

 53. Wireless capabilities meet PC 97 requirements, if present
 Required

 If wireless capabilities are included in the system, PC 97 requirements must be met
as defined in the “Serial, Parallel, and Wireless Support” chapter of PC 97
Hardware Design Guide. For information about requirements for remote
management capabilities, see the “Platform Management Information
Requirements” section earlier in this document and the related attachments.

 54. Network connectivity meets PC 97 requirements and supports remote new
system setup
 Required

 The Net PC system must include I/O device support and system BIOS support for
boot devices to allow installation of the operating system, as described in the
“BIOS and Remote New System Setup” section earlier in this document. In
addition, the manufacturer must ensure the ability to upgrade the network adapter’s
option ROM using software, for forward compatibility with remote new system
setup capabilities.

 The network connectivity device must meet related PC 97 requirements for network
communications and for the bus to which it is attached as defined in the “Network
Communications” chapter and Part 3 of PC 97 Hardware Design Guide. The
network connectivity device must be capable of remote configuration and control.
For information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this document
and the related attachments.

 The PC 97 guidelines define requirements for NDIS 4.0 support. For Net PC
systems that come pre-installed with a Microsoft operating system that supports the
extensions in NDIS 5.0, the system must include an NDIS 5.0 network adapter
driver. A MAC or NDIS 4.0 implementation is not allowed because NDIS 5.0
support is required to take advantage of new operating system capabilities.

 55. Communications device meets PC 97 requirements, if present
 Required

 Modems or other communications devices such as ISDN cards implemented in the
Net PC system must meet PC 97 requirements as defined in the “Modems” and
“Network Communications” chapters of PC 97 Hardware Design Guide. For

Network PC Hardware Requirements 25

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this document
and the related attachments.

 Graphics Adapter and Multimedia Requirements
 This section summarizes the Net PC requirements for the graphics adapter and
monitor.

 56. Display adapter meets PC 97 and Net PC minimum requirements
 Required

 Recommended: PCI 2.1 or AGP

 A Net PC system must contain a graphics adapter that permits a color depth of 16
bits per pixel (bpp), minimum. The following are the minimum requirements:

• Minimum resolution: 800x600x16 bpp for Windows desktop and
640x480x16 bpp double buffered for Microsoft DirectDraw® – based full-
screen applications.

 Display RAM requirements are tied directly to the minimum graphics
resolution supported by the adapter. The requirement to support double
buffering implies 1.5 MB of display RAM. However, PC 97 requirements do
not specify minimum display RAM support; rather, the adapter designer can
implement any solutions for supporting the minimum resolution requirements.

• Graphics adapters do not use legacy bus.

 For the graphics adapter, the video bus must not use ISA. A higher-
performance solution is required to optimize performance of the packed-pixel
frame buffer. Possible implementations that meet this requirement can include
PCI 2.1 for all system types or the Intel Accelerated Graphics Port version 1.0
(AGP) interface for systems that have Pentium Pro processors. If the graphics
adapter uses the PCI bus, it must comply with PCI 2.1 and additional
requirements as defined in the “PCI” and “Graphics Adapters” chapters in
PC 97 Hardware Design Guide.

• System operates normally with default VGA-mode driver.

 The default VGA driver is required for installing the operating system.
The adapter must support 4-bit planar VGA mode as described in the
Windows 95 DDK.

• Multimonitor/multiple-display adapter support meets PC 97 requirements, if
dual adapter capabilities are possible in the Net PC system as provided by the
system manufacturer.

 For complete information, see items #1 – 16 in the “Graphics Adapters” chapter of
PC 97 Hardware Design Guide.

Network PC Hardware Requirements 26

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 57. Support for NTSC or PAL television output meets PC 97 requirements, if
present
 Required

 Implementing this support is optional. If implemented, this functionality should meet
PC 97 guidelines as defined in item #34 in the “Graphics Adapters” chapter of
PC 97 Hardware Design Guide.

 58. Monitor supports DDC 2.0 Level B, EDID, 800x600 minimum, and PC 97
requirements
 Required

 A monitor designed for or included with a Net PC system must be compliant with
Display Data Channel Standard version 2.0, Level B (DDC2B), which defines the
communication channel between the display and host system. In addition, the
monitor must transmit an Extended Display Identification Data (EDID) structure
containing unique ID Manufacturer Name and ID Product Code identifiers, and all
required fields as described in Section 3 of EDID Standard 1.0, revision 1.0.

 For implementation guidelines, see item #28 in the “Video Components” chapter of
PC 97 Hardware Design Guide and the changes and clarifications on
http://www.microsoft.com/hwdev/desguid/pc97faq.htm.

 59. System supports MPEG-1 playback requirements for PC 97 if system has
CD-ROM plus multimedia audio and video capabilities
 Required

 For Net PC systems that include device support for multimedia, operating system
support is provided through Microsoft DirectShow™ (formerly ActiveMovie™).
The minimum system requirements to support MPEG-1 playback include:

• Audio and video decode performance: 30 frames per second, minimum, as
defined in item #13 in the “Video Components” chapter of PC 97 Hardware
Design Guide.

• Graphics support for color space conversion and arithmetic stretching,
including hardware arithmetic stretching and YUV off-screen surfaces for color
space conversion, as defined in item #14 in the “Video Components” chapter of
PC 97 Hardware Design Guide.

 60. PC 97 DVD playback requirements, if system includes DVD-Video
 Required

 All Net PC systems that include DVD-Video support must provide PC 97 playback
support for DVD content, including:

• Video support for decoding MPEG-2 Main Profile and Main Level video
streams.

• Audio support for MPEG-2 and Dolby AC-3 decoding and DVD audio mixed
with other PC audio streams.

Network PC Hardware Requirements 27

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• Synchronized audio and video, meeting general broadcast industry guidelines.

• Independent audio/video streams supported by the decode subsystem.

• WDM-based implementation for MPEG-2 acceleration.

 For implementation guidelines, see item #15 in the “Video Components” chapter of
PC 97 Hardware Design Guide.

 61. Audio support meets PC 97 requirements, if present
 Required

 Recommended: USB or host-based digital audio

 If audio capabilities are implemented in a Net PC system, audio must meet PC 97
requirements, whether implemented as baseline audio (items #3 – #7) or advanced
audio (items #8 – #11), as defined in the “Audio Components” chapter of PC 97
Hardware Design Guide.

 Storage and Related Components
 This section presents the requirements and recommendations for storage and related
peripheral devices for Net PC systems. See also system BIOS requirements to
support high-capacity drives in the “BIOS and Remote New System Setup” section
earlier in this guide.

 62. Host controller meets PC 97 requirements
 Required

 Minimum requirements for SCSI, ATA and ATAPI, and IEEE 1394 are defined in
related chapters in Part 3 of PC 97 Hardware Design Guide.

 63. Primary host controller and devices support bus mastering
 Required

 The primary host controller must support bus mastering, whether using IDE, SCSI,
or IEEE 1394. Bus-mastering support must also be enabled for IDE devices,
including hard disks, CD-ROM, and tape drives. Bus-master capabilities must meet
the related specification for the particular controller. For example, the programming
register set for PCI IDE bus master DMA is defined in Small Form Factor (SFF)
8038i.

 64. Hard drive meets PC 97 requirements
 Required

 A hard disk drive is required for the Net PC. The hard drive must meet the PC 97
requirements for hard drives and for the bus it uses, including:

• Drive spin-up time supports OnNow capabilities, as defined in item # 23 in the
“Storage and Related Peripherals” chapter of PC 97 Hardware Design Guide.

Network PC Hardware Requirements 28

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• If IDE is used, each IDE drive must support Master, Slave, and Cable Select
settings, as defined in item #24 in the “Storage and Related Peripherals”
chapter of PC 97 Hardware Design Guide.

 65. Hard drive is SMART-compliant
 Required

 SMART-compliant drive uses SMART IOCTL API, as defined in item #24 in the
“ATA and ATAPI” chapter of PC 97 Hardware Design Guide.

 66. CD-ROM meets PC 97 and Net PC requirements, if present
 Required

 Recommended: CD-ROM not included in system

 If this device is present, the host controller must meet PC 97 requirements, as
defined in the related chapter in Part 3 of PC 97 Hardware Design Guide. The
CD-ROM drive must meet the PC 97 requirements defined in items #25 – #30 in the
“Storage and Related Components” chapter of PC 97 Hardware Design Guide.

 For Net PC, the device must be capable of remote lockdown and boot device
selection. For information about requirements for remote management capabilities,
see the “Platform Management Information Requirements” section earlier in this
document and the related attachments.

 67. Media status notification support for ATAPI removable media, if present
 Required

 IDE and ATAPI removable devices must follow the Microsoft specification named
Media Status Notification, version 1.03 or higher (included in SFF 8070i).

 CD-ROM and DVD-ROM manufacturers must use the Media Status Notification
specification contained within the Mt. Fuji specification, which will be provided as
SFF 8090 by the SFF Committee.

 68. Legacy floppy-disk controller
 Optional

 Recommended: Floppy disk capabilities not included in system

 If a legacy FDC is included on a Net PC system, the drive and controller must meet
PC 97 requirements, as defined in items #17 – 21 in the “Storage and Related
Peripherals” chapter of PC 97 Hardware Design Guide.

 For any implementation of a floppy drive on a Net PC system, the floppy drive must
be capable of being remotely disabled (as a boot selection) and must make
provisions for locking. For information about requirements for remote management
capabilities, see the “Platform Management Information Requirements” section
earlier in this document and the related attachments. For information about locking
removable media, see the “Hardware Security Features” section later in this
document.

Network PC Hardware Requirements 29

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Hardware Security Features
 This section summarizes the system security requirements and recommendations for
Net PC systems. For information about security for limiting user access in preboot
modes, see the “BIOS and Remote New System Setup” section earlier in this
document.

 69. Smart card support meets interoperability specifications, if present
 Required

 Smart card readers and cards must be compatible with Interoperability
Specification for ICCs and Personal Computer Systems, published by CP8
Transac, Hewlett-Packard, Microsoft, Schlumberger, and Siemens Nixdorf on
http://www.smartcardsys.com.

 In addition, smart card readers and device drivers must be Plug and Play compliant
and adhere to the Win32 smart card specifications published in the Windows NT
DDK. Smart card applications and service provider DLLs must adhere to the
Win32 smart card specifications as published in the Win32 SDK.

 70. Physical system security
 Required

 The following security features are required for Net PC hardware to prevent
unauthorized access to hardware:

• External drive devices have security capabilities. Each removable media device
on a Net PC system must be capable of being secured to prevent unauthorized
access to data. This means that the device is rendered useless, either
electronically or mechanically.

• PC case and switches have locking capabilities to prevent unauthorized internal
access—an OEM-specific method can be implemented, either electronically or
mechanically. Usability controls such as volume, brightness, and contrast that
are usually configured by the end user are exempt from this requirement.

• Remote software management is supported for physical components. For
information about requirements for remote management capabilities, see the
“Platform Management Information Requirements” section earlier in this
document and the related attachments.

References and Resources 30

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 References and Resources
 The following presents information resources, services, and tools available to help
build Net PC hardware. This section also lists technical references for the
specifications cited in these requirements.

 Information Resources
 Intel developer information

 http://developer.intel.com

 Information on Net PC, Zero Administration Windows, and
hardware development on Microsoft web sites

 http://www.microsoft.com/windows/
 http://www.microsoft.com/hwdev/

 Windows Hardware Quality Labs (WHQL)
 whqlinfo@microsoft.com
http://www.microsoft.com/hwtest/

 Microsoft Developer Network (MSDN) Professional membership
 Phone: (800) 759-5474
Outside North America: (510) 275-0763
Fax: (510) 275-0762
http://www.microsoft.com/msdn/

 WBEM information
 http://wbem.freerange.com
http://www.microsoft.com/management/wbem/

 WMI information
 http://www.microsoft.com/management/wbem/

 Information on DMTF web site
 General information http://www.dmtf.org
 Common Information Model (CIM) http://www.dmtf.org/work/cim.html
 Specifications http://www.dmtf.org/tech/specs.html

 Technical References
 Advanced Configuration and Power Interface Specification, Version 1.0

 http://www.teleport.com/~acpi/

 ATA 2 [X3T9.2 948D]
ATA Packet Interface for CD-ROM, SFF 8070I and other specifications
Small Computer Interface (SCSI-2) [X3T9.2-375R]
Small Computer Interface (SCSI-3) Parallel Interface (SPI) [X3T9.2/91-10]

 Global Engineering Documents
Fax: (303) 397-2740
Telephone: (800) 854-7179; Outside North America: (303) 792-2181

References and Resources 31

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 CIM Specifications
 http://www.dmtf.org/work/cim.html

 Desktop Management Interface Specification, Version 2.00
DMI Compliance Guidelines, Version 1.0

 http://www.dmtf.org/tech/specs.html

 Device Bay Interface Specification, Version 1.0
 http://www.device-bay.org

 Device Class Power Management Specifications
 http://www.microsoft.com/hwdev/onnow.htm

 El Torito — Bootable CD-ROM Format Specification, version 1.0
Compaq, Intel, Phoenix BIOS Boot Specification, version 1.01

 http://www.ptltd.com/techs/specs.html

 IBM Personal System/2 Common Interfaces, Part No. S84F-9809
IBM Personal System/2 Mouse Technical Reference, Part No. S68X-2229

 International Business Machines Corporation
IBM Customer Publications Support: (800) 879-275
Or contact an IBM sales representative

 IEEE 1394 Standards
 Telephone: (800) 949-4333
Fax: (410) 259-5045
Released Standards: Global Engineering Documents

 Intel/Duracell Smart Battery System Specification
 http://developer.intel.com/ial/powermgm/specs.htm

 International Color Consortium
ICC Profile Format Specification

 http://www.color.org

 Interoperability Specification for ICCs and Personal Computer Systems
 http://www.smartcardsys.com

 NLX Motherboard Specification, version 1.0
 http://www.teleport.com/~nlx/

 Media Status Notification, version 1.03 or higher (included in SFF 8070i)
Mt. Fuji Specification (SFF 8090)

 Global Engineering Documents

 Multi-session Compact Disc Specification
 Enhanced Music CD Specification, version 1.0

 Philips Consumer Electronics B.V.
Coordination Office Optical – Magnetic Media Systems
Building SWA-109, PO Box 80002
5600 JB Eindhoven, The Netherlands
Fax: (31) (40) 732113

References and Resources 32

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 PC 97 Hardware Design Guide
 http://www.microsoft.com/hwdev/pc97.htm

 PCI, Version 1.0
PCI Bus Power Management Interface Specification

 http://www.pcisig.com

 PCMCIA Standards
 Personal Computer Memory Card International Association
2635 North First Street, Suite 209
San Jose, CA 95134 USA

 Plug and Play specifications
 http://www.microsoft.com/hwdev/specs/pnpspecs.htm

 Universal Serial Bus, Version 1.0
 http://www.usb.org

 Universal Serial Bus PC Legacy Compatibility Specification, Version 1.0
USB device class specifications

 http://www.teleport.com/~usb/data/usb_le9.pdf

 WBEM Specifications
 http://wbem.freerange.com

 WMI Specifications and Win32 Extensions Schema
 http://www.microsoft.com/management/wbem/

Checklist for Network PC Requirements 33

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Checklist for Network PC Requirements
 General System Requirements
 1. Minimum CPU: 133-MHz Intel Pentium processor or compatible processor with similar
performance, or Windows NT – compatible RISC-based processor
 Required

 2. Level 2 cache with 256K minimum, for systems with Pentium or compatible processors
 Required

 3. Minimum RAM: 16 MB
 Required

 4. Upgrade capabilities for RAM and CPU
 Optional

 BIOS and Remote New System Setup
 5. Limit user access in preboot modes
 Required

 6. System BIOS support for boot devices, for Intel architecture
 Required

 7. Support Int 13h Extensions in system BIOS and option ROMs, for Intel architecture
 Required

 8. BIOS boot support for USB keyboard, if USB is the only keyboard
 Required

 9. Remote new system setup and service boot supported using DHCP and TFTP as defined in
Attachment A
 Required

 10. Preboot execution environment
 Required

 11. Remote BIOS update and revision support
 Required

 Power Management Requirements
 12. ACPI support meets PC 97 requirements
 Required

 13. Hardware support for OnNow initiative
 Required

 14. BIOS support for OnNow initiative, for Intel architecture
 Required

 15. Wakeup on LAN supported
 Required

 Component Instrumentation Requirements
 16. Baseline platform management information capabilities
 Required

Checklist for Network PC Requirements 34

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 WMI Driver Instrumentation
 17. Support WMI/CIM and Win32 extensions schema objects and data
 Required

 18. Support WMI alert generation for required events
 Optional

 19. Compliant with WMI alert model for WMI alerts
 Required

 20. WMI instrumentation interface meets device-specific requirements
 Required

 DMI Component Instrumentation
 21. DMI standard groups instrumented and deployed
 Required

 22. Components compliant with DMI Component Interface
 Required

 23. DMI event generation for DMI events in required groups
 Optional

 24. Compliant with DMI event model for DMI events generated
 Required

 Management Information Providers
 25. At least one management information provider enabled
 Required

 26. WBEM-based service provider enabled on system
 Required

 27. DMI service provider present and configured in system
 Required

 28. SNMP support in addition to DMI or WBEM providers
 Optional

 Industrial Design Requirements
 29. Minimum set of user indicators
 Required

 30. End user can easily control power through switches and software
 Required

 31. Minimal footprint
 Recommended

 32. Lockable or “sealed case” design with no end-user accessible internal expansion capabilities
 Required

 33. Thermal sensor for monitoring temperature in the chassis
 Optional

 General Device Requirements
 34. Device driver and installation meet PC 97 requirements for Windows operating systems
 Required

 35. Each device complies with current Plug and Play specifications
 Required

Checklist for Network PC Requirements 35

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 36. Unique Plug and Play device ID for each system device and add-on device
 Required

 37. Option ROMs meet Plug and Play requirements, for Intel architecture
 Required

 38. All devices must support correct 16-bit decoding for I/O port addresses
 Required

 39. Users are protected from incorrectly connecting devices
 Required

 40. Minimal interaction required to install and configure devices
 Required

 41. Multifunction add-on devices meet general device requirements for each device
 Required

 42. Standard system board devices use ISA-compatible addresses, for Intel architecture
 Required

 System Buses
 43. Each bus complies with written specifications and PC 97 requirements
 Required

 44. Universal Serial Bus with one USB port, minimum
 Required

 45. PCI bus meets PCI 2.1 specifications and PC 97 requirements
 Required

 46. Support for high-speed expansion buses meets PC 97 and Net PC requirements, if present
 Required

 47. Device Bay-capable bay and peripherals
 Recommended

 48. ISA bus expansion slots must not be provided
 Required

 I/O Devices
 49. Keyboard connection and keyboard
 Required

 50. Pointing-device connection and pointing device
 Required

 51. Connection for external parallel devices
 Optional

 52. Connection for external RS-232C devices
 Optional

 53. Wireless capabilities meet PC 97 requirements, if present
 Required

 54. Network connectivity meets PC 97 requirements and supports remote new system setup
 Required

 55. Communications device meets PC 97 requirements, if present
 Required

Checklist for Network PC Requirements 36

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Graphics Adapter and Multimedia Requirements
 56. Display adapter meets PC 97 and Net PC minimum requirements
 Required

 57. Support for NTSC or PAL television output meets PC 97 requirements, if present
 Required

 58. Monitor supports DDC 2.0 Level B, EDID, 800x600 minimum, and PC 97 requirements
 Required

 59. System supports MPEG-1 playback requirements for PC 97, if system has CD-ROM plus
multimedia audio and video capabilities
 Required

 60. PC 97 DVD playback requirements, if system includes DVD-Video
 Required

 61. Audio support meets PC 97 requirements, if present
 Required

 Storage and Related Components
 62. Host controller meets PC 97 requirements
 Required

 63. Primary host controller and devices support bus mastering
 Required

 64. Hard drive meets PC 97 requirements
 Required

 65. Hard drive is SMART-compliant
 Required

 66. CD-ROM meets PC 97 and Net PC requirements, if present
 Required

 67. Media status notification support for ATAPI removable media, if present
 Required

 68. Legacy floppy-disk controller
 Optional

 Hardware Security Features
 69. Smart card support meets Interoperability Specifications, if present
 Required

 70. Physical system security
 Required

Attachment A: DHCP Extensions for New System Setup 37

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment A: DHCP Extensions for New System Setup
 This description assumes a knowledge of the standard DHCP/BOOTP protocols.

 Protocol Overview
 The protocol is a combination of a straightforward extension of DHCP (through the
use of several new DHCP Option tags) and the definition of simple packet
transactions which use the DHCP packet format and options to pass additional
information between the client and server. This added complexity is introduced by
the requirement to operate without disturbing existing DHCP services.

 In this protocol, DHCP options fields are used to do the following:

• Distinguish DHCP request packets sent by a client as part of this extended
protocol from other DHCP request packets that the installation server may
receive.

• Distinguish DHCP reply packets sent by a server as part of this extended
protocol from other DHCP reply packets that the client may receive.

• Convey client network adapter type.

• Convey client System ID.

• Convey client system architecture type.

 Based on the client network adapter type and system architecture type, the server
returns to the client the file name (on the server) of an appropriate executable. The
client downloads the specified executable into memory and executes it. How this
executable accomplishes the setup of the system is not specified by these guidelines.

 This section presents an informal, step-by-step description of the remote new
system setup protocol. A detailed description of packet formats and client and
server actions appears later in this attachment.

Attachment A: DHCP Extensions for New System Setup 38

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

PXE
Client

DHCP
Service

DHCP Discover on Port 67
Contains [PXE Client extension tags]

DHCP Offer on port 68 contains:
Dynamic IP address +

[Other DHCP option tags]

DHCP Request to BINL Service port 4011
Contains [PXE Client extension tags]

+ [Other DHCP option tags]
BINL

Boot Image
Negotiation

Layer
Service

DHCP Ack reply to Client's Port
Contains: [PXE Service extension tags]

(contains the Network Bootstrap Program file name)

TFTP
ServiceNetwork Bootstrap Program Download

Request on TFTP port 69

Network Bootstrap Program Download to
Client's port

PXE
Client

PXE
Client

Execute Downloaded
 Boot Image

Installation
ServerPXE Client

proxy
DHCP
Service

Extended DHCP Offer on port 68 contains:
 [PXE server extension tags] +

[Other DHCP option tags]
Client IP addr is null

PXE Operation: Client - Server Interaction

DHCP
Service

DHCP Request on Installation Server port 67
Contains [PXE Client extension tags]

+ [Other DHCP option tags]

DHCP Ack reply on Port 68

DHCP Discover on Port 67
Contains [PXE Client extension tags]

PXE
Client

PXE
Client

Step 1

Step 3

Step 2

Step 4

Step 5

Step 6

Step 8

Step 7

 Figure 1 – PXE Operation – Client Server Interaction (updated in version 1.0b)

 Step 1. The client broadcasts a DHCP discover message to the standard DHCP port
(67). An option field in this packet contains the following:

• A tag for client identifier (if the client identifier is known).

• A tag for the client Network Interface Identifier.

• A tag for the client system architecture.

 Step 2. The PXE PROXY DHCP Service responds by sending a PXE PROXY
DHCPOFFER message to the client on the standard DHCP reply port (68). This
packet contains the address of the PXE PROXY DHCP Service. The client IP
address field is null.

 At this point, other DHCP Services and BOOTP Services also respond with DHCP
offers or BOOTP reply messages on port 68. Each message contains standard
DHCP parameters: an IP address for the client and any other parameters that the

Attachment A: DHCP Extensions for New System Setup 39

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

administrator might have configured on the Service. If the Installation Server is also
functioning as a standard DHCP Service, then the DHCP Service reply from the
Installation Server will also contain standard DHCP parameters (in particular, an IP
address for the client)

 The timeout for a reply from a DHCP server is standard. The timeout for re-
broadcasting to receive a DHCPOFFER with PXE extensions, or a PROXY
DHCPOFFER is based on the standard DHCP timeout, but is substantially shorter
to allow reasonable operation of the client in standard BOOTP or DHCP
environments that do not provide a OFFER with PXE extensions. The PXE timeout
for rebroadcast is:

 4, 8, 16 seconds, yielding three broadcasts and a timeout after 28 seconds.

 The PXE timeout for rebroadcast is 4 seconds after receiving an OFFER without
PXE extensions but with a valid “bootfile name” option.

 Step 3. From the DHCPOFFER(s) that it receives, the client records the following:

• The Client IP address (and other parameters) offered by a standard DHCP or
BOOTP Service.

• The Server IP address of the BINL (Boot Image Negotiation Layer) Service
from the “siaddr” field in the PXE proxy DHCP offer.

 Step 4. If the client selects an IP address offered by a DHCP Service, then it must
complete the standard DHCP protocol by sending a request for the address back to
the Service and then waiting for an acknowledgment from the Service. If the client
selects an IP address from a BOOTP reply, it can simply go ahead and use the
address.

 Step 5. The client sends a DHCP Request packet to the BINL Service on port 4011.
This packet is exactly the same as the initial DHCP Discover in Step 1, except that
it is coded as a DHCP Request and now contains the following:

• Contains the IP address assigned to the client from a DHCP Service.

• Contains all the PXE options fields received from the selected DHCP Offer
which contained the PXE options.

 Step 6. The BINL Service on the Installation Server sends a DHCP Acknowledge
packet back to the client, also on port 4011. This reply packet contains:

• Boot file name and location.

• The Client UUID/GUID option in the PXE proxy DHCP offer.

Attachment A: DHCP Extensions for New System Setup 40

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• MTFTP1 configuration parameters.

 Step 7. The client downloads the executable file using either standard TFTP or
MTFTP. The file downloaded and the placement of the downloaded code in memory
is dependent on the client’s CPU architecture. (For Intel architecture Net PCs, see
Attachment B.)

 Step 8. Finally, the PXE Client initiates execution of the downloaded code. The
way in which this is done is dependent on the client’s CPU type. For Intel
architecture Net PC systems, the client code executes a far call to the first location
in the code.

 Relationship to the Standard DHCP Protocol
 The initial phase of this protocol piggybacks on a subset of the DHCP protocol
messages to enable the client to discover an installation server, that is, one that
delivers executables for new system setup. The client can use the opportunity to
obtain an IP address, which is the expected behavior, but it is not required. Clients
that do obtain an IP address using DHCP or BOOTP must implement the protocol
as specified in RFC 1541, even though not all possible messages and states of that
protocol are described or mentioned in this protocol specification. The points at
which this protocol piggybacks or otherwise interacts with the standard DHCP
protocol are also noted.

 The second phase of this protocol takes place between the client and an installation
server, and uses the DHCP message format simply as a convenient format for
communication. This second phase of the protocol is otherwise unrelated to the
standard DHCP services.

 1 Multicast Trivial File Transfer Protocol, as defined by this document through the
use of DHCP encapsulated vendor options.

Attachment A: DHCP Extensions for New System Setup 41

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 PXE DHCP Options

 Tag Name Tag Number Length Type Data Field
 Client

UUID/GUID
 97 17 20 per Attachment K

 Client Network
Interface
Identifier

 94 3-9 1 = UNDI
 2 = PCI
 3 = PNP

 Type 1 = Major ver(1), Minor Ver(1)
 Type 2 = Vendor ID(2),

Device ID(2),
Class Code(3), Rev(1)

 Type 3 = EISA Device ID(4),
Class Code(3)

 Tag Name Tag Number Length Field Data Field
 Client System
Architecture

 93 2 0 = Intel Architecture PC
 1 = NEC/PC98
 2 = etc.

 Class Identifier 60 9 “PXEClient”
 Encapsulated Vendor Options (DHCP Option #43)

 Tag Name Tag Number Length Field Data Field
 DHCP_VENDOR 43 varies Encapsulated options below

 (Multiple DHCP_VENDOR options can be used)
 "PXEClient" Encapsulated Options for DHCP Option #43

 Tag Name Tag Number Length Field Data Field
 PXE_PAD 0 None None
 MTFP IP Addr 1 4 a0, a1, a2, a3
 MTFTP Client UDP 2 2 Port Number
 MTFTP Server UDP 3 2 Port Number
 MTFTP Start Delay 4 1
 MTFTP Timeout Delay 5 1
 Reserved 6-63 1
 Loader Options 64-127 1 (vendor specific)
 Vendor Options 128-254 1 (vendor specific)
 PXE_END 255 None

 The Client UUID/GUID field specifies a globally unique ID (GUID), retrieved
from the client system. Client UUID/GUID must be generated per Attachment K. If
the Client does not have a GUID, the DHCP service (or Installation Service) may
supply one by returning the option with a valid value. The client must store this
value if it can, and if so, must use it in all subsequent DHCP transactions.

 The Client Network Interface Identifier specifies either the physical Network
Interface Adapter or indicates the presence of an API (UNDI, described below) that
will support a universal boot loader. The UNDI interface should be supported.

 The UNDI type field must have a major version of 2 and a minor version of 0 for
this version of the protocol. (Future versions may recognize more tags based on this
version number.)

Attachment A: DHCP Extensions for New System Setup 42

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 If neither PCI nor PNP information is available then the UNDI interface should be
supported. Otherwise, the vendor must create an ad hoc PNP or PCI entry and
assume the responsibility of distributing the appropriate NIC driver to PXE Servers.

 The Client System Architecture identifier specifies the system architecture of the
client.

 The Class Identifier (Option 60) of “PXEClient” is required to assure
unambiguous identification of clients meeting this specification.

 Encapsulated Options (Option 43) are provided to allow configuration for MTFTP
boot file transfers. MTFTP should be implemented in the Client. If provided by the
DHCP, proxyDHCP, or BINL service, these options should be used.

 MTFTP IP Addr is the multicast IP address the client must use to receive the
image file.

 MTFTP Client UDP is the port the client must listen on to receive the image
file.

 MTFTP Server UDP is the port the client must use to communicate with the
MTFTP service. The client binds to the MTFTP UDP port and waits for the
duration of the MTFTP transmission start delay to receive packets.

 MTFTP Start Delay is the timeout to begin receiving image file packets before
attempting to become the MTFTP acknowledging client (master client) upon
initial connection to the MTFTP service.

 MTFTP Timeout Delay is the delay, multiplied by the percentage of the file
received, the client must wait before attempting to become the MTFTP
acknowledging client (master client) upon cessation of packet transmissions
during an ongoing MTFTP transfer.

 Client Behavior
 This section summarizes client behavior for initiation, discovery reply, installation
service request, installation service reply, and executable download and execution.

 Sending a PXE (Preboot eXecution Environment) Client message requires the use
of DHCP Option fields. All PXE Client packets provide the same extended DHCP
information in these options. This includes DHCP Request messages used to
communicate with the server to which the PXE Client has been redirected. Other
fields and options may be different between the packets, based on the standard
DHCP protocol.

 Initiation
 To initiate the interchange between the client and server, the client broadcasts a
DHCPDISCOVER packet to the standard DHCP server UDP port (67). The
contents of this message must be as described in RFC 1541 for a

Attachment A: DHCP Extensions for New System Setup 43

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

DHCPDISCOVER message, with the addition of PXE Client option fields: The
format of these options is specified below:

 DHCP Header

 Field (length) Value Comment

 op (1) 1 Code for BOOTP BOOTREQUEST
 htype (1) *
 hlen (1) *
 hops (1) *
 xid (4) *
 secs (2) *
 flags (2) *
 ciaddr (4) 0.0.0.0 PXE client always sets this value to 0.0.0.0
 yiaddr (4) blank Client’s IP address. Provided by server
 siaddr (4) * Next bootstrap server IP address
 giaddr (4) *
 chaddr (16) xx-xx-xx-xx-xx-xx-xx-xx Client’s MAC address
 sname (64) * Can be overloaded if using Opt 66
 bootfile (128) * Can be overloaded if using Opt 67

 99.130.83.99
 DHCP Options

 Tag Name Tag Number Length Type Data Field
 Client UUID/GUID 97 17 20 per Attachment K
 Client Network Device
Interface Type

 94 3-9 1 = UNDI
 2 = PCI
 3 = PNP

 Type 1 = Major ver(1), Minor Ver(1)
 Type 2 = Vendor ID(2), Device ID(2),
Class Code(3), Rev(1)
 Type 3 = EISA Device ID(4),
Class Code(3)

 Tag Name Tag Number Length Field Data Field
 DHCP Message Type 53 1 1 = DHCPDISCOVER

 Class Identifier 60 9 “PXEClient”

 Client System Architecture 93 2 0 = Intel Architecture PC,
 1 = NEC/PC98

 After sending the DHCPDISCOVER message, the client must be prepared to
receive replies as described in the following section.

 Discovery Reply
 In this state, the client is prepared to receive one or more extended DHCPOFFER
replies from servers on the standard DHCP client UDP port (68). Sending a PXE
Server message requires the use of DHCP Options. The format of these options are
as follows:

Attachment A: DHCP Extensions for New System Setup 44

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 DHCP Header

 Field (length) Value Comment

 op (1) 2 Code for BOOTP REPLY

 htype (1) *

 hlen (1) *

 hops (1) *

 xid (4) *

 secs (2) *

 flags (2) *

 ciaddr (4) 0.0.0.0 PXE client always sets this value to 0.0.0.0

 yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by server

 siaddr (4) a0, a1, a2, a3 Next bootstrap server IP address

 giaddr (4) *

 chaddr (16) * Client’s MAC address

 sname (64) * Can be overloaded if using Opt 66

 bootfile (128) * Can be overloaded if using Opt 67

 99.130.83.99

 DHCP Options
 Tag Name Tag Number Length Type Data Field

 Client UUID/GUID 97 17 20 per Attachment K
 Tag Name Tag Number Length Field Data Field

 DHCP Message Type 53 1 2 = DHCPOFFER
 Server Identifier 54 4 a1, a2, a3, a4
 Class Identifier 60 9 “PXEClient”

 Encapsulated Vendor Options (DHCP Option #43)
 Tag Name Tag Number Length Field Data Field

 DHCP_VENDOR 43 varies Encapsulated options below
 (Multiple DHCP_VENDOR options can be used)

 "PXEClient" Encapsulated Options for DHCP Option #43
 Tag Name Tag Number Length Field Data Field

 PXE_PAD 0 None None

 MTFP IP Addr 1 4 a0, a1, a2, a3

 MTFTP Client UDP 2 2 Port Number

 MTFTP Server UDP 3 2 Port Number

 MTFTP Start Delay 4 1

 MTFTP Timeout Delay 5 1

 PXE_END 255 None

 If the responding server does not have an installation capability, it will provide a
valid address in siaddr to redirect the client to an installation server.

Attachment A: DHCP Extensions for New System Setup 45

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 In this state, the client must also be prepared to receive one or more standard
DHCPOFFER messages from servers. Each of these messages will contain
configuration information as specified in RFC 1541. Each extended DHCPOFFER
message can also contain configuration information as specified in RFC 1541. The
presence of such information in an extended DHCPOFFER message is indicated by
a nonzero value in the client IP address field. Which, if any, of these configurations
is used by the client is not defined by this specification. If the client decides to
accept one of the configurations offered, then it must engage in further
communications with the server as specified in RFC 1541.

 To move to the installation server request state, the client must have received at
least one extended DHCPOFFER message. Beyond this, the criteria for the client
exiting this state are not defined by this specification.

 Installation Service Request
 To enter this state, the client must have an IP address. Also, the client must have
received one or more extended DHCPOFFER messages and therefore know the IP
address of one or more installation servers. The client selects one of these
installation servers and sends a DHCPREQUEST message to the server on port
4011. Otherwise the format of this message is the same as an extended
DHCPDISCOVER. The following table lists the required values in the fields of this
message; fields marked with an asterisk contain unspecified values.

Attachment A: DHCP Extensions for New System Setup 46

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 DHCP Header
 Field (length) Value Comment

 op (1) 1 Code for BOOTP BOOTREQUEST

 htype (1) *

 hlen (1) *

 hops (1) *

 xid (4) *

 secs (2) *

 flags (2) *

 ciaddr (4) 0.0.0.0 PXE client always sets this value to 0.0.0.0

 yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by DHCP server

 siaddr (4) a0, a1, a2, a3 server IP address

 giaddr (4) 0.0.0.0

 chaddr (16) *xx-xx-xx-xx-xx-xx-xx-xx Client’s MAC address

 sname (64) * Can be overloaded if using Opt 66

 bootfile (128) * Can be overloaded if using Opt 67

 99.130.83.99

 DHCP Options
 Tag Name Tag Number Length Type Data Field

 Client UUID/GUID 97 17 20 per Attachment K
 Client Network Device
Interface Type

 94 3-9 1 = UNDI
 2 = PCI
 3 = PNP

 Type 1 = Major ver(1), Minor Ver(1)
 Type 2 = Vendor ID(2),

Device ID(2),
Class Code(3), Rev(1)

 Type 3 = EISA Device ID(4),
Class Code(3)

 Tag Name Tag Number Length Field Data Field
 DHCP Message Type 53 1 3 = DHCPREQUEST

 Server Identifier 54 4 a1, a2, a3, a4

 Class Identifier 60 9 “PXEClient”

 Client System Architecture 93 2 0 = Intel Architecture PC
 1 = NEC/PC98.

 Installation Service Reply
 In this state, the client must be prepared to receive an extended
DHCPACKNOWLEDGE message from the installation server. The following table
lists the required values in the fields of this message:

Attachment A: DHCP Extensions for New System Setup 47

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 DHCP Header
 Field (length) Value Comment

 op (1) 2 Code for BOOTP REPLY
 htype (1) *
 hlen (1) *
 hops (1) *
 xid (4) *
 secs (2) *
 flags (2) *
 ciaddr (4) 0.0.0.0 PXE client always sets this value to 0.0.0.0
 yiaddr (4) a0, a1, a2, a3 Client’s IP address. Provided by server
 siaddr (4) a0, a1, a2, a3 Next bootstrap server IP address
 giaddr (4) *
 chaddr (16) * Client’s MAC address
 sname (64) * Can be overloaded if using Opt 66
 bootfile (128) * Can be overloaded if using Opt 67

 99.130.83.99

 DHCP Options
 Tag Name Tag Number Length Type Data Field

 Client UUID/GUID 97 17 20 per Attachment K
 Tag Name Tag Number Length Field Data Field

 DHCP Message Type 53 1 4 = DHCPACKNOWLEDGE
 Server Identifier 54 4 a1, a2, a3, a4

 Encapsulated Vendor Options (DHCP Option #43)
 Tag Name Tag Number Length Field Data Field

 DHCP_VENDOR 43 varies Encapsulated options below
 (Multiple DHCP_VENDOR options can be used)

 "PXEClient" Encapsulated Options for DHCP Option #43
 Tag Name Tag Number Length Field Data Field

 PXE_PAD 0 None None
 MTFP IP Addr 1 4 a0, a1, a2, a3
 MTFTP Client UDP 2 2 Port Number
 MTFTP Server UDP 3 2 Port Number
 MTFTP Start Delay 4 1
 MTFTP Timeout Delay 5 1
 PXE_END 255 None

 The options fields in this message must include the following:

• The Installation Server must direct the client to a TFTP server by responding
with siaddr filled in. (Usually, the TFTP Server resides on the same machine,
so siaddr would be set to null.)

• Client UUID/GUID if received from the client

Attachment A: DHCP Extensions for New System Setup 48

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• Server Identifier (address of the responding Installation server)

• Bootfile Name if Option 52 (Option Overload) is used.

• System architecture indicating architecture the bootfile supports. System
architecture value must be the same as received by the client to insure proper
operation of the bootfile.

 After receiving this message, the client moves to the executable download state.

 Executable Download and Execution
 In this state, the client is to download all or some portion of the executable file
using the standard TFTP. The portion of the file downloaded and the placement of
the downloaded code in memory is dependent on the client’s CPU architecture.

 For Net PC systems based on Intel Architecture, the entire bootstrap image (up to
32K in size) is downloaded into the client PC starting at location 07C00h. The
TFTP/MTFTP session that was used to download the bootstrap image is terminated
and the logical network connection to the TFTP server is closed.

 After the bootstrap image is downloaded, the TFTP connection is closed and control
is passed to the bootstrap image. The way in which this is done is dependent on the
client’s CPU type. For Net PC systems based on Intel Architecture, the boot ROM
code is to execute a far call to location 0:7C00h.

 MTFTP Operation
 Implementation of MTFTP in the client is strongly recommended. If the server
sends MTFTP parameters, then the client should proceed as described in this
section. In this case the client goes through three phases: an open, a receive and a
close, with an error recovery phase that can be entered at any point.

 MTFTP open
 1. The network client acquires at least the following information from the

BINL reply:

• Client bootfilename

• MTFTP Server UDP port number

• MTFTP Client UDP port number

• MTFTP multicast IP address

• MTFTP transmission start delay

• MTFTP transmission time-out delay

2. Client binds to the MTFTP UDP port and waits for the MTFTP transmission
start delay to receive packets. No network traffic is generated.

Attachment A: DHCP Extensions for New System Setup 49

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

3. If there is a response, MTFTP packets are collected from the network. The
client keeps track of received packets in an internal list.

If no packet is received, the client initiates an MTFTP open to the server.

MTFTP receive
1. In order to find out if a client needs to acknowledge or not, the server sends a

unicast TFTP packet to that client. The first packet of a MTFTP transmission is
always sent both as unicast and multicast UDP/IP. This instructs the network
client that it is the acnowledging client.

2. A server always transmits the complete file. Therefore, clients that start
listening to a conversation part way through can wait and then get the rest on
the next MTFTP transmission to make up for what was missed the first time.

3. The acknowledging client must ACK all packets even if the client has received
the entire file.

MTFTP close
1. An MTFTP transmission is finished when the acknowledging client has

received all packets and disconnects from the network. Clients who did not
receive all packets can initiate a new transmission, if one has not already
started.

2. Before a new transmission is started there is a calculated delay. The default
delay is modified by an algorithm based on the number of packets received.
Clients who received fewer packets will wait for a shorter time than those who
received more. This algorithm ensures that:

• Slow clients define the transmission speed.

• Clients with a large number of received packets can disconnect from
MTFTP after they received all missing packets.

• Clients who hook into an ongoing MTFTP transmission and therefore only
receive the tail of the transmission can disconnect from MTFTP after they
received the missing head of the transmission.

• Clients with a small number of received packets are more likely to become
the acknowledging client.

 Server Behavior
 The server behavior needed for the extended protocol comprises two pieces of
functionality: a redirection service, and an installation service.

• The redirection service receives extended DHCPDISCOVER messages
(generated by the client Initiation step) on the standard DHCP server port (67)

Attachment A: DHCP Extensions for New System Setup 50

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

and responds with DHCPOFFER messages containing the location (IP address)
of the installation service.

• The installation service receives extended DHCPREQUEST messages
(generated by the client Installation Service Request step) on UDP port 4011
and responds with DHCPACK messages containing the location (IP address) of
the TFTP service and the file name of a new system setup executable
appropriate to the client.

 A standard DHCP service may be extended to include the functionality of either the
redirection service or the installation service. In this case, this extended DHCP
service must implement all behaviors specified for the service included.

 Redirection Service Behavior
 This section summarizes the behavior of the redirection service to the
DHCPDISCOVER message and other DHCP messages.

 Response to DHCPDISCOVER
 The redirection service will always be prepared to receive on UDP port 67, an
extended DHCPDISCOVER message with contents as described earlier in the
“Initiation” section. The redirection service will only respond to messages which
include DHCP Option 60 with the value of “PXEClient”.

 If the redirection service responds to a message, it will respond by sending to the
initiating client a DHCPOFFER message containing options as described earlier in
the “Discovery Reply” section:

 The “siaddr” field in the reply, if filled in, will be the location of an installation
service. If the “siaddr” field is not filled in then the installation service is at the
same address as the redirection service.

 The client IP address field of the message will be 0.0.0.0.

 If the redirection service is also a standard DHCP configuration service, then the
DHCPOFFER message sent to the client will be as specified in RFC 1541.

 Installation Service Behavior
 This section summarizes the behavior of the installation service to the
DHCPREQUEST message and TFTP service messages.

 Response to DHCPREQUEST
 The installation service will always be prepared to receive a DHCPREQUEST
message with contents as described earlier in the “Installation Service Request”
section. The installation service will respond by sending to the initiating client a
DHCPACKNOWLEDGE message as described earlier in the “Installation Service
Reply” section. The file name in this message will be the complete path name of a

Attachment A: DHCP Extensions for New System Setup 51

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

new system setup executable appropriate to the client that is accessible using TFTP
from the installation server’s IP address.

 TFTP Service
 The server running the installation service will provide TFTP service, as described
in the previous section.

Attachment B: Preboot Execution Environment 52

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment B: Preboot Execution Environment
 To enable the interoperability of clients and downloaded bootstrap programs, the
client preboot code must provide a set of services for use by a downloaded
bootstrap. It also must ensure certain aspects of the client state at the point in time
when the bootstrap begins executing. The services provided by the client for use by
the bootstrap are as follows:

• Preboot Services API. Contains several global control and information
functions.

• TFTP API. Enables opening and closing of TFTP connections, and reading
packets from and writing packets to a TFTP connection.

• UDP API. Enables opening and closing UDP connections, and reading packets
from and writing packets to a UDP connection.

• Universal NIC Driver Interface (UNDI) API. Enables basic control of and
I/O through the client’s network interface device.

 The aspects of the client’s state to be ensured by the client preboot code at the point
in time that execution of the downloaded bootstrap is initiated are as follows:

• The use of certain portions of the client’s main memory

• The settings of certain portions of the client’s interrupt vector

• The settings of certain of the client’s CPU registers

 Note: The descriptions in subsequent sections are specific to Intel-architecture PCs.
A processor architecture-independent description of these interface and state
specifications is probably possible, but has not been attempted.

 Client State at Bootstrap Execution Time
 This section describes the client state, including information about the bootstrap
calling convention, memory usage, and interrupt vector table.

 Bootstrap Calling Convention
 The entire bootstrap image is downloaded into memory starting at location 07C00h.
The preboot code transfers control to the bootstrap by executing a far call to the
beginning of the bootstrap code. At this point the following must be true:

• CS:IP is to contain the value 0:7C00h

Attachment B: Preboot Execution Environment 53

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• ES:BX is to contain the address of the PXENV Entry Point structure described
in the “Preboot API Entry Point and Installation Check” section later in this
attachment

• EDX is to contain the physical address of the PXENV Entry Point structure

• SS:SP is to contain the address of the beginning of the unused portion of the
preboot services stack

 Note that the bootstrap code can determine how much free stack space is available
by examining the contents of SP and by having knowledge of the memory usage
conventions described in the following section.

 Caution: A bootstrap should not exceed 32 KB in length. The memory between
07C00h and 10000h is free for use by the bootstrap.

 Memory Usage
 The following table describes the usage of the first megabyte of the client’s main
memory when execution of the downloaded bootstrap is initiated.

Attachment B: Preboot Execution Environment 54

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Memory Usage During Execution of Downloaded Bootstrap

 Address Status Preboot services usage Conventional usage

 0

 3FF

 RESERVED,
except for Vector
1Ah at 0:68h.

 Vector 1Ah is used to export
the preboot services API.

 Interrupt Vector Table

 400

 4FF

 RESERVED,
except for the 16-
bit word at 40:13h

 The 16-bit word at 40:13h is
the size of free base memory
in KB (SFBM/400h).

 BIOS Data Area

 500

 6FF

 RESERVED DOS Data Area

 700

 7BFF

 RESERVED IO.SYS Load Area

 7C00

 10000

 Downloaded Bootstrap

 10000

 10000+SFBM-1

 Free base memory

 10000+SFBM

 (SS:SP)

 Preboot Services CPU Stack
(unused)

 (SS:SP)+1

 9FFFF

 RESERVED Preboot Services CPU Stack
(used by Preboot Services)

 Preboot Services Code
and Data

 Extended BIOS Data Area
(possibly)

 A0000

 BFFFF

 RESERVED Video Memory

 C0000

 C7FFF

 RESERVED Video BIOS

 C8000

 DFFFF

 RESERVED Other BIOS / Upper
Memory

 E0000

 EFFFF

 RESERVED Contains a unique
system ID structure.

 Other BIOS / Upper
Memory / System BIOS

 F0000

 FFFFF

 RESERVED Contains a unique
system ID structure.

 System BIOS

Attachment B: Preboot Execution Environment 55

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Free Memory Size (Bios Data Area). When execution of the downloaded
bootstrap begins, the 16-bit word at memory address 40:13h must contain the
amount of free base memory in KB.

 Preboot Services Stack. When execution of the downloaded bootstrap is begun,
SS:SP is to contain the address of the top of the unused portion of the preboot
services CPU stack. The downloaded image should not modify the used portion of
the preboot services CPU stack prior to the time in the boot sequence when it is
certain that the preboot services will not be needed again.

 Preboot Services Code and Data. This memory area is reserved for the code and
data that implement the preboot services. These locations should not be modified by
the downloaded image prior to the time in the boot sequence, when it is certain that
the preboot services will not be needed again.

 Extended BIOS Data. If EBDA has been allocated, the downloaded image should
not modify memory in the EBDA.

 PXENV Unique System ID (SYSID Bios Area). When execution of the
download bootstrap begins, the client’s main memory must contain a PXENV
unique system ID structure. This structure must meet the following conditions:

• Entry Point Structure - This will be found in the 000E0000h to 000FFFFFh
physical address area of Memory/RAM. The Entry Point Structure is
PARAGRAPH Aligned.

Entry Point Structure

Element Length Description

Header/Type 7 Bytes _SYSID_

Checksum 1 Byte Checksum of SYSID BIOS Entry Point
Structure

Length 2 Bytes Total length of SYSID BIOS Structure Table
(Set to 011h).

SYSID BIOS Structure
Table Address

4 Bytes 32 bit physical address of beginning of SYSID
BIOS Structure Table. This value is BYTE
Aligned.

Number of SYSID BIOS
Structures

2 Bytes Total number of structures within the SYSID
BIOS Structure Table.

SYSID BIOS Revision 1 Byte Revision of the SYSID BIOS Extensions (Set
to 00h).

Attachment B: Preboot Execution Environment 56

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

UUID Structure Format

Element Length Description

Header/Type 6 Bytes _UUID_

Checksum 1 Byte Checksum of UUID BIOS Structure

Length 2 Bytes Total length of UUID BIOS Structure
(Set to 0019h).

Variable Data Portion 16 Bytes Actual UUID data
(Initially set all bytes to 0FFh).

1. Header/Type - This is a fixed size for all SYSID BIOS Structure Types. It will
always be 6 bytes long. The first and last byte will always be the underscore
ascii characters. The middle four bytes are the ASCII characters of UUID.

2. Checksum - This value is a two’s complement based checksum which will
cause the addition of all bytes defined for this table interface to be equal to 00h.
Please note that this is a 8-bit addition calculation (byte wide addition).

3. Length - This value is a Total length of the entire UUID BIOS Structure type.
In other words, this value is the addition of all the bytes in this structure from
the first byte of the Header/Type field to the last byte in the Variable Data
Portion field. The value for this field (for 16 bytes in the Variable Data
Portion) is 019h.

4. Variable Data Portion - This value is the 16 byte long (10h) UUID.

Interrupt Vector Table
When execution of the downloaded bootstrap begins, interrupt 1Ah is chained to
export the preboot services, TFTP, UDP, and UNDI APIs.

Preboot API Entry Point and Installation Check
Procedures for finding the preboot API entry point structure are architecture
dependent. The methods described in this section work for PC/AT x86 clients. In
general, the API entry point can be discovered using either of two methods. The
first method is to use the installation check interrupt, Int 1Ah. The second is to scan
base memory for the preboot API entry point structure. In addition, as described
earlier in the “Bootstrap Calling Convention” section, certain registers contain the
address of the entry point structure when the downloaded bootstrap is executed.

The preboot API supports only 16-bit real-mode or virtual-86 mode calls.
Application programs must make far calls (CALL xxxxh:yyyyh) to the functions in
the preboot APIs.

Attachment B: Preboot Execution Environment 57

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Int 1Ah Function 5650h
(Preboot API Installation Check)
Enter:

AX := 5650h (VP)

Exit:

AX := 564Eh (VN)

ES := 16-bit real-mode segment of the preboot API entry point structure.

BX := 16-bit real-mode offset of the preboot API entry point structure.

EDX := 32-bit physical address of the preboot API entry point structure.

All other register contents are preserved.

CF is cleared.

IF is preserved.

All other flags are undefined.

Preboot API Entry Point Structure
The preboot API entry point structure will be paragraph aligned and placed between
the top of free base memory and A0000h (640k). The top of free base memory can
be calculated using the size of free base memory word. This word is located in the
BIOS data segment at 40:13h.

Attachment B: Preboot Execution Environment 58

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

typedef struct s_PXENV_ENTRY {

UINT8 signature[6]; /* "PXENV+" */

UINT16 version; /* MSB=major, LSB=minor */

UINT8 length; /* sizeof(struct s_PXENV_ENTRY) */

UINT8 checksum; /* 8-bit checksum off structure, */

/* including this bytes should be 0. */

UINT16 rm_entry_off; /* 16-bit real-mode offset and segment */

UINT16 rm_entry_seg; /* of the PXENV API entry point. */

UINT16 pm_entry_off; /* 16-bit protected-mode offset and */

UINT32 pm_entry_base; /* segment base address of the */

/* PXENV API entry point. */

/* The PROM stack, base code and data segment selectors are only */

 /* required until the base code (TFTP API) layer is removed from */

 /* memory (this can only be done in real mode). */

 UINT16 stack_sel; /* PROM stack segment. Will be set */

 UINT16 stack_size; /* to 0 when removed from memory. */

 UINT16 base_cs_sel; /* Base code segment. Will be set */

 UINT16 base_cs_size; /* to 0 when removed from memory. */

 UINT16 base_ds_sel; /* Base data segment. Will be set */

 UINT16 base_ds_size; /* to 0 when removed from memory. */

 /* The MLID code and data segment selectors are always required */

 /* when running the boot PROM in protected mode. */

 UINT16 mlid_ds_sel; /* MLID data segment. */

 UINT16 mlid_ds_size;

 UINT16 mlid_cs_sel; /* MLID code segment. */

 UINT16 mlid_cs_size;

} t_PXENV_ENTRY;

Register Usage for Preboot APIs
All API services use the following register settings:

Enter:

BX := PXENV function number

ES := Segment or selector of parameter structure

DI := Offset of parameter structure

Exit:

AX := EXIT_SUCCESS or EXIT_FAILURE

All other register contents are preserved.

CF := Cleared on success, set on error

IF is preserved.

All other flags are undefined.

Attachment B: Preboot Execution Environment 59

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Preboot Services API
All the fields in the preboot services API parameter structures are to be stored in
little endian (Intel) format unless otherwise specified.

UNLOAD PREBOOT STACK
Op-Code: PXENV_UNLOAD_STACK

Input: ES:DI points to a t_PXENV_UNLOAD_STACK parameter structure.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. If
successful, the address of the preboot entry point structure will also be filled in.

Description: The preboot services implementation, except for the Universal NIC Driver, will be
removed from base memory. UNDI API calls will still be available.

Note: Service cannot be used in protected mode.

Warning! The contents of the preboot entry point structure will be changed by this service.
The old preboot entry point structure and contents are invalid and should no longer
be used. The CPU stack used by the preboot services will be discarded. The caller
must switch to a local CPU stack before making this call. This service should not
be used after transferring control to a downloaded OS image.

Attachment B: Preboot Execution Environment 60

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

GET BINL INFO
Op-Code: PXENV_GET_BINL_INFO

Input: ES:DI points to a t_PXENV_GET_BINL_INFO parameter structure that has
been initialized by the caller.

Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. The
buffer specified in the parameter structure will be filled with the requested
information.

Description: This service will return one of three buffers:

• The client’s DHCPDISCOVER packet
• The DHCP server’s DHCPACK packet
• The DHCPOFFER packet, which contains Option 60 set to “PXEClient” and a

valid bootfile name.

 In the downloaded image, the information that is returned by this service is used to
configure client INI and CFG files. These files are then used to complete a valid
network connection back to the configuration server.

 RESTART DHCP
 Op-Code: PXENV_RESTART_DHCP

 Input: ES:DI points to a t_PXENV_RESTART_DHCP parameter.

 Output: If DHCP cannot be restarted, PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. If
DHCP is restarted, control is never returned to the caller.

 Description: This service will try to establish a new DHCP connection with the server and try
to start a download of a new image. The image to be downloaded will be
determined by the server.

 Note: It is the responsibility of the caller to make sure the network connection is in a
valid state before trying to restart DHCP. Any existing network connection should
be closed, and the network adapter must be shutdown using the UNDI API service
PXENV_UNDI_SHUTDOWN.

 Service cannot be used in protected mode.

Attachment B: Preboot Execution Environment 61

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 RESTART TFTP
 Op-Code: PXENV_RESTART_TFTP

 Input: ES:DI points to a t_PXENV_RESTART_TFTP parameter structure that has been
initialized by the caller. The t_PXENV_RESTART_TFTP parameter structure is
identical to the t_PXENV_TFTP_OPEN parameter structure.

 Output: If TFTP cannot be restarted, PXENV_EXIT_FAILURE will be returned and CF
will be set. The status field in the parameter structure will be set to one of the
values represented by the PXENV_STATUS_xxx constants. If TFTP is restarted,
control is never returned to the caller.

 Description: This service will try to establish a new TFTP connection with the server and to
start a download of a new image. The image to be downloaded will be determined
by the previously downloaded image.

 Note: It is the responsibility of the caller to make sure the network connection is in a
valid state before trying to restart TFTP. The existing network connection with the
server needs to be maintained or restored. The existing TFTP connection needs to
be closed.

 Service cannot be used in protected mode.

Attachment B: Preboot Execution Environment 62

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 MODE SWITCH
 Op-Code: PXENV_MODE_SWITCH

 Input: ES:DI points to a t_PXENV_MODE_SWITCH parameter structure that has been
initialized by the caller.

 Output: The status field in the parameter structure will be set to one of the values
represented by the PXENV_STATUS_xxx constants.

 Description: This service must be used when changing the processor between real mode and
protected mode. The caller must initialize the stack, base code, base data, MLID
code, and MLID data selectors and recompute the structure checksum before
running this service.

 Note: This service can only be called from real mode (before entering, and after leaving,
protected mode.) Interrupts need to be disabled when changing the PXENV entry
point structure and when calling this service.

 Warning! This service can only be used with the default base code interrupt call backs.

 TFTP API Service Descriptions
 All the fields in the TFTP API parameter structures are to be stored in little endian
(Intel) format unless otherwise specified.

 TFTP OPEN
 Op-Code: PXENV_TFTP_OPEN

 Input: ES:DI points to a t_PXENV_TFTP_OPEN parameter structure that has been
initialized by the caller. The IP addresses and port numbers in this structure are to
be stored in big endian (Motorola) format.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be
set to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Opens a TFTP connection for reading/writing. At any one time there can be only
one open connection. The connection must be closed before another can be opened.

Attachment B: Preboot Execution Environment 63

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 TFTP CLOSE
 Op-Code: PXENV_TFTP_CLOSE

 Input: ES:DI points to a t_PXENV_TFTP_CLOSE parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Closes the previously opened TFTP connection.

 TFTP READ
 Op-Code: PXENV_TFTP_READ

 Input: ES:DI points to a t_PXENV_TFTP_READ parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. When a
read is successful, the PacketNumber and PacketLength fields will also be
filled in.

 Description: Reads one packet from the open TFTP connection.

 TFTP/MTFTP READ FILE
 Op-Code: PXENV_TFTP_READ_FILE

 Input: ES:DI points to a t_PXENV_TFTP_READ_FILE parameter structure that has
been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. When a
read is successful, the PacketCount and PacketLength fields will also be
filled in.

 Description: This service will open a TFTP, or MTFTP, connection, download the entire file
and close the connection. It is up to the caller to make sure that there is enough
free memory to download the file into.

 For example, you cannot download a 2 MB file into base memory (below 640K).

 Note: UDP open must be called before UDP read or write can be used after transferring

Attachment B: Preboot Execution Environment 64

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

a file with this service.

 This service cannot be call while in protected mode.

 PROTECTED-MODE TFTP/MTFTP READ FILE
 Op-Code: PXENV_TFTP_READ_FILE_PMODE

 Input: ES:DI points to a t_PXENV_TFTP_READ_FILE_PMODE parameter structure
that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. When a
read is successful, the PacketCount and PacketLength fields will also be
filled in.

 Description: This service will open a TFTP or MTFTP connection, download the entire file, and
close the connection. It is up to the caller to make sure that there is enough free
memory to download the file into.

 For example, you cannot download a 2-MB file into base memory (below 640K).

 Note: UDP open must be called before UDP read or write can be used after transferring
a file with this service.

 This service cannot be called while in real mode.

 TFTP_GET_FILE_SIZE
 Op-Code: PXENV_TFTP_GET_FSIZE

 Input: ES:DI points to a t_PXENV_TFTP_Get_FSIZE parameter structure that has
been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants. When
the call is successful, the FileSize field will be filled in.

 Description This service will query the server for the size of the given file using tftp option
extension protocol. This service will not and hence must not be used to open a tftp
connection for the given file.

 Note: This service must not be called when there is an outstanding open tftp connection
on the file

Attachment B: Preboot Execution Environment 65

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UDP API Service Descriptions

 UDP OPEN
 Op-Code: PXENV_UDP_OPEN

 Input: ES:DI points to a t_PXENV_UDP_OPEN parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Opens a UDP connection for reading and writing. There can only be one open
connection at a time.

 UDP CLOSE
 Op-Code: PXENV_UDP_CLOSE

 Input: ES:DI points to a t_PXENV_UDP_CLOSE parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Closes the previously opened UDP connection.

 UDP WRITE
 Op-Code: PXENV_UDP_WRITE

 Input: ES:DI points to a t_PXENV_UDP_WRITE parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Writes one packet to the specified IP address on the open UDP connection.

Attachment B: Preboot Execution Environment 66

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UDP READ
 Op-Code: PXENV_UDP_READ

 Input: ES:DI points to a t_PXENV_UDP_READ parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: Reads one packet from the opened UDP connection.

 UNDI API Service Descriptions

 UNDI STARTUP
 Op-Code: PXENV_UNDI_STARTUP

 Input: ES:DI points to a t_PXENV_UNDI_STARTUP parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call provides the Universal NIC Driver with necessary startup parameters,
such as the data segment and network adapter identification variables. This call
hooks Interrupt 1Ah to export the UNDI API. The rest of the API will not be
available until this call has been completed. The data segment must be zero-filled
before this API call is made.

 Note: The entry point of the UNDI API must be at offset 0 of the UNDI code segment.
The preboot code will install the UNDI API by making a far call to the API entry
point, with ES:DI and BX setup for UNDI STARTUP.

 This service cannot be used in protected mode.

Attachment B: Preboot Execution Environment 67

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI CLEANUP
 Op-Code: PXENV_UNDI_CLEANUP

 Input: ES:DI points to a t_PXENV_UNDI_CLEANUP parameter structure.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call will uninstall the Interrupt 1Ah hook and will prepare the network
adapter driver to be unloaded from memory. This call must be made just before
unloading the Universal NIC Driver. The rest of the API will not be available after
this call executes.

 This service cannot be used in protected mode.

Attachment B: Preboot Execution Environment 68

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI INITIALIZE
 Op-Code: PXENV_UNDI_INITIALIZE

 Input: ES:DI points to a t_PXENV_UNDI_INITIALIZE parameter structure that has
been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call resets the adapter and programs it with default parameters. The default
parameters used are those supplied to the most recent UNDI_STARTUP call. This
routine does not enable the receive and transmit units of the network adapter to
readily receive or transmit packets. The application must call
PXENV_UNDI_OPEN to logically connect the network adapter to the network.

 This call must be made by an application to establish an interface to the network
adapter driver. The parameter block to this call contains the pointer to the call-
back routines that will be called when a packet is received or when any other
interrupt occurs.

 Note: When a receive interrupt occurs, the network adapter driver queues the packet and
calls the application’s callback receive routine with a pointer to the packet
received. Then, the callback routine can either copy the packet into its buffer or
decide to delay the copy to a later time. The callback receive routine always gets
the pointer to the first packet in the receive queue and not to the currently received
packet that generated the interrupt.

 If the call-back routine decides not to copy the data from the buffer at this time, the
packet will remain in the receive queue and, as a result, the later packets might be
dropped when the receive queue is full. At a later time, when the application wants
to copy the packet, it can call the PXENV_UNDI_FORCE_INTERRUPT routine to
simulate the receive interrupt.

 When the preboot code makes this call to initialize the network adapter, it passes a
NULL pointer for the ProtocolIni field in the parameter structure.

Attachment B: Preboot Execution Environment 69

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI RESET ADAPTER
 Op-Code: PXENV_UNDI_RESET_ADAPTER

 Input: ES:DI points to a t_PXENV_UNDI_RESET_ADAPTER parameter structure that
has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call resets and reinitializes the network adapter with the same set of
parameters supplied to Initialize Routine. Unlike Initialize, this call opens the
adapter, that is, it connects logically to the network. This routine cannot be used to
replace Initialize or Shutdown calls.

 UNDI SHUTDOWN
 Op-Code: PXENV_UNDI_SHUTDOWN

 Input: ES:DI points to a t_PXENV_UNDI_SHUTDOWN parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call resets the network adapter and leaves it in a safe state for another driver
to program it.

 Note: The contents of the PXENV_UNDI_STARTUP parameter structure need to be
saved by the Universal NIC Driver in case PXENV_UNDI_INITIALIZE is
called again.

 UNDI OPEN
 Op-Code: PXENV_UNDI_OPEN

 Input: ES:DI points to a t_PXENV_UNDI_OPEN parameter structure that has been
initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call activates the adapter’s network connection and sets the adapter ready to
accept packets for transmit and receive.

Attachment B: Preboot Execution Environment 70

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI CLOSE
 Op-Code: PXENV_UNDI_CLOSE

 Input: ES:DI points to a t_PXENV_UNDI_CLOSE parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call disconnects the network adapter from the network. Packets cannot be
transmitted or received until the network adapter is open again.

 UNDI TRANSMIT PACKET
 Op-Code: PXENV_UNDI_TRANSMIT

 Input: ES:DI points to a t_PXENV_UNDI_TRANSMIT parameter structure that has
been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or the error code will be returned in AX, with the CF
set accordingly. The error code will be set to one of the values represented by the
PXENV_STATUS_xxx constants.

 Description: This call transmits a buffer to the network. The media header for the packet can be
filled by the calling protocol, but it might not be. The network adapter driver will
fill it if required by the values in the parameter block. The transmission is always
synchronous and blocks until the network adapter has placed the packet on the
network.

 UNDI SET MULTICAST ADDRESS
 Op-Code: PXENV_UNDI_SET_MCAST_ADDRESS

 Input: ES:DI points to a t_PXENV_TFTP_SET_MCAST_ADDRESS parameter
structure that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call changes the current list of multicast addresses to the input list and resets
the network adapter to accept it. If the number of multicast addresses is zero,
multicast is disabled.

Attachment B: Preboot Execution Environment 71

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI SET STATION ADDRESS
 Op-Code: PXENV_UNDI_SET_STATION_ADDRESS

 Input: ES:DI points to a t_PXENV_UNDI_SET_STATION_ADDRESS parameter
structure that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call sets the MAC address to be the input value and is called before opening
the network adapter. Later, the open call uses this variable as a temporary MAC
address to program the adapter’s individual address registers.

 UNDI SET PACKET FILTER
 Op-Code: PXENV_UNDI_SET_PACKET_FILTER

 Input: ES:DI points to a t_PXENV_UNDI_SET_PACKET_FILTER parameter
structure that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call resets the adapter’s receive unit to accept a new filter, different from the
one provided with the open call.

 UNDI GET INFORMATION
 Op-Code: PXENV_UNDI_GET_INFORMATION

 Input: ES:DI points to a t_PXENV_UNDI_GET_INFORMATION parameter structure
that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call copies the network adapter variables, including the MAC address, into
the input buffer.

Attachment B: Preboot Execution Environment 72

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI GET STATISTICS
 Op-Code: PXENV_UNDI_GET_STATISTICS

 Input: ES:DI points to a t_PXENV_UNDI_GET_STATISTICS parameter structure
that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call reads statistical information from the network adapter, and returns.

 UNDI CLEAR STATISTICS
 Op-Code: PXENV_UNDI_CLEAR_STATISTICS

 Input: ES:DI points to a t_PXENV_UNDI_CLEAR_STATISTICS parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call clears the statistical information from the network adapter.

 UNDI INITIATE DIAGS
 Op-Code: PXENV_UNDI_INITIATE_DIAGS

 Input: ES:DI points to a t_PXENV_UNDI_INITIATE_DIAGS parameter.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call can be used to initiate the run-time diagnostics. It causes the network
adapter to run hardware diagnostics and to update its status information.

Attachment B: Preboot Execution Environment 73

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UNDI FORCE INTERRUPT
 Op-Code: PXENV_UNDI_FORCE_INTERRUPT

 Input: ES:DI points to a t_PXENV_UNDI_FORCE_INTERRUPT parameter structure
that has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call forces the network adapter to generate an interrupt. When a receive
interrupt occurs, the network adapter driver usually queues the packet and calls the
application’s callback receive routine with a pointer to the packet received. Then,
the callback routine either can copy the packet to its buffer or can decide to delay
the copy to a later time. If the packet is not immediately copied, the network
adapter driver does not remove it from the input queue. When the application
wants to copy the packet, it can call the PXENV_UNDI_FORCE_INTERRUPT
routine to simulate the receive interrupt.

 UNDI GET MULTICAST ADDRESS
 Op-Code: PXENV_UNDI_GET_MCAST_ADDRESS

 Input: ES:DI points to a t_PXENV_GET_MCAST_ADDRESS parameter structure that
has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the CF set accordingly. The status field in the parameter structure will be set
to one of the values represented by the PXENV_STATUS_xxx constants.

 Description: This call converts the given IP multicast address to a hardware multicast address.

 UNDI GET NIC TYPE
 Op-Code: PXENV_UNDI_GET_NIC_TYPE

 Input: ES:DI points to a t_ PXENV_UNDI_GET_NIC_TYPE parameter structure that
has been initialized by the caller.

 Output: PXENV_EXIT_SUCCESS or PXENV_EXIT_FAILURE will be returned in AX,
with the Carry Flag set accordingly. The status field in the parameter structure will
be set to one of the values represented by the PXENV_STATUS_xxx constants.
If the PXENV_EXIT_SUCCESS is returned the parameter structure will contain
the NIC information.

 Description: This call, if successful, provides the NIC specific information necessary to identify

 74

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

the network adapter that is used to boot the system.

 Note: The application first gets the DHCP discover packet using GET_BINL_INFO and
checks if the UNDI is supported before making this call. If the UNDI is not
supported, the NIC specific information can be obtained from the DHCP discover
packet itself.

Attachment C: Preboot API Common Type Definitions 75

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment C: Preboot API Common Type Definitions
 Important: The code provided in this attachment is provided for informational
purposes only.

 /*

 *

 * Copyright(c) 1997 by Intel Corporation. All Rights Reserved.

 *

 */

 #ifndef _PXENV_CMN_H

 #define _PXENV_CMN_H

 /* =

= = */

 /* PXENV.H - PXENV/TFTP/UNDI API common, Version 2.x, 97-Jan-17

 *

 * Constant and type definitions used in other PXENV API header files.

 */

 /* =

= = */

 /* Parameter/Result structure storage types.

 */

 typedef unsigned char UINT8;

 typedef unsigned short UINT16;

 typedef unsigned long UINT32;

 typedef signed char INT8;

 typedef signed short INT16;

 typedef signed long INT32;

 /* =

= = */

 /* Result codes returned in AX by a PXENV API service.

 */

 #define PXENV_EXIT_SUCCESS 0x0000

 #define PXENV_EXIT_FAILURE 0x0001

 #define PXENV_EXIT_CHAIN 0xFFFF /* used internally */

 /* =

= = */

 /* CPU types

 */

 #define PXENV_CPU_X86 0

 #define PXENV_CPU_ALPHA 1

Attachment C: Preboot API Common Type Definitions 76

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 #define PXENV_CPU_PPC 2

 /* =

= = */

 /* Bus types

 */

 #define PXENV_BUS_ISA 0

 #define PXENV_BUS_EISA 1

 #define PXENV_BUS_MCA 2

 #define PXENV_BUS_PCI 3

 #define PXENV_BUS_VESA 4

 #define PXENV_BUS_PCMCIA 5

 /* = */

 /* Status codes returned in the status word of PXENV API parameter

structures.

 */

 /* Generic API errors that are reported by the loader*/

 #define PXENV_STATUS_SUCCESS 0x00

 #define PXENV_STATUS_FAILURE 0x01

 /* General failure. */

 #define PXENV_STATUS_BAD_FUNC 0x02

 /* Invalid function number. */

 #define PXENV_STATUS_UNSUPPORTED 0x03

 /* Function is not yet supported. */

 #define PXENV_STATUS_1A_HOOKED 0x04

 /* Int 1Ah cannot be unhooked. */

 /* ARP errors (0x10 to 0x1F) */

 #define PXENV_STATUS_ARP_CANCELED_BY_KEYSTROKE 0x10

 #define PXENV_STATUS_ARP_TIMEOUT 0x11

 /* BIOS/system errors (0x20 to 0x2F) */

 #define PXENV_STATUS_MCOPY_PROBLEM 0x20

 /* TFTP errors (0x30 to 0x3F) */

 #define PXENV_STATUS_TFTP_CANNOT_ARP_ADDRESS 0x30

 #define PXENV_STATUS_TFTP_OPEN_CANCELED_BY_KEYSTROKE 0x31

 #define PXENV_STATUS_TFTP_OPEN_TIMEOUT 0x32

 #define PXENV_STATUS_TFTP_UNKNOWN_OPCODE 0x33

 #define PXENV_STATUS_TFTP_ERROR_OPCODE 0x34

 #define PXENV_STATUS_TFTP_READ_TIMEOUT 0x35

 #define PXENV_STATUS_TFTP_ERROR_OPCODE 0x36

 #define PXENV_STATUS_TFTP_CANNOT_OPEN_CONNECTION 0x38

 #define PXENV_STATUS_TFTP_CANNOT_READ_FROM_CONNECTION 0x39

 #define PXENV_STATUS_TFTP_TOO_MANY_PACKAGES 0x3A

 #define PXENV_STATUS_TFTP_FILE_NOT_FOUND 0x3B

Attachment C: Preboot API Common Type Definitions 77

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 #define PXENV_STATUS_TFTP_ACCESS_VIOLATION 0x3C

 #define PXENV_STATUS_TFTP_NO_MCAST_ADDRESS 0x3D

 /* BOOTP errors 0x40 to 0x4F) */

 #define PXENV_STATUS_BOOTP_CANCELED_BY_KEYSTROKE 0x40

 #define PXENV_STATUS_BOOTP_TIMEOUT 0x41

 #define PXENV_STATUS_BOOTP_NO_BOOTFILE_NAME 0x43

 /* DHCP errors (0x50 to 0x5F) */

 #define PXENV_STATUS_DHCP_CANCELED_BY_KEYSTROKE 0x50

 #define PXENV_STATUS_DHCP_TIMEOUT 0x51

 #define PXENV_STATUS_DHCP_NO_IP_ADDRESS 0x52

 #define PXENV_STATUS_DHCP_NO_BOOTFILE_NAME 0x53

 /* Driver errors (0x60 to 0x6F) */

 /* These errors are for UNDI compatible NIC drivers. */

 #define PXENV_STATUS_UNDI_MEDIATEST_FAILED 0x61

 #define PXENV_STATUS_UNDI_CANNOT_INIT_NIC_FOR_MCAST 0x62

 /* Bootstrap (.1) errors (0x70 to 0x7F) */

 /* These errors are for the LSA/LCM bootstrap layer. */

 /* Environment (.2) errors (0x80 to 0x8F) */

 /* These errors are for LSA/LCM environment layers. */

 /* MTFTP errors */

 #define PXENV_STATUS_MTFTP_OPEN_CANCELED_BY_KEYSTROKE 0x91

 #define PXENV_STATUS_MTFTP_OPEN_TIMEOUT 0x92

 #define PXENV_STATUS_MTFTP_UNKNOWN_OPCODE 0x93

 #define PXENV_STATUS_MTFTP_READ_CANCELED_BY_KEYSTROKE 0x94

 #define PXENV_STATUS_MTFTP_READ_TIMEOUT 0x95

 #define PXENV_STATUS_MTFTP_ERROR_OPCODE 0x96

 #define PXENV_STATUS_MTFTP_CANNOT_OPEN_CONNECTION 0x98

 #define PXENV_STATUS_MTFTP_CANNOT_READ_FROM_CONNECTION 0x99

 #define PXENV_STATUS_MTFTP_TOO_MANY_PACKAGES 0x9A

 /* Misc errors (0xA0 to 0xAF) */

 #define PXENV_STATUS_BINL_CANCELED_BY_KEYSTROKE 0xA0

 #define PXENV_STATUS_BINL_NO_PXE_SERVER 0xA1

 #define PXENV_STATUS_NOT_AVAILABLE_IN_PMODE 0xA2

 #define PXENV_STATUS_NOT_AVAILABLE_IN_RMODE 0xA3

 /* Reserved errors (0xB0 to 0xCF) */

 /* Vendor errors (0xD0 to 0xFF) */

 #endif /* _PXENV_CMN_H */

 /* EOF - $Workfile: pxe_cmn.h $ */

Attachment D: Preboot API Parameter Structure and Type Definitions 78

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment D: Preboot API Parameter Structure
and Type Definitions

 Important: The code provided in this attachment is provided for informational
purposes only.

 /*

 *

 * Copyright(c) 1997 by Intel Corporation. All Rights Reserved.

 *

 */

 #ifndef _PXENV_API_H

 #define _PXENV_API_H

 /* =

= = */

 /* Parameter structure and type definitions for PXENV API version 2.x

 *

 * PXENV.H needs to be #included before this file.

 *

 * None of the PXENV API services are available after the stack

 * has been unloaded.

 */

 #include "bootp.h" /* Defines BOOTPLAYER */

 /* =

= = */

 /* Format of PXENV entry point structure.

 */

 typedef struct s_PXENV_ENTRY {

 UINT8 signature[6]; /* 'PXENV+' */

 UINT16 version; /* MSB=major, LSB=minor */

 UINT8 length; /* sizeof(struct s_PXENV_ENTRY) */

 UINT8 checksum; /* 8-bit checksum off structure, */

 /* including this bytes should */

 /* be 0. */

 UINT16 rm_entry_off; /* 16-bit real-mode offset and */

 UINT16 rm_entry_seg; /* segment of the PXENV API entry */

 /* point. */

 UINT16 pm_entry_off; /* 16-bit protected-mode offset */

 UINT32 pm_entry_seg; /* and segment base address of */

 /* the PXENV API entry point. */

 UINT16 stack_sel; /* PROM stack segment. Will be set */

 UINT16 stack_size; /* to 0 when removed from memory. */

Attachment D: Preboot API Parameter Structure and Type Definitions 79

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT16 base_cs_sel; /* Base code segment. Will be set */

 UINT16 base_cs_size; /* to 0 when removed from memory. */

 UINT16 base_ds_sel; /* Base data segment. Will be set */

 UINT16 base_ds_size; /* to 0 when removed from memory. */

 /* The MLID code and data segment selectors are always required */

 /* when running the boot PROM in protected mode. */

 UINT16 mlid_ds_sel; /* MLID data segment. */

 UINT16 mlid_ds_size;

 UINT16 mlid_cs_sel; /* MLID code segment. */

 UINT16 mlid_cs_size;

 } t_PXENV_ENTRY;

 #define PXENV_ENTRY_SIG "PXENV+"

 /* =

= = */

 /* One of the following command op-codes needs to be loaded into the

 * op-code register (BX) before making a call a PXENV API service.

 */

 #define PXENV_UNLOAD_STACK 0x70

 #define PXENV_GET_BINL_INFO 0x71

 #define PXENV_RESTART_DHCP 0x72

 #define PXENV_RESTART_TFTP 0x73

 #define PXENV_MODE_SWITCH 0x74

 /* =

= = */

 /* PXENV API parameter structure typedefs.

 */

 /* -

- - */

 typedef struct s_PXENV_UNLOAD_STACK {

 UINT16 status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT16 rm_entry_off; /* Out: 16-bit real-mode segment and */

 UINT16 rm_entry_seg; /* offset of PXENV Entry Point */

 /* structure. */

 UINT16 pm_entry_off; /* Out: 16-bit protected-mode offset */

 UINT32 pm_entry_base; /* and segment base address of */

 /* PXENV Entry Point structure. */

 } t_PXENV_UNLOAD_STACK;

Attachment D: Preboot API Parameter Structure and Type Definitions 80

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 /* -

- - */

 /* Packet types that can be requested in the s_PXENV_GET_BINL_INFO

structure. */

 #define PXENV_PACKET_TYPE_DHCP_DISCOVER 1

 #define PXENV_PACKET_TYPE_DHCP_ACK 2

 #define PXENV_PACKET_TYPE_BINL_REPLY 3

 /* Three packets are preserved and available through this interface: 1)

The

 * DHCP Discover packet sent by the client, 2) the DHCP acknowledgement

 * packet returned by the DHCP server, and 3) the reply packet from the

BINL

 * server. If the DHCP server provided the image bootfile name, the

 * DHCP_ACK and BINL_REPLY packets will identical.

 */

 /* -

- - */

 typedef struct s_PXENV_GET_BINL_INFO {

 UINT16 status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT16 packet_type; /* In: See PXENV_PACKET_TYPE_xxx */

 /* constants */

 UINT16 buffer_size; /* In: Size of the buffer in */

 /* bytes. Specifies the maximum */

 /* amount of data that will be */

 /* copied by the service. A size */

 /* of zero is valid. */

 /* Out: Amount of BINL data, in */

 /* bytes, that was copied into */

 /* the buffer. For an input */

 /* size of zero, no data will be */

 /* copied and buffer_size will */

 /* be set to the maximum amount */

 /* of data available to be */

 /* copied. */

 UINT16 buffer_offset; /* In: 16-bit offset and segment */

 UINT16 buffer_segment; /* selector of a buffer where the */

 /* requested packet will be */

 /* copied. */

 /*Out: If buffer_size, buffer_offset and */

 /* buffer_segment are all zero; */

 /* buffer_offset and buffer_segment */

 /* will be changed to point at the */

 /* packet buffers in the base code. */

 } t_PXENV_GET_BINL_INFO;

Attachment D: Preboot API Parameter Structure and Type Definitions 81

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 /* -

- - */

 typedef struct s_PXENV_RESTART_DHCP {

 UINT16 status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 } t_PXENV_RESTART_DHCP;

 /* -

- - */

 #define s_PXENV_RESTART_TFTP s_PXENV_TFTP_READ_FILE

 #define t_PXENV_RESTART_TFTP t_PXENV_TFTP_READ_FILE

 typedef struct s_PXENV_MODE_SWITCH {

 UINT16 status; /* Out: See PXENV_STATUS_xxx constants*/

 UINT16 pxenv_entry_off; /* In: Offset of PXENV entry point */

 /* structure. */

 UINT16 pxenv_entry_seg; /* In: Real-mode segment or protected- */

 /* mode selector of the PXENV */

 /* entry point structure. */

 /* Protected-mode status call-back API is documented below. */

 UINT16 pmode_status_off; /* In: Offset of 16-bit protected */

 /* mode status call-back. */

 UINT16 pmode_status_sel; /* In: Selector of 16-bit protected */

 /* mode status call-back. */

 } t_PXENV_MODE_SWITCH;

 /*

 * The protected-mode call back will be used by the base code when the

 * client PC is in protected-mode and pmode_status_sel is non-zero.

 *

 * The base code will call the status call-back

 * with the following registers:

 * AX = 0 (Inside a time-out loop.)

 * AX = 1 - n (Packet number of received TFTP packet.)

 * All other registers and flags are undefined.

 *

 * The call-back will return a continue/cancel flag

 * in the following registers:

 * AX = 0 (continue)

 * AX = 1 (cancel)

 * All other AX values are undefined, and will be treated as cancel.

 * All other registers and flags must be unchanged.

 */} t_PXENV_MODE_SWITCH;

 #endif /* _PXENV_API_H */

Attachment D: Preboot API Parameter Structure and Type Definitions 82

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 /* EOF - $Workfile: pxe_api.h $ */

Attachment E: TFTP API Parameter Structure
and Type Definitions 83

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment E: TFTP API Parameter Structure
and Type Definitions

 Important: The code provided in this attachment is provided for informational
purposes only.

 /*

 * Copyright(c) 1997 by Intel Corporation. All Rights Reserved.

 *

 */

 /* TFTP_API.H

 * Parameter structure and type definitions for TFTP API version 2.x

 *

 * PXENV.H needs to be #included before this file.

 *

 * None of the TFTP API services are available after the stack

 * has been unloaded.

 */

 #ifndef _TFTP_API_H

 #define _TFTP_API_H

 #include "pxe_cmn.h"

 /* =

= = */

 /* #defines and constants

 */

 /* One of the following command op-codes needs to be loaded into the

 * op-code register (BX) before making a call a TFTP API service.

 */

 #define PXENV_TFTP_OPEN 0x20

 #define PXENV_TFTP_CLOSE 0x21

 #define PXENV_TFTP_READ 0x22

 #define PXENV_TFTP_READ_FILE 0x23

 #define PXENV_TFTP_READ_FILE_PMODE 0x24
 #define PXENV_TFTP_GET_FSIZE 0x25

 /* Definitions of TFTP API parameter structures.

 */

 typedef struct s_PXENV_TFTP_OPEN {

Attachment E: TFTP API Parameter Structure
and Type Definitions 84

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT16 Status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT8 ServerIPAddress[4]; /* In: 32-bit server IP */

 /* address. Big-endian. */

 UINT8 GatewayIPAddress[4]; /* In: 32-bit gateway IP */

 /* address. Big-endian. */

 UINT8 FileName[128];

 UINT16 TFTPPort; /* In: Socket endpoint at */

 /* which the TFTP server is */

 /* listening to requests. */

 /* Big-endian. */

 } t_PXENV_TFTP_OPEN;

 typedef struct s_PXENV_TFTP_GET_FSIZE {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT8 ServerIPAddress[4]; /* In: 32-bit server IP */

 /* address. Big-endian. */

 UINT8 GatewayIPAddress[4]; /* In: 32-bit gateway IP */

 /* address. Big-endian. */

 UINT8 FileName[128];

 UINT32 FileSize; /* Out: File Size */

 } t_PXENV_TFTP_GET_FSIZE;

 typedef struct s_PXENV_TFTP_CLOSE {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 } t_PXENV_TFTP_CLOSE;

 typedef struct s_PXENV_TFTP_READ {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT16 PacketNumber; /* Out: 16-bit packet number. */

 UINT16 BufferSize; /* In: Size of the receive */

 /* buffer in bytes. */

 /* Out: Size of the packet */

 /* written into the buffer. */

 UINT16 BufferOffset; /* In: Segment/Selector and */

 UINT16 BufferSegment; /* offset of the receive buffer. */

 /* Out: Unchanged */

 } t_PXENV_TFTP_READ;

 typedef struct s_PXENV_TFTP_READ_FILE {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx */

 /* constants. */

 UINT8 FileName[128]; /* In: file to be read */

Attachment E: TFTP API Parameter Structure
and Type Definitions 85

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT32 BufferSize; /* In: Size of the receive */

 /* buffer in bytes. */

 /* Out: Size of the file */

 /* written into the buffer. */

 UINT32 BufferOffset; /* In: 32-bit physical address of the */

 /* buffer to load the file into. */

 UINT8 ServerIPAddress[4]; /* In: 32-bit server IP */

 /* address. Big-endian. */

 UINT8 GatewayIPAddress[4]; /* In: 32-bit gateway IP */

 /* address. Big-endian. */

 UINT8 McastIPAddress[4]; /* In: 32-bit multicast IP address */

 /* on which file can be received */

 /* can be null for unicast */

 UINT16 TFTPClntPort; /* In: Socket endpoint on the Client */

 /* at which the file can be */

 /* received in case of Multicast */

 UINT16 TFTPSrvPort; /* In: Socket endpoint at which */

 /* server listens for requests. */

 UINT16 TFTPOpenTimeOut; /* In: Timeout value in seconds to be */

 /* used for receiving data or ACK */

 /* packets. If zero, default */

 /* TFTP-timeout is used. */

 UINT16 TFTPReopenDelay; /* In: wait time in seconds to delay */

 /* a reopen request in case of */

 /* multicast. */

 } t_PXENV_TFTP_READ_FILE;

 typedef struct

s_PXENV_TFTP_READ_FILE_PMODE {

 UINT16 Status; /* Out: See

PXENV_STATUS_xxx */

 /* constants. */

 UINT8 FileName[128]; /* In: file

to be read */

 UINT32 BufferSize; /* In: Size

of the receive */

 /* buffer in bytes. */

 /* Out: Size of the file */

 /* written into the

buffer. */

 UINT32 BufferOffset; /* In: 32-

bit physical address of the */

 /* buffer to load the

file into. */

 UINT16 BufferSelector; /* In: This

field must be set to 0 in */

 /* real-

mode, and to a valid data */

 /*

selector in protected-mode. */

Attachment E: TFTP API Parameter Structure
and Type Definitions 86

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT8 ServerIPAddress[4]; /*

In: 32-bit server IP */

 /* address. Big-endian.

*/

 UINT8 GatewayIPAddress[4]; /* In:

32-bit gateway IP */

 /* address. Big-endian.

*/

 UINT8 McastIPAddress[4]; /*

In: 32-bit multicast IP address */

 /* on which file can be

received */

 /* can be null for

unicast */

 UINT16 TFTPClntPort; /* In:

Socket endpoint on the Client */

 /* at which the file

can be */

 /* received in case of

Multicast */

 UINT16 TFTPSrvPort; /* In:

Socket endpoint at which */

 /* server listens for

requests. */

 UINT16 TFTPOpenTimeOut; /*

In: Timeout value in seconds to be */

 /* used for receiving

data or ACK */

 /* packets. If zero,

default */

 /* TFTP-timeout is

used. */

 UINT16 TFTPReopenDelay; /*

In: wait time in seconds to delay */

 /* a reopen request in

case of */

 /* multicast. */

 } t_PXENV_TFTP_READ_FILE_PMODE;

 /* Note:

 If the McastIPAddress specifies a non-zero value, the TFTP_ReadFile

call

 tries to listen for multicast packets on the TFTPClntPort before

 opening a TFTP/MTFTP connection to the server.

 If it receives any packets (and not all) or if does not receive any,

 it waits for specified time and tries to reopen a multicast

connection

 to the server.

 If the server supports multicast, it notifies the acknowledging

client

Attachment E: TFTP API Parameter Structure
and Type Definitions 87

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 with a unicast and starts sending (multicast) the file.

 If the multicast open request times out, the client tries to connect

to

 the server at TFTP server port for a unicast transfer.

 */

 #endif /* _TFTP_API_H */

 /* EOF - $Workfile: tftp_api.h $ */

Attachment F: UDP API Constant and Type Definitions 88

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment F: UDP API Constant and Type Definitions
 Important: The code provided in this attachment is provided for informational
purposes only.

 /*

 *

 * Copyright(c) 1997 by Intel Corporation. All Rights Reserved.

 *

 */

 #ifndef _UDP_API_H

 #define _UDP_API_H

 #include "pxe_cmn.h"

 /* =

= = */

 /* #defines and constants

 */

 #define PXENV_UDP_OPEN 0x30

 #define PXENV_UDP_CLOSE 0x31

 #define PXENV_UDP_READ 0x32

 #define PXENV_UDP_WRITE 0x33

 /* =

= = */

 /* Typedefs

 */

 typedef struct s_PXENV_UDP_OPEN {

 UINT16 status; /* Out: See PXENV_STATUS_xxx #defines. */

 UINT8 src_ip[4]; /* Out: 32-bit IP address of this station */

 } t_PXENV_UDP_OPEN;

 typedef struct s_PXENV_UDP_CLOSE {

 UINT16 status; /* Out: See PXENV_STATUS_xxx #defines. */

 } t_PXENV_UDP_CLOSE;

 typedef struct s_PXENV_UDP_READ {

 UINT16 status; /* Out: See PXENV_STATUS_xxx #defines. */

Attachment F: UDP API Constant and Type Definitions 89

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT8 src_ip[4]; /* Out: See description below */

 UINT8 dest_ip[4]; /* In/Out: See description below */

 UINT16 s_port; /* Out: See description below */

 UINT16 d_port; /* In/Out: See description below */

 UINT16 buffer_size; /* In: Size of receive buffer. */

 /* Out: Length of packet written into */

 /* receive buffer. */

 UINT16 buffer_off; /* In: Segment/Selector and offset */

 UINT16 buffer_seg; /* of receive buffer. */

 } t_PXENV_UDP_READ;

 /*

 src_ip: (Output)

 ======

 UDP_READ fills this value on return with the 32-bit IP address

 of the sender.

 dest_ip: (Input/Output)

 =======

 If this field is non-zero then UDP_READ will filter the incoming

 packets and accept those that are sent to this IP address.

 If this field is zero then UDP_READ will accept any incoming

 packet and return it's destination IP address in this field.

 s_port: (Output)

 =======

 UDP_READ fills this value on return with the UDP port number

 of the sender.

 d_port: (Input/Output)

 =======

 If this field is non-zero then UDP_READ will filter the incoming

 packets and accept those that are sent to this UDP port.

 If this field is zero then UDP_READ will accept any incoming

 packet and return it's destination UDP port in this field.

 */

 #define UDP_READ_ANY_IP 0x0000 /* Accept packets sent to any IP. */

 #define UDP_READ_CHECK_IP 0x0001 /* Only accept packets sent to a */

 /* specific IP address. */

 typedef struct s_PXENV_UDP_WRITE {

 UINT16 status; /* Out: See PXENV_STATUS_xxx #defines. */

 UINT8 ip[4]; /* In: 32-bit destination IP address. */

 UINT8 gw[4]; /* In: 32-bit Gateway IP address. */

 UINT16 src_port;/* In: Source UDP port, assigned 2069 if given 0 */

Attachment F: UDP API Constant and Type Definitions 90

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT16 dst port; /* In: Destination UDP port */

 UINT16 buffer_size; /* In: Length of packet in buffer. */

 UINT16 buffer_off; /* In: Segment/Selector and offset */

 UINT16 buffer_seg; /* of transmit buffer. */

 } t_PXENV_UDP_WRITE;

 #endif /* _UDP_API_H */

 /* EOF - $Workfile: udp_api.h $ */

Attachment G: UNDI API Constant and Type Definitions 91

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment G: UNDI API Constant and Type Definitions
 Important: The code provided in this attachment is provided for informational
purposes only.

 /*

 *

 * Copyright(c) 1997 by Intel Corporation. All Rights Reserved.

 *

 */

 #ifndef _UNDI_API_H

 #define _UNDI_API_H

 /* =

= = */

 /* UNDI_API.H

 * Parameter structure and type definitions for TFTP API version 2.x

 *

 * PXENV.H needs to be #included before this file.

 *

 * All of the UNDI API services are still available after the stack

 * has been unloaded.

 */

 /* One of the following command op-codes needs to be loaded into the

 * op-code register (BX) before making a call a TFTP API service.

 */

 #include "pxe_cmn.h"

 #define PXENV_UNDI_STARTUP 0x0001

 #define PXENV_UNDI_CLEANUP 0x0002

 #define PXENV_UNDI_INITIALIZE 0x0003

 #define PXENV_UNDI_RESET_NIC 0x0004

 #define PXENV_UNDI_SHUTDOWN 0x0005

 #define PXENV_UNDI_OPEN 0x0006

 #define PXENV_UNDI_CLOSE 0x0007

 #define PXENV_UNDI_TRANSMIT 0x0008

 #define PXENV_UNDI_SET_MCAST_ADDR 0x0009

 #define PXENV_UNDI_SET_STATION_ADDR 0x000A

 #define PXENV_UNDI_SET_PACKET_FILTER 0x000B

 #define PXENV_UNDI_GET_INFORMATION 0x000C

 #define PXENV_UNDI_GET_STATISTICS 0x000D

 #define PXENV_UNDI_CLEAR_STATISTICS 0x000E

 #define PXENV_UNDI_INITIATE_DIAGS 0x000F

 #define PXENV_UNDI_FORCE_INTERRUPT 0x0010

Attachment G: UNDI API Constant and Type Definitions 92

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 #define PXENV_UNDI_GET_MCAST_ADDR 0x0011

 #define ADDR_LEN 16

 #define MAXNUM_MCADDR 8

 /* Definitions of TFTP API parameter structures.

 */

 typedef struct s_PXENV_UNDI_MCAST_ADDR {

 UINT16 MCastAddrCount; /* In: Number of multi-cast */

 /* addresses. */

 UINT8 MCastAddr[MAXNUM_MCADDR][ADDR_LEN]; /* In: */

 /* list of multi-cast addresses. */

 /* Each address can take up to */

 /* ADDR_LEN bytes and a maximum */

 /* of MAXNUM_MCADDR address can */

 /* be provided*/

 } t_PXENV_UNDI_MCAST_ADDR;

 typedef struct s_PXENV_UNDI_STARTUP {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT8 BusType; /* In: NIC bus type. */

 UINT8 AddrType; /* 0 means DataSeg contains segment */

 /* addess for DS; 1 means DataSegAddr */

 /* contains 32-bit physical addr for */

 /* the data segment. */

 UINT16 DataSeg; /* Segment address for DS */

 UINT32 DataSegAddr; /* In: 32-bit physical address */

 /* of Universal NIC Driver */

 /* data segment. */

 UINT16 DataSegSize; /* In: Size of data segment in bytes. */

 UINT16 CodeSegSize; /* In: Size of Code segment in bytes. */

 struct {

 UINT16 BusDevFunc; /* In: Bus, device and function numbers */

 /* of this NIC. -1 if not PCI NIC */

 UINT16 PCI_ds_off; /* Far pointer to PCI data structure */

 UINT16 PCI_ds_seg;

 } pci;

 struct {

 UINT16 CardSelNum; /* In: Card select number. */

 /* -1 for non-PnP BBS device */

 UINT16 PnP_eh_off; /* Far pointer to PnP expansion header */

 UINT16 PnP_eh_seg;

 } pnp;

 } t_PXENV_UNDI_STARTUP;

 typedef struct s_PXENV_UNDI_CLEANUP {

Attachment G: UNDI API Constant and Type Definitions 93

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_CLEANUP;

 typedef struct s_PXENV_UNDI_INITIALIZE {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT32 ProtocolIni; /* In: See description below */

 UINT16 ReceiveOffset; /* In: See description below */

 UINT16 ReceiveSegment; /* In: See description below */

 UINT16 GeneralIntOffset; /* In: See description below */

 UINT16 GeneralIntSegment; /* In: See description below */

 } t_PXENV_UNDI_INITIALIZE;

 /* ProtocolIni :

 This is an input parameter and is a 32-bit physical address of

 a memory copy of the driver module in the protocol.ini file

 obtained from the Protocol Manager driver(refer to NDIS 2.0

 specifications). This parameter is basically supported for

 the universal NDIS driver to pass the information contained in

 protocol.ini file to the NIC driver for any specific

 configuration of the NIC. (Note that the module

 identification in the protocol.ini file was done by NDIS

 itself.) This value can be NULL for any other application

 interfacing to the Universal NIC Driver.

 ReceiveOffset, ReceiveSegment:

 This is a pointer to the receive call-back routine and must be

 a non NULL pointer. This routine will be called in the

 context of the receive interrupt after switching to an

 interrupt stack. The parameters for the routine are passed in

 the registers which are - pointer to the receive buffer in

 ES:DI and the length of data in CX. AX contains the length of

 the media header starting at ES:DI, BL contains the protocol

 id (0-unknown, 1-IP, 2-ARP, 3-RARP and 4-others) and BH

 contains receive flag (0-directed/promiscuous, 1-broadcast and

 2-multicast). It is the call-back routine's responsibility to

 initialize it's own data segment before starting to execute

 and to preserve the contents of all the registers except AX.

 The call-back can either process the packet or postpone the

 processing to a later time. It must return a SUCCESS if it

 either copied the packet into its own buffer or decided to

 reject the packet after examining the packet contents. In

 this case the NIC driver removes the packet from the receive

 queue and recycles the buffer. If the call-back does not want

 to look at the packet at this time it can return DELAY and the

 NIC driver keeps the packet in the queue and will always give

Attachment G: UNDI API Constant and Type Definitions 94

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 the first packet's pointer to the call-back in the subsequent

 interrupts. This delay may however cause the subsequent

 packets to be dropped if the receive queue is full.

 If the application decides to process the packet it had

 delayed it can force the NIC driver to start the call-back by

 calling ForceInterrupt routine.

 GeneralIntOffset, GeneralIntSegment:

 This is also a pointer to a call back routine and will also be

 called in the context of an interrupt. However, this

 interrupt is not a receive interrupt and may be for a

 1)transmit complete, 2)post processing for a previous receive

 interrupt after releasing the interrupt stack or 3)it may be a

 software interrupt. The AX register contains the function

 code 1, 2 or 3 accordingly. If this routine is called for a

 transmit complete indication, CX register contains the length

 of the packet transmitted and BX register contains the type of

 transmission 0, 1 or 2 according to 0)if the transmit was for

 a directed packet (i.e. neither a broadcast and nor a

 multicast), 1)if it was a broadcast or 2)if it was a

 multicast.

 Note: This call-back pointer must not be NULL. If the

 application does not want to process any of these interrupts,

 a pointer to the routine which just returns the status must be

 provided.

 */

 typedef struct s_PXENV_UNDI_SHUTDOWN {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_SHUTDOWN;

 typedef struct s_PXENV_UNDI_RESET {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 t_PXENV_UNDI_MCAST_ADDR R_Mcast_Buf; /* multicast address list */

 /* see note below */

 } t_PXENV_UNDI_RESET;

 /* Note: The NIC driver does not remember the multicast

 addresses provided in any call. So the application must

 provide the multicast address list with all the calls that

 reset the receive unit of the adapter.

 */

Attachment G: UNDI API Constant and Type Definitions 95

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 typedef struct s_PXENV_UNDI_OPEN {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT16 OpenFlag; /* In: See description below */

 UINT16 PktFilter; /* In: Filter for receiving */

 /* packet. It takes the following */

 /* values, multiple values can be */

 /* ORed together. */

 #define FLTR_DIRECTED 0x0001 /* directed/multicast */

 #define FLTR_BRDCST 0x0002 /* broadcast packets */

 #define FLTR_PRMSCS 0x0004 /* any packet on LAN */

 #define FLTR_SRC_RTG 0x0008 /* source routing packet */

 t_PXENV_UNDI_MCAST_ADDR McastBuffer; /* In: */

 /* See t_PXENV_UNDI_MCAST_ADDR. */

 } t_PXENV_UNDI_OPEN;

 /* OpenFlag:

 This is an input parameter and is adapter specific. This is

 supported for Universal NDIS 2.0 driver to pass down the Open

 flags provided by the protocol driver (See NDIS 2.0

 specifications). This can be zero.

 */

 typedef struct s_PXENV_UNDI_CLOSE {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_CLOSE;

 #define MAX_DATA_BLKS 8

 typedef struct s_PXENV_UNDI_TBD{

 UINT16 ImmedLength; /* In: Data buffer length in */

 /* bytes. */

 UINT16 XmitOffset; /* 16-bit segment & offset of the */

 UINT16 XmitSegment; /* immediate data buffer. */

 UINT16 DataBlkCount; /* In: Number of data blocks. */

 struct DataBlk {

 UINT8 TDPtrType;/* /* 0 => 32 bit Phys pointer in TDDataPtr

 /* not supported in this version of LSA */

/* 1 => seg:offser in TDDataPtr which can

 /* be a real mode or 16-bit protected mode

 /* pointer */

 UINT8 TDRsvdByte; /* Reserved, must be zero. */

 UINT16 TDDataLen; /* Data block length in bytes. */

 UINT32 TDDataPtr; /* Far pointer to data buffer. */

 } DataBlock[MAX_DATA_BLKS];

 } t_PXENV_UNDI_TBD;

 typedef struct s_PXENV_UNDI_TRANSMIT {

Attachment G: UNDI API Constant and Type Definitions 96

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT8 Protocol; /* See description below */

 #define P_UNKNOWN 0

 #define P_IP 1

 #define P_ARP 2

 #define P_RARP 3

 UINT8 XmitFlag; /* See description below */

 #define XMT_DESTADDR 0x0000 /* destination address given */

 #define XMT_BROADCAST 0x0001 /* use broadcast address */

 UINT16 DestAddrOffset; /* 16-bit segment & offset of the */

 UINT16 DestAddrSegment; /* destination media address */

 /* See description below */

 UINT16 TBDOffset; /* 16-bit segment & offset of the */

 UINT16 TBDSegment; /* transmit buffer descriptor of type */

 /* XmitBufferDesc */

 UINT32 Reserved[2]; /* for future use */

 } t_PXENV_UNDI_TRANSMIT;

 /*

 Protocol:

 This is the protocol of the upper layer that is calling

 NICTransmit call. If the upper layer has filled the media

 header this field must be 0.

 XmitFlag:

 If this flag is 0, the NIC driver expects a pointer to the

 destination media address in the field DestMediaAddr. If 1,

 the NIC driver fills the broadcast address for the

 destination.

 DestAddrOffset & DestAddrSegment:

 This is a pointer to the hardware address of the destination

 media. It can be null if the destination is not known in

 which case the XmitFlag contains 1 for broadcast. Destination

 media address must be obtained by the upper level protocol

 (with Address Resolution Protocol) and NIC driver does not do

 any address resolution.

 */

 typedef struct s_PXENV_UNDI_SET_MCAST_ADDR {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 t_PXENV_UNDI_MCAST_ADDR McastBuffer; /* In: */

 /* See t_PXENV_UNDI_MCAST_ADDR. */

 } t_PXENV_UNDI_SET_MCAST_ADDR;

Attachment G: UNDI API Constant and Type Definitions 97

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 typedef struct s_PXENV_UNDI_SET_STATION_ADDR {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT8 StationAddress[ADDR_LEN]; /* new address to be set */

 } t_PXENV_UNDI_SET_STATION_ADDR;

 typedef struct s_PXENV_UNDI_SET_PACKET_FILTER {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT8 filter; /* In: Receive filter value. */

 /* see t_PXENV_UNDI_OPEN for values */

 } t_PXENV_UNDI_SET_PACKET_FILTER;

 typedef struct s_PXENV_UNDI_GET_INFORMATION {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT16 BaseIo; /* Out: Adapter's Base IO */

 UINT16 IntNumber; /* Out: IRQ number */

 UINT16 MaxTranUnit; /* Out: MTU */

 UINT16 HwType; /* Out: type of protocol at hardware level

*/

 #define ETHER_TYPE 1

 #define EXP_ETHER_TYPE 2

 #define IEEE_TYPE 6

 #define ARCNET_TYPE 7

 /* other numbers can be obtained from rfc1010 for "Assigned

 Numbers". This number may not be validated by the application

 and hence adding new numbers to the list should be fine at any

 time. */

 UINT16 HwAddrLen; /* Out: actual length of hardware address */

 UINT8 CurrentNodeAddress[ADDR_LEN]; /* Out: Current hardware

address*/

 UINT8 PermNodeAddress[ADDR_LEN]; /* Out: Permanent hardware

address*/

 UINT16 ROMAddress; /* Out: ROM address */

 UINT16 RxBufCt; /* Out: receive Queue length */

 UINT16 TxBufCt; /* Out: Transmit Queue length */

 } t_PXENV_UNDI_GET_INFORMATION;

 typedef struct s_PXENV_UNDI_GET_STATISTICS {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT32 XmtGoodFrames; /* Out: No. of successful

transmissions*/

 UINT32 RcvGoodFrames; /* Out: No. of good frames received */

 UINT32 RcvCRCErrors; /* Out: No. of frames with CRC error */

 UINT32 RcvResourceErrors; /* Out: no. of frames discarded - */

Attachment G: UNDI API Constant and Type Definitions 98

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 /* Out: receive Queue full */

 } t_PXENV_UNDI_GET_STATISTICS;

 typedef struct s_PXENV_UNDI_CLEAR_STATISTICS {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_CLEAR_STATISTICS;

 typedef struct s_PXENV_UNDI_INITIATE_DIAGS {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_INITIATE_DIAGS;

 typedef struct s_PXENV_UNDI_FORCE_INTERRUPT {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 } t_PXENV_UNDI_FORCE_INTERRUPT;

 typedef struct s_PXENV_UNDI_GET_MCAST_ADDR {

 UINT16 Status; /* Out: See PXENV_STATUS_xxx constants. */

 UINT32 InetAddr; /* In: IP Multicast Address */

 UINT8 MediaAddr[ADDR_LEN]; /* Out: corresponding hardware */

 /* multicast address */

 } t_PXENV_UNDI_GET_MCAST_ADDR;

 #define PXENV_UNDI_GET_NIC_TYPE 0x12

 typedef s_PXENV_UNDI_GET_NIC_TYPE{
 UINT16 Status; /* OUT: See PXENV_STATUS_xxx constants */
 UINT8 NicType; /* OUT: 2=PCI, 3=PnP */
 union{

 struct{
 UINT16 Vendor_ID; /* OUT: */
 UINT16 Dev_ID; /* OUT: */
 UINT8 Base_Class; /* OUT: */
 UINT8 Sub_Class; /* OUT: */
 UINT8 Prog_Intf; /* OUT: program interface */
 UINT8 Rev; /* OUT: Revision number */
 UINT16 BusDevFunc; /* OUT: Bus, Device */

 /* & Function numbers */
 }pci;
 struct{

 UINT32 EISA_Dev_ID; /* Out: */
 UINT8 Base_Class; /* OUT: */
 UINT8 Sub_Class; /* OUT: */
 UINT8 Prog_Intf; /* OUT: program interface */
 UINT16 CardSelNum; /* OUT: Card Selector Number */
 }pnp;

 }pci_pnp_info;
 }t_PXENV_UNDI_GET_NIC_TYPE;

 #endif /* _UNDI_API_H */

 /* EOF - $Workfile: undi_api.h $ */

Attachment G: UNDI API Constant and Type Definitions 99

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 100

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment H: WMI/CIM and Win32 Extensions
Instrumentation Details

 The WMI/CIM required schema is a set of base classes that provide the minimal set
of information supported by Net PC platforms deployed with WMI instrumented
operating system. The minimal set of classes and associations are listed here and
must be deployed on all Net PCs designed for shipment with WMI-instrumented
and WBEM-instrumented operating systems.

 Over time, the set of base classes can be extended to accommodate additional
requirements. CIM incorporates an extension process whereby additional classes,
properties, and associations can be introduced. These will initially be introduced as
non-standard extensions, typically subclasses of a standard class or new classes
associated with a standard class. Over time, the model is intended to evolve as new
extensions become widely used and accepted (clearly, the better the design, the
better the chance of an extension being accepted).

 It is the intention of the standard set defined here to establish a baseline for Net PC
management, not a comprehensive solution to all possible management scenarios.
Individual OEMs can extend the schema as required to accommodate special
capabilities. If these extensions are made under the class structure defined here,
management applications can be expected to benefit from them without any changes
being required.

 The class structure defined here is a subset of the overall CIM schema. Any
extensions are required to be consistent with this broader schema. Extensions
outside the logical framework of the CIM schema will require changes to
management applications to take full advantage of them. As these extensions are
standardized, management applications can be expected to accommodate the new
capabilities with any required changes to associated algorithms and interfaces.
Generic browsers, of course, can always display a new class or property without
requiring any specialized extensions.

 Management applications can be expected to take advantage of the CIM schema to
provide, for example, different views of a system (a physical component view, a
services and drivers view, a running processes view, and so on.)

 An example of the extension of a standard class is the addition of a new type of
service as an extension of the standard service class. Any management application
that uses the standard service class will pick up instances of the new service class
(as a result of inheritance), even though it will not be aware of the extension. If
someone adds a new class that is not a subclass of the standard service class, yet the
instances of the new class are services, then management applications will not be
aware of the new class without some exception handling. The management
application will have to be specially coded to go and look for the class and to
present it along with the other information about services.

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 101

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 A similar but more complex argument applies to the use of associations.

 The individual elements that make up a system can be enumerated using a number
of different strategies. There are several key classes and associations involved; most
are present in the diagram that follows. The strategies available for enumerating the
components of a system provide a view of the schema from the perspective of a
system considered as an aggregation hierarchy (as opposed to the schema as a
classification hierarchy).

LogicalElement

Name STRING
Description STRING
ShortDescription STRING
Installed BOOL
InUse BOOL

ManagedSystemElement

Tag STRING
Manufacturer STRING
SerialNumber STRING
Model STRING
Version STRING
SKU STRING

PhysicalElement

PhysicalPackage

Manufacturer STRING
PrimaryOwner STRING

System ElementSetting

ElementArrangement

Component Dependency

Dependency

Dependency
Context

Element
Setting
Context

Element
Settings

Container

System
Components

*

*

*

*

*

*

*

1..0

1..0

*

*

 A function that lists the components of a system will start with a system object. The
system components association relates the system to its components. The listing
function must select the components to be listed based on the type of picture of the
system to be presented. There is any number of alternative views depending on the
circumstances at hand:

• If a list of the physical components is required, the function will list all the
components that are physical elements.

• If the top-most physical elements are required, the function will list the physical
elements that are not contained in anything.

• If a configuration view is required, the objects representing the physical
configuration of the system will be accessed. Its dependency and context
associations will be traversed to obtain the physical configuration.

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 102

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

• If the logical components of the system are required, the components of type
logical element will be selected.

• Selecting logical elements that have nothing dependent on them would return
top-level logical objects.

• Low-level elements — typically, a device-level view — could be constructed
by selecting logical elements that either have no realization or have a physical
element realization.

• Dependency or configuration trees could be constructed by pursuing suitable
associations.

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 103

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Name SuperClass Description

 ManagedSystemElement The base class for all system component objects. Any
managed object that is a component of a system is a
descendent of this class. These objects include: software
components, such as files; devices, such as disk drives
and controllers; and physical components, such as chips
and cards.

 PhysicalElement ManagedSystemElement Any component of a system that has a distinct physical
identity and that can be defined in terms of labels that can
be physically attached to the object is a member of this
class. All processes, files, records, and devices are
considered not to be physical elements. For example, it is
not possible to attach a label to a modem. It is only
possible to attach a label to the card that implements the
modem. The same card could also implement a LAN
adapter. These are tangible managed system elements—
usually actual hardware items—that have a physical
manifestation of some sort. A managed system element is
not necessarily a discrete component. For example, it is
possible for a single card—which is a type of physical
element—to host more than one logical device. The card
would be represented by a single physical element
associated with multiple logical devices.

 LogicalElement ManagedSystemElement A base class for all the components of the system that
represent abstract system components, such as profiles,
processes, or system capabilities in the form of logical
devices.

 System LogicalElement A grouping of other logical elements. Because systems are
logical elements, a system can be composed of other
systems.

 Protocol LogicalElement Represents a protocol, which is a set of rules and
algorithms that govern the interaction between two or
among more than two interfaces.

 SoftwareComponent LogicalElement Represents any software component, which can be either
an individual file, such as an executable, or a collection of
files, such as packages or operating systems. Software
components can have additional associated information,
such as the installation date.

 Process LogicalElement A sequence of states defined by the interaction of one or
more processors or interpreters, some executable code and
a set of inputs.

 Thread LogicalElement Represents a thread, which is a unit of execution; that is,
an address space. Threads are owned by processes.

 SystemService LogicalElement Represents a system service, which is a definition of a

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 104

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Name SuperClass Description

process owned by the system; rather than some specific
user that provides an interface to some aspect of the
functionality supported by the system.

 Job LogicalElement Represents a unit of work, such as a print job.

 JobDestination LogicalElement A process or service able to process one or more jobs.

 FileSystem LogicalElement This object represents a set of conventions used for
arranging data on a storage medium.

 DiskPartition LogicalElement A structure used to manage the physical surface of a
physical disk. There may be a level of indirection between
the physical disk and the actual hardware as, for example,
in the case of RAID devices.

 Device LogicalElement A unit of functionality associated with providing the basic
capabilities of a system such as input, output, or storage
management. Devices may be directly expressed by a
physical component as, for example, in the case of a
keyboard. However, almost any device can be virtualized
either by simulation (for example, simulating a modem
using main CPU cycles), by allocation of a single device
to multiple physical components, or by allocation of more
than one device to a single physical unit. For example, a
modem and LAN adapter may share the same PCMCIA
card.

 StorageDevice Device A source or destination for a file. Processors and end users
typically see data in the system in terms of files, which in
turn are allocated to data sources. The data source is a
named unit of storage that may correspond to a variety of
implementations, including memory, CDROM, and
network.

 Modem Device A device that translates binary data into wave modulations
— typically, sound for transmission over telephone lines.

 Processor Device A device capable of interpreting a sequence of machine
instructions. Typically, the processor has a close
correspondence to a physical chip, but it may be provided
by an interpreter that is itself a process running on a
processor of some kind.

 Keyboard Device A device for entering data through keystrokes.

 LogicalConnector Device A device capable of connecting two or more other devices.

 InterfaceDevice Device Represents an interface device; any interface device is a
descendant of this class. These are devices that act as an
interface between a device and the rest of the system —
for example, disk controllers, serial ports, parallel ports,
and so on.

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 105

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Name SuperClass Description

 Display Device The device used to visually display output from the
system.

 MemoryModule Device A device capable of storing information for fast retrieval.

 PointingDevice Device A device used to point to regions on the display.

 Printer Device A device capable of reproducing a visual image on a
medium of some kind, usually paper. Printers are a
common example of a device that is also a system. The
system aspect of the printer must be represented in this
model as a discrete object that is a descendent of the
system class.

 ActualStorageDevice Device A device that is primarily intended to describe the
organization of a physical unit used to store data.

 Bus Device A device that provides high-bandwidth communication
between different components of the system.

 SCSIIInterface InterfaceDevice Represents a SCSII Interface device and its properties.

 NetworkDrive StorageDevice Represents a logical drive that has been mapped to a
network resource.

 LogicalDiskDrive StorageDevice A data source that resolves to a local
ActualStorageDevice.

 Driver SoftwareComponent Represents an executable or set of executables that provide
an interface either to another driver or to a logical device.

 OperatingSystem SoftwareComponent Describes general information about operating systems
installed on this system.

 NetworkProtocol Protocol Provides information about a protocol that has been
installed on the system.

 ComputerSystem System A system that is capable of running programs, processing
inputs, and displaying or otherwise returning outputs.

 PhysicalPackage PhysicalElement Defines the characteristics of system components that
physically contain other system components, such as the
system enclosure, which would be a type of cabinet.

 PhysicalLink PhysicalElement Contains any physical object used to link other objects
together, which can include wires, wireless connections
(radio frequencies and infrared), and so on.

 PhysicalConnector PhysicalElement A physical element that is used to connect other Physical
Elements, such as slots and plugs. This object has
properties, such as the type (male or female) and the
number of pins.

 Slot PhysicalConnector Defines the attributes for the different expansion slots
supported by this system.

 PortConnector PhysicalConnector Defines the network connection points provided by the

Attachment H: WMI/CIM and Win32 Extensions Instrumentation Details 106

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Name SuperClass Description

system.

 Card PhysicalPackage A type of physical container that can be plugged into
another card or board.

 ElementSetting ElementSetting are operational parameters that vary from
time to time.

 PartitionConfiguration ElementSetting An arrangement of partitions used to provide a basis for
one or more logical disks.

 Dependency An association class that is the base class for all
associations that define any dependency between managed
system elements.

 Component Descendents of this association class define part of the
relationships between managed system elements. For
example, the system components association defines the
parts of a system.

 Location The base class for all location objects.

 ElementSettings Relates an ElementSetting object to the system element it
provides settings for.

Attachment I: DMI Instrumentation Details 107

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 Attachment I: DMI Instrumentation Details
 The following standard groups from the System Standards Group Definition,
Approved Version 1.0, must be instrumented and deployed on DMI-instrumented
systems compliant with these guidelines:

• DMTF|ComponentID|001

• DMTF|Disk Mapping Table|001

• DMTF|Disks|002

• DMTF|General Information|001

• DMTF|Keyboard|003

• DMTF|Mouse|003

• DMTF|Operating System|001

• DMTF|Partition|001

• DMTF|Physical Container Global Table|001

• DMTF|Processor|003

• DMTF|System BIOS|001

• DMTF|System Cache|002

• DMTF|System Slots|003

• DMTF|Video BIOS|001

• DMTF|Video|002

 The following table contains standard groups related to system resource
management from the System Standards Group Definition, Approved Version 1.0.
All these groups are valid standard groups, but the groups designated as
“Replacement” groups are designed to replace the two groups marked “Original.”
The DMTF recommends that instrumentation migrate to the Replacement groups.

Attachment I: DMI Instrumentation Details 108

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 To be compliant with these guidelines, a DMI-instrumented system provides either
all of the Original groups or all of the corresponding Replacement groups. It is
highly recommended that the Replacement groups be selected for newly
implemented instrumentation.

 DMI Standard Group Implementation Guidelines

 DMTF|System Resource 2|001 Replacement, recommended for new
instrumentation

 DMTF|System Resource Device Info|001 Replacement, recommended for new
instrumentation

 DMTF|System Resource DMA Info|001 Replacement, recommended for new
instrumentation

 DMTF|System Resource I/O Info|001 Replacement, recommended for new
instrumentation

 DMTF|System Resource IRQ Info|001 Replacement, recommended for new
instrumentation

 DMTF|System Resource Memory Info|001 Replacement, recommended for new
instrumentation

 DMTF|System Resources|001 Original, recommended for legacy
instrumentation only

 DMTF|System Resources Description|001 Original, recommended for legacy
instrumentation only

 The following table contains standard groups related to physical memory
management from the System Standards Group Definition, Approved Version 1.0.
All of these groups are valid standard groups, but the groups designated as
“Replacement” groups are designed to replace the group marked “Original.” The
DMTF recommends that instrumentation migrate to the Replacement groups. To be
compliant with these guidelines, a DMI-instrumented system should be
instrumented with either the Original group or the corresponding Replacement
groups. It is highly recommended that the Replacement groups be selected for newly
implemented instrumentation.

Attachment I: DMI Instrumentation Details 109

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

 DMI Standard Group Implementation Guidelines

 DMTF|Memory Device|001 Replacement, recommended for new
instrumentation

 DMTF|Memory Array Mapped
Addresses|001

 Replacement, recommended for new
instrumentation

 DMTF|Memory Device Mapped
Addresses|001

 Replacement, recommended for new
instrumentation

 DMTF|Physical Memory Array|001 Replacement, recommended for new
instrumentation

 DMTF|Physical Memory|002 Original, recommended for legacy
instrumentation only

 The following standard groups from the LAN Adapter Standard Groups Definition,
Release Version 1.0, must be instrumented and deployed on DMI-instrumented
systems compliant with these guidelines:

• DMTF|Network Adapter 802 Port|001

• DMTF|Network Adapter Driver|001

Attachment J: Possible DMI/CIM Mappings 110

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Attachment J: Possible DMI/CIM Mappings
The following table is provided as a planning tool and will change as the DMTF
completes its work on mapping DMI 2.0 groups into CIM classes. It maps the
DMTF groups supported by Net PC platforms to the CIM classes supported by Net
PC platforms. Note that there is generally not a one-to-one correspondence, as
typically the CIM classes are more normalized than the groups, implying that
properties will be spread across more than one class.

DMTF Group CIM Equivalent

DMTF|ComponentID|001 System and associated objects

DMTF|Disk Mapping Table|001 Association between disks and partitions

DMTF|Disks|002 Elements of logical disk
and physical disk

DMTF|General Information|001 System

DMTF|Keyboard|003 Keyboard and keyboard settings

DMTF|Mouse|003 Pointing device and settings

DMTF|Operating System|001 Operating system

DMTF|Partition|001 Disk partition

DMTF|Physical Container Global Table|001 System and associated physical elements

DMTF|Processor|003 Processor

DMTF|System BIOS|001 Win32BIOS and SystemROM

DMTF|System Cache|002 System cache

DMTF|System Slots|003 Logical connector and slot

DMTF|Video BIOS|001 Win32BOS

DMTF|Video|002 Display and display controller

Network PC System Design Guidelines, Version 1.0b
 © 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft Corporation.
All rights reserved.

Attachment K: UUIDs and GUIDs

Network Working Group Paul J. Leach, Microsoft
INTERNET-DRAFT Rich Salz, Open Group
<draft-leach-uuids-guids-00.txt>
Category: Informational
Expires August 24, 1997 February 24, 1997

UUIDs and GUIDs

STATUS OF THIS MEMO

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or
obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in
the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au
(Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Distribution of this document is unlimited. Please send comments to the authors or the CIFS mailing list
at cifs@listserv.msn.com. Discussions of the mailing list are archived at
http://microsoft.ease.lsoft.com/archives/CIFS.html.

ABSTRACT

This specification defines the format of UUIDs (Universally Unique IDentifier), also known as GUIDs
(Globally Unique IDentifier). A UUID is 128 bits long, and if generated according to the one of the
mechanisms in this document, is either guaranteed to be different from all other UUIDs/GUIDs generated
until 3400 A.D. or extremely likely to be different (depending on the mechanism chosen). UUIDs were
originally used in the Network Computing System (NCS) [1] and later in the Open Software
Foundation’s (OSF) Distributed Computing Environment [2].

This specification is derived from the latter specification with the kind permission of the OSF.

Attachment K: UUIDs and GUIDs 112

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

Table of Contents

1. Introduction
2. Motivation ..
3. Specification...

3.1 Format ...
3.2 Algorithms for Creating a UUID

3.2.1 Clock Sequence ...
3.2.2 System Reboot...
3.2.3 Clock Adjustment..
3.2.4 Clock Overrun ...
3.2.5 UUID Generation ..

3.3 String Representation of UUIDs
3.4 Comparing UUIDs ..
3.5 Byte order of UUIDs ...

4. Node IDs when no IEEE 802 network card is available
5. Obtaining IEEE 802 addresses...
6. Security Considerations..
7. Acknowledgements ..
8. References ..
9. Authors' addresses..

Introduction
This specification defines the format of UUIDs (Universally Unique IDentifiers), also known as GUIDs
(Globally Unique IDentifiers). A UUID is 128 bits long, and if generated according to the one of the
mechanisms in this document, is either guaranteed to be different from all other UUIDs/GUIDs generated
until 3400 A.D. or extremely likely to be different (depending on the mechanism chosen).

Motivation
One of the main reasons for using UUIDs is that no centralized authority is required to administer them
(beyond the one that allocates IEEE 802.1 node identifiers). As a result, generation on demand can be
completely automated, and they can be used for a wide variety of purposes. The UUID generation
algorithm described here supports very high allocation rates: 10 million per second per machine if you
need it, so that they could even be used as transaction IDs.

UUIDs are fixed-size (128-bits) which is reasonably small relative to other alternatives. This fixed,
relatively small size lends itself well to sorting, ordering, and hashing of all sorts, storing in databases,
simple allocation, and ease of programming in general.

Specification
A UUID is an identifier that is unique across both space and time, with respect to the space of all UUIDs.
To be precise, the UUID consists of a finite bit space. Thus the time value used for constructing a UUID

Attachment K: UUIDs and GUIDs 113

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

is limited and will roll over in the future (approximately at A.D. 3400, based on the specified algorithm).
A UUID can be used for multiple purposes, from tagging objects with an extremely short lifetime, to
reliably identifying very persistent objects across a network.

The generation of UUIDs does not require that a registration authority be contacted for each identifier.
Instead, it requires a unique value over space for each UUID generator. This spatially unique value is
specified as an IEEE 802 address, which is usually already available to network-connected systems. This
48-bit address can be assigned based on an address block obtained through the IEEE registration
authority. This section of the UUID specification assumes the availability of an IEEE 802 address to a
system desiring to generate a UUID, but if one is not available section 4 specifies a way to generate a
probabilistically unique one that can not conflict with any properly assigned IEEE 802 address.

Format
The following table gives the format of a UUID. The UUID consists of a record of 16 octets. The fields
are in order of significance for comparison purposes, with "time_low" the most significant, and "node"
the least significant.

Field Data Type Octet # Note

time_low unsigned 32 bit
integer

0-3 The low field of the timestamp.

time_mid unsigned 16 bit
integer

4-5 The middle field of the
timestamp.

time_hi_and_version unsigned 16 bit
integer

6-7 The high field of the timestamp
multiplexed with the version
number.

clock_seq_hi_and_reserved unsigned 8 bit
integer

8 The high field of the clock
sequence multiplexed with the
variant.

clock_seq_low unsigned 8 bit
integer

9 The low field of the clock
sequence.

node unsigned 48 bit
integer

10-15 The spatially unique node
identifier.

To minimize confusion about bit assignments within octets, the UUID record definition is defined only in
terms of fields that are integral numbers of octets. The version number is in the most significant 4 bits of
the time stamp (time_hi), and the variant field is in the most significant 3 bits of the clock sequence
(clock_seq_high).

The timestamp is a 60 bit value. For UUID version 1, this is represented by Coordinated Universal Time
(UTC) as a count of 100-nanosecond intervals since 00:00:00.00, 15 October 1582 (the date of
Gregorian reform to the Christian calendar).

The following table lists currently defined versions of the UUID.

Attachment K: UUIDs and GUIDs 114

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

Msb0 Msb1 Msb2 Msb3 Version Description

0 0 0 1 1 The version specified in this
document.

0 0 1 0 2 Reserved for DCE Security
version, with embedded POSIX
UIDs.

The variant field determines the layout of the UUID. The structure of UUIDs is fixed across different
versions within a variant, but not across variants; hence, other UUID variants may not interoperate with
the UUID variant specified in this document. Interoperability of UUIDs is defined as the applicability of
operations such as string conversion, comparison, and lexical ordering across different systems. The
variant field consists of a variable number of the msbs of the clock_seq_hi_and_reserved field.

The following table lists the contents of the variant field.

Msb0 Msb1 Msb2 Description
0 - - Reserved, NCS backward compatibility.
1 0 - The variant specified in this document.
1 1 0 Reserved, Microsoft Corporation GUID.
1 1 1 Reserved for future definition.

The clock sequence is required to detect potential losses of monotonicity of the clock. Thus, this value
marks discontinuities and prevents duplicates. An algorithm for generating this value is outlined in the
“Clock Sequence” section below.

The clock sequence is encoded in the 6 least significant bits of the clock_seq_hi_and_reserved field and
in the clock_seq_low field.

The node field consists of the IEEE address, usually the host address. For systems with multiple IEEE
802 nodes, any available node address can be used. The lowest addressed octet (octet number 10)
contains the global/local bit and the unicast/multicast bit, and is the first octet of the address transmitted
on an 802.3 LAN.

Depending on the network data representation, the multi-octet unsigned integer fields are subject to byte
swapping when communicated between different endian machines.

The nil UUID is special form of UUID that is specified to have all 128 bits set to 0 (zero).

Algorithms for Creating a UUID
Various aspects of the algorithm for creating a UUID are discussed in the following sections. UUID
generation requires a guarantee of uniqueness within the node ID for a given variant and version.
Interoperability is provided by complying with the specified data structure. To prevent possible UUID
collisions, which could be caused by different implementations on the same node, compliance with the
algorithm specified here is required.

Clock Sequence
The clock sequence value must be changed whenever:

Attachment K: UUIDs and GUIDs 115

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

- the UUID generator detects that the local value of UTC has gone backward.

- the UUID generator has lost its state of the last value of UTC used, indicating that time may have gone
backward; this is typically the case on reboot.

While a node is operational, the UUID service always saves the last UTC used to create a UUID. Each
time a new UUID is created, the current UTC is compared to the saved value and if either the current
value is less (the non-monotonic clock case) or the saved value was lost, then the clock sequence is
incremented modulo 16,384, thus avoiding production of duplicate UUIDs.

The clock sequence must be initialized to a random number to minimize the correlation across systems.
This provides maximum protection against node identifiers that may move or switch from system to
system rapidly. The initial value MUST NOT be correlated to the node identifier.

The rule of initializing the clock sequence to a random value is waived if, and only if all of the following
are true:

- The clock sequence value is stored in non-volatile storage.

- The system is manufactured such that the IEEE address ROM is designed to be inseparable from the
system by either the user or field service, so that it cannot be moved to another system.

- The manufacturing process guarantees that only new IEEE address ROMs are used.

- Any field service, remanufacturing or rebuilding process that could change the value of the clock
sequence must reinitialise it to a random value.

In other words, the system constraints prevent duplicates caused by possible migration of the IEEE
address, while the operational system itself can protect against non-monotonic clocks, except in the case
of field service intervention. At manufacturing time, such a system may initialise the clock sequence to
any convenient value.

System Reboot
There are two possibilities when rebooting a system:

- the UUID generator state - the last UTC, adjustment, and clock sequence - of the UUID service has
been restored from non-volatile store

- the state of the last UTC or adjustment has been lost.

If the state variables have been restored, the UUID generator just continues as normal. Alternatively, if
the state variables cannot be restored, they are reinitialised, and the clock sequence is changed.

If the clock sequence is stored in non-volatile store, it is incremented; otherwise, it is reinitialised to a
new random value.

Clock Adjustment
UUIDs may be created at a rate greater than the system clock resolution. Therefore, the system must also
maintain an adjustment value to be added to the lower-order bits of the time. Logically, each time the

Attachment K: UUIDs and GUIDs 116

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

system clock ticks, the adjustment value is cleared. Every time a UUID is generated, the current
adjustment value is read and incremented atomically, then added to the UTC time field of the UUID.

Clock Overrun
The 100 nanosecond granularity of time should prove sufficient even for bursts of UUID creation in high-
performance multiprocessors. If a system overruns the clock adjustment by requesting too many UUIDs
within a single system clock tick, the UUID service may raise an exception, handled in a system or
process-dependent manner either by:

- terminating the requester

- reissuing the request until it succeeds

- stalling the UUID generator until the system clock catches up.

If the processors overrun the UUID generation frequently, additional node identifiers and clocks may
need to be added.

UUID Generation
UUIDs are generated according to the following algorithm:

- Determine the values for the UTC-based timestamp and clock sequence to be used in the UUID, as
described above.

- For the purposes of this algorithm, consider the timestamp to be a 60-bit unsigned integer and the clock
sequence to be a 14-bit unsigned integer. Sequentially number the bits in a field, starting from 0 (zero)
for the least significant bit.

- Set the time_low field equal to the least significant 32-bits (bits numbered 0 to 31 inclusive) of the time
stamp in the same order of significance.

- Set the time_mid field equal to the bits numbered 32 to 47 inclusive of the time stamp in the same order
of significance.

- Set the 12 least significant bits (bits numbered 0 to 11 inclusive) of the time_hi_and_version field equal
to the bits numbered 48 to 59 inclusive of the time stamp in the same order of significance.

- Set the 4 most significant bits (bits numbered 12 to 15 inclusive) of the time_hi_and_version field to
the 4-bit version number corresponding to the UUID version being created, as shown in the table above.

- Set the clock_seq_low field to the 8 least significant bits (bits numbered 0 to 7 inclusive) of the clock
sequence in the same order of significance.

- Set the 6 least significant bits (bits numbered 0 to 5 inclusive) of the clock_seq_hi_and_reserved field
to the 6 most significant bits (bits numbered 8 to 13 inclusive) of the clock sequence in the same order of
significance.

- Set the 2 most significant bits (bits numbered 6 and 7) of the clock_seq_hi_and_reserved to 0 and 1,
respectively.

Attachment K: UUIDs and GUIDs 117

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

- Set the node field to the 48-bit IEEE address in the same order of significance as the address.

String Representation of UUIDs
For use in human readable text, a UUID string representation is specified as a sequence of fields, some of
which are separated by single dashes.

Each field is treated as an integer and has its value printed as a zero-filled hexadecimal digit string with
the most significant digit first. The hexadecimal values a to f inclusive are output as lower case
characters, and are case insensitive on input. The sequence is the same as the UUID constructed type.

The formal definition of the UUID string representation is provided by the following extended BNF:

UUID = <time_low> "-" <time_mid> "-"

 <time_high_and_version> "-"

 <clock_seq_and_reserved>

 <clock_seq_low> "-" <node>

time_low = 4*<hexOctet>

time_mid = 2*<hexOctet>

time_high_and_version = 2*<hexOctet>

clock_seq_and_reserved = <hexOctet>

clock_seq_low = <hexOctet>

node = 6*<hexOctet

hexOctet = <hexDigit> <hexDigit>

hexDigit =

 "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

 | "a" | "b" | "c" | "d" | "e" | "f"

 | "A" | "B" | "C" | "D" | "E" | "F"

The following is an example of the string representation of a UUID:

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

Comparing UUIDs
Consider each field of the UUID to be an unsigned integer as shown in the table in section 3.1. Then, to
compare a pair of UUIDs, arithmetically compare the corresponding fields from each UUID in order of
significance and according to their data type. Two UUIDs are equal if and only if all the corresponding
fields are equal. The first of two UUIDs follows the second if the most significant field in which the
UUIDs differ is greater for the first UUID. The first of a pair of UUIDs precedes the second if the most
significant field in which the UUIDs differ is greater for the second UUID.

Byte order of UUIDs
UUIDs may be transmitted in many different forms, some of which may be dependent on the presentation
or application protocol where the UUID may be used. In such cases, the order, sizes and byte orders of
the UUIDs fields on the wire will depend on the relevant presentation or application protocol. However, it

Attachment K: UUIDs and GUIDs 118

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

is strongly RECOMMENDED that the order of the fields conform with ordering set out in section 3.1
above. Furthermore, the payload size of each field in the application or presentation protocol MUST be
large enough that no information lost in the process of encoding them for transmission.

In the absence of explicit application or presentation protocol specification to the contrary, a UUID is
encoded as a 128-bit object, as follows: the fields are encoded as 16 octets, with the sizes and order of the
fields defined in section 3.1, and with each field encoded with the Most Significant Byte first (also known
as network byte order).

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| time_high |

+-+

| time_mid | time_hi_and_version |

+-+

|clk_seq_hi_res | clk_seq_low | node (0-1) |

+-+

| node (2-5) |

+-+

Node IDs when no IEEE 802 network card is available
If a system wants to generate UUIDs but has no IEE 802 compliant network card or other source of IEEE
802 addresses, then this section describes how to generate one.

The ideal solution is to obtain a 47 bit cryptographic quality random number, and use it as the low 47 bits
of the node ID, with the most significant bit of the first octet of the node ID set to 1. This bit is the
unicast/multicast bit, which will never be set in IEEE 802 addresses obtained from network cards; hence,
there can never be a conflict between UUIDs generated by machines with and without network cards.

If a system does not have a primitive to generate cryptographic quality random numbers, then in most
systems there are usually a fairly large number of sources of randomness available from which one can be
generated. Such sources are system specific, but often include:

- the percent of memory in use

- the size of main memory in bytes

- the amount of free main memory in bytes

- the size of the paging or swap file in bytes

- free bytes of paging or swap file

- the total size of user virtual address space in bytes

- the total available user address space bytes

- the size of boot disk drive in bytes

Attachment K: UUIDs and GUIDs 119

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

- the free disk space on boot drive in bytes

- the current time

- the amount of time since the system booted

- the individual sizes of files in various system directories

- the creation, last read, and modification times of files in various system directories

- the utilization factors of various system resources (heap, etc.)

- current mouse cursor position

- current caret position

- current number of running processes, threads

- handles or IDs of the desktop window and the active window

- the value of stack pointer of the caller

- the process and thread ID of caller

various processor architecture specific performance counters (instructions executed, cache misses, TLB
misses)

(Note that it precisely the above kinds of sources of randomness that are used to seed cryptographic
quality random number generators on systems without special hardware for their construction.)

In addition, items such as the computer’s name and the name of the operating system, while not strictly
speaking random, will help differentiate the results from those obtained by other systems.

The exact algorithm to generate a node ID using these data is system specific, because both the data
available and the functions to obtain them are often very system specific. However, assuming that one can
concatenate all the values from the randomness sources into a buffer, and that a cryptographic hash
function such as MD5 [3] is available, the following code will compute a node ID:

#include <md5.h>

#define HASHLEN 16

void GenNodeID(

unsigned char * pDataBuf, // concatenated "randomness values"

long cData, // size of randomness values

unsigned char NodeID[6] // node ID

)

{

 int i, j, k;

 unsigned char Hash[HASHLEN];

 MD_CTX context;

 MDInit (&context);

Attachment K: UUIDs and GUIDs 120

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

 MDUpdate (&context, pDataBuf, cData);

 MDFinal (Hash, &context);

 for (j = 0; j<6; j++) NodeId[j]=0;

 for (i = 0,j = 0; i < HASHLEN; i++) {

 NodeID[j++] ^= Hash[i];

 if (j == 6) j = 0;

};

NodeID[0] |= 0x80; // set the multicast bit

};

Other hash functions, such as SHA-1 [4], can also be used (in which case HASHLEN will be 20). The
only requirement is that the result be suitably random – in the sense that the outputs from a set uniformly
distributed inputs are themselves uniformly distributed, and that a single bit change in the input can be
expected to cause half of the output bits to change.

Obtaining IEEE 802 addresses
The following URL

http://stdsbbs.ieee.org/products/oui/forms/index.html

contains information on how to obtain an IEEE 802 address block. Cost is $1000 US.

Security Considerations
It should not be assumed that UUIDs are hard to guess; they should not be used as capabilities.

Acknowledgements
This document draws heavily on the OSF DCE specification for UUIDs. Ted Ts'o provided helpful
comments, especially on the byte ordering section which we mostly plagiarized from a proposed wording
he supplied (all errors in that section are our responsibility, however).

References
[1] Lisa Zahn, et. al., Network Computing Architecture, Prentice Hall, Englewood Cliffs, NJ, 1990

[2] DCE: Remote Procedure Call, Open Group CAE Specification C309 ISBN 1-85912-041-5 28cm.
674p. pbk. 1,655g. 8/94

[3] R. Rivest, RFC 1321, "The MD5 Message-Digest Algorithm", 04/16/1992.

[4] SHA Spec - TBD

Attachment K: UUIDs and GUIDs 121

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

Authors' addresses
Paul J. Leach
Microsoft
1 Microsoft Way
Redmond, WA, 98052, U.S.A.
Email: paulle@microsoft.co

Rich Salz
The Open Group
11 Cambridge Center
Cambridge, MA 02142, U.S.A.
Email r.salz@opengroup.org

Appendix A – UUID Reference Implementation

/*

** Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.

** Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &

** Digital Equipment Corporation, Maynard, Mass.

** To anyone who acknowledges that this file is provided "AS IS"

** without any express or implied warranty: permission to use, copy,

** modify, and distribute this file for any purpose is hereby

** granted without fee, provided that the above copyright notices and

** this notice appears in all source code copies, and that none of

** the names of Open Software Foundation, Inc., Hewlett-Packard

** Company, or Digital Equipment Corporation be used in advertising

** or publicity pertaining to distribution of the software without

** specific, written prior permission. Neither Open Software

** Foundation, Inc., Hewlett-Packard Company, nor Digital Equipment

** Corporation makes any representations about the suitability of

** this software for any purpose.

*/

#include <sys/types.h>

#include <sys/time.h>

typedef unsigned long unsigned32;

typedef unsigned short unsigned16;

typedef unsigned char unsigned8;

typedef unsigned char byte;

#define CLOCK_SEQ_LAST 0x3FFF

#define RAND_MASK CLOCK_SEQ_LAST

typedef struct _uuid_t {

 unsigned32 time_low;

 unsigned16 time_mid;

Attachment K: UUIDs and GUIDs 122

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

 unsigned16 time_hi_and_version;

 unsigned8 clock_seq_hi_and_reserved;

 unsigned8 clock_seq_low;

 byte node[6];

} uuid_t;

typedef struct _unsigned64_t {

 unsigned32 lo;

 unsigned32 hi;

} unsigned64_t;

/*

** Add two unsigned 64-bit long integers.

*/

#define ADD_64b_2_64b(A, B, sum) \

 { \

 if (!(((A)->lo & 0x80000000UL) ^ ((B)->lo & 0x80000000UL))) { \

 if (((A)->lo&0x80000000UL)) { \

 (sum)->lo = (A)->lo + (B)->lo; \

 (sum)->hi = (A)->hi + (B)->hi + 1; \

 } \

 else { \

 (sum)->lo = (A)->lo + (B)->lo; \

 (sum)->hi = (A)->hi + (B)->hi; \

 } \

 } \

 else { \

 (sum)->lo = (A)->lo + (B)->lo; \

 (sum)->hi = (A)->hi + (B)->hi; \

 if (!((sum)->lo&0x80000000UL)) (sum)->hi++; \

 } \

 }

/*

** Add a 16-bit unsigned integer to a 64-bit unsigned integer.

*/

#define ADD_16b_2_64b(A, B, sum) \

 { \

 (sum)->hi = (B)->hi; \

 if ((B)->lo & 0x80000000UL) { \

 (sum)->lo = (*A) + (B)->lo; \

 if (!((sum)->lo & 0x80000000UL)) (sum)->hi++; \

 } \

 else \

 (sum)->lo = (*A) + (B)->lo; \

 }

/*

** Global variables.

*/

Attachment K: UUIDs and GUIDs 123

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

static unsigned64_t time_last;

static unsigned16 clock_seq;

static void

mult32(unsigned32 u, unsigned32 v, unsigned64_t *result)

{

 /* Following the notation in Knuth, Vol. 2. */

 unsigned32 uuid1, uuid2, v1, v2, temp;

 uuid1 = u >> 16;

 uuid2 = u & 0xFFFF;

 v1 = v >> 16;

 v2 = v & 0xFFFF;

 temp = uuid2 * v2;

 result->lo = temp & 0xFFFF;

 temp = uuid1 * v2 + (temp >> 16);

 result->hi = temp >> 16;

 temp = uuid2 * v1 + (temp & 0xFFFF);

 result->lo += (temp & 0xFFFF) << 16;

 result->hi += uuid1 * v1 + (temp >> 16);

}

static void

get_system_time(unsigned64_t *uuid_time)

{

 struct timeval tp;

 unsigned64_t utc, usecs, os_basetime_diff;

 gettimeofday(&tp, (struct timezone *)0);

 mult32((long)tp.tv_sec, 10000000, &utc);

 mult32((long)tp.tv_usec, 10, &usecs);

 ADD_64b_2_64b(&usecs, &utc, &utc);

 /* Offset between UUID formatted times and Unix formatted times.

 * UUID UTC base time is October 15, 1582.

 * Unix base time is January 1, 1970. */

 os_basetime_diff.lo = 0x13814000;

 os_basetime_diff.hi = 0x01B21DD2;

 ADD_64b_2_64b(&utc, &os_basetime_diff, uuid_time);

}

/*

** See "The Multiple Prime Random Number Generator" by Alexander

** Hass pp. 368-381, ACM Transactions on Mathematical Software,

** 12/87.

*/

static unsigned32 rand_m;

static unsigned32 rand_ia;

static unsigned32 rand_ib;

static unsigned32 rand_irand;

Attachment K: UUIDs and GUIDs 124

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

static void

true_random_init(void)

{

 unsigned64_t t;

 unsigned16 seed;

 /* Generating our 'seed' value Start with the current time, but,

 * since the resolution of clocks is system hardware dependent and

 * most likely coarser than our resolution (10 usec) we 'mixup' the

 * bits by xor'ing all the bits together. This will have the effect

 * of involving all of the bits in the determination of the seed

 * value while remaining system independent. Then for good measure

 * to ensure a unique seed when there are multiple processes

 * creating UUIDs on a system, we add in the PID.

 */

 rand_m = 971;

 rand_ia = 11113;

 rand_ib = 104322;

 rand_irand = 4181;

 get_system_time(&t);

 seed = t.lo & 0xFFFF;

 seed ^= (t.lo >> 16) & 0xFFFF;

 seed ^= t.hi & 0xFFFF;

 seed ^= (t.hi >> 16) & 0xFFFF;

 rand_irand += seed + getpid();

}

static unsigned16

true_random(void)

{

 if ((rand_m += 7) >= 9973)

 rand_m -= 9871;

 if ((rand_ia += 1907) >= 99991)

 rand_ia -= 89989;

 if ((rand_ib += 73939) >= 224729)

 rand_ib -= 96233;

 rand_irand = (rand_irand * rand_m) + rand_ia + rand_ib;

 return (rand_irand >> 16) ^ (rand_irand & RAND_MASK);

}

/*

** Startup initialization routine for the UUID module.

*/

void

uuid_init(void)

{

 true_random_init();

 get_system_time(&time_last);

#ifdef NONVOLATILE_CLOCK

Attachment K: UUIDs and GUIDs 125

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

 clock_seq = read_clock();

#else

 clock_seq = true_random();

#endif

}

static int

time_cmp(unsigned64_t *time1, unsigned64_t *time2)

{

 if (time1->hi < time2->hi) return -1;

 if (time1->hi > time2->hi) return 1;

 if (time1->lo < time2->lo) return -1;

 if (time1->lo > time2->lo) return 1;

 return 0;

}

static void new_clock_seq(void)

{

 clock_seq = (clock_seq + 1) % (CLOCK_SEQ_LAST + 1);

 if (clock_seq == 0) clock_seq = 1;

#ifdef NONVOLATILE_CLOCK

 write_clock(clock_seq);

#endif

}

void uuid_create(uuid_t *uuid)

{

 static unsigned64_t time_now;

 static unsigned16 time_adjust;

 byte eaddr[6];

 int got_no_time = 0;

 get_ieee_node_identifier(&eaddr); /* TO BE PROVIDED */

 do {

 get_system_time(&time_now);

 switch (time_cmp(&time_now, &time_last)) {

 case -1:

 /* Time went backwards. */

 new_clock_seq();

 time_adjust = 0;

 break;

 case 1:

 time_adjust = 0;

 break;

 default:

 if (time_adjust == 0x7FFF)

 /* We're going too fast for our clock; spin. */

 got_no_time = 1;

 else

Attachment K: UUIDs and GUIDs 126

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel Corporation, and Microsoft
Corporation. All rights reserved.

 time_adjust++;

 break;

 }

 } while (got_no_time);

 time_last.lo = time_now.lo;

 time_last.hi = time_now.hi;

 if (time_adjust != 0) {

 ADD_16b_2_64b(&time_adjust, &time_now, &time_now);

 }

 /* Construct a uuid with the information we've gathered

 * plus a few constants. */

 uuid->time_low = time_now.lo;

 uuid->time_mid = time_now.hi & 0x0000FFFF;

 uuid->time_hi_and_version = (time_now.hi & 0x0FFF0000) >> 16;

 uuid->time_hi_and_version |= (1 << 12);

 uuid->clock_seq_low = clock_seq & 0xFF;

 uuid->clock_seq_hi_and_reserved = (clock_seq & 0x3F00) >> 8;

 uuid->clock_seq_hi_and_reserved |= 0x80;

 memcpy(uuid->node, &eaddr, sizeof uuid->node);

}

Network PC System Design Guidelines, Version 1.0b
 © 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company, Intel
Corporation, and Microsoft Corporation. All rights reserved.

Attachment L: DHCP Options For Host System Characteristics

INTERNET DRAFT Mike Henry
 Eric Dittert
 Intel Corp.
 March 26, 1997

 DHCP Options For Host System Characteristics
 <draft-dittert-host-sys-char-01.txt>

Status of this Memo

This document is an Internet Draft. Internet Drafts are working documents of the
Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note
that other groups may also distribute working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six months. Internet
Drafts may be updated, replaced, or obsoleted by other documents at any time. It is
not appropriate to use Internet Drafts as reference material or to cite them other than
as a "working draft" or "work in progress."

Please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific
Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Notice
All product and company names mentioned herein might be trademarks
of their respective owners.

Abstract

The interoperability of configuration services based on the Dynamic Host
Configuration Protocol (DHCP) [1] in an environment of heterogeneous clients
depends on clients accurately identifying themselves and their relevant characteristics
to configuration servers. The class identifier provided through DHCP option 60 [2]
helps in this regard, but such identifiers essentially only enable clients and servers
that are "good friends" to find each other. This draft proposes the definition of two
options that convey particular, generally useful information about the client system.
This enables all servers to recognize this information, and is a step toward a richer
form of interoperability for configuration services.
Expires September 1997 [Page 1]
 March 26, 1997

Attachment L: DHCP Options For Host System Characteristics 128

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

The proposed options are
 * Client System Architecture
 * Client Network Device Interface

This draft also proposes a new type of client identifier based on generated
UUID/GUIDs to be used in conjunction with the DHCP client identifier option (61).

1.0 Introduction

The use of DHCP to provide clients with configuration information in general, and
boot images in particular can be complicated by several circumstances. Among these
are
 1) clients in the same service domain with different system
 architectures or hardware configurations
 2) clients in the same service domain for which different software
 configurations are desired
 3) the desire to have clients and servers provided by different
 vendors successfully interact
(By "clients in the same service domain" we mean clients, requests from which can
reach the same server.) A key element in enabling the successful use of DHCP in
such circumstances is the provision of mechanisms by which clients can accurately
identify themselves and their relevant characteristics to a server.

For identifying characteristics of the client that are relevant to the selection of a boot
image, the currently available mechanisms are the DHCP class identifier option (code
60) and the DHCP vendor specific information option (code 43). By definition, the
vendor specific information option does not address the problem of enabling
interoperability of clients and servers provided by different vendors. Information
conveyed by the class identifier option could enable interoperability, provided that a
sufficiently specific and complete set of class identifiers were defined and agreed to.

We suggest using an alternate approach, in which new, specific options are used to
convey the characteristics of the client that determine which boot image(s) could run
on the client, and the class identifier is used as a (site-specific) designation of the
desired software configuration for the client. Section 2 defines two new options that
are useful for conveying the client's hardware configuration.

For identifying the client as a unique entity, the currently available mechanisms is
the DHCP client identifier option (code 61) [2]. Section 3 of this draft defines for
use in this option an identifier type based on generated GUIDs - identifiers that are

Expires September 1997 [Page 2]
 March 26, 1997

Attachment L: DHCP Options For Host System Characteristics 129

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

guaranteed to be, or are very, very likely to be unique across time and all clients.

2.0 Client Characteristics Options

The options defined in this section provide the server with explicit knowledge about
the client system that is generally useful in selecting an executable that the client can
use as a boot image.

2.1 Client System Architecture Option

DHCP clients SHOULD include this option in DHCPDISCOVER and
DHCPREQUEST messages. Doing so provides the server with explicit knowledge of
the client's system architecture.

DHCP servers that use this option SHOULD include the option in responses that
contain a bootfile name. If included, the value of the option MUST denote a system
architecture for which the bootfile named is valid. DHCP servers MUST NOT
include this option in responses that do not contain a bootfile name.

The format for this option is as follows:

 Code Len System Arch Code
 +-----+-----+-----+-----+
 | TBD | 2 | s1 | s2 |
 +-----+-----+-----+-----+

The currently defined types and their codes are

 System Architecture Code
 ------------------- ----
 Intel Architecture PC 1
 NEC PC-9800 2

2.2 Client Network Device Interface Option

DHCP clients SHOULD include this option in DHCPDISCOVER and
DHCPREQUEST messages. Doing so provides the server with explicit
knowledge of the client's network device.

DHCP servers that use this option SHOULD include the option in responses that
contain a bootfile name. If included, the value of the option MUST denote a network
device for which the bootfile named is valid. DHCP servers MUST NOT include this
option in responses that do not contain a bootfile name.

Expires September 1997 [Page 3]
 March 26, 1997

Attachment L: DHCP Options For Host System Characteristics 130

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Three types of network device specifications are defined for use with this option:
 * devices that support the Universal Network Driver Interface
 (UNDI), as described in the Net PC design guidelines [3]
 * Plug-and-Play devices [4]
 * PCI devices [5]

Each devices that supports (UNDI) SHOULD be specified as an UNDI device,
regardless of whether it is also a Plug-and-Play device or a PCI device. To specify an
UNDI device, the option contains a type code of 1 and the major and minor UNDI
version numbers:

 Code Len Type Major Minor

 +-----+-----+-----+-----+-----+

 | TBD | 3 | 1 | m1 | m2 |

 +-----+-----+-----+-----+-----+

To specify a PCI network device, a type code of 2 is used, and the vendor ID, device
ID, class code, and revision are included:

 Code Len Type Vendor ID Device ID Class code Rev

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 | TBD | 9 | 2 | v1 | v2 | d3 | d4 | c1 | c2 | c3 | r1 |

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

To specify a Plug-and-Play network device, a type code of 3 is used, and the EISA
device ID and the class code are included:

 Code Len Type EISA device ID Class code

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

 | TBD | 8 | 3 | e1 | e2 | e3 | e4 | c1 | c2 | c3 |

 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+

3.0 UUID/GUID-based Client Identifiers

Whenever a client identifier option is included in a DHCP message, it MAY contain
an identifier in UUID/GUID format. A client identifier option containing a type code
of <TBD> MUST contain a 128-bit GUID as follows:

 Code Len Type Client GUID

 +------+------+------+------+------+------+

 | 61 | 17 | t1 | g1 | g2 | ... |

 +------+------+------+------+------+------+

The format of the GUID MUST be as specified in the design guidelines for Net PCs [3].

Expires September 1997 [Page 4]
 March 26, 1997

Attachment L: DHCP Options For Host System Characteristics 131

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

4.0 References

 [1] Droms, R. "Dynamic Host Configuration Protocol", RFC 1531

 [2] Alexander,S. and Droms, R., "DHCP Options and BOOTP Vendor
 Extension" RFC 1533.

 [3] Design Guidelines for a Net PC, reference to be provided

 [4] Plug-and-Play specification, reference to be provided

 [5] PCI specification, reference to be provided

5.0 Authors' Addresses

 Mike Henry
 Intel Corporation, MS JF3-408
 5200 NE Elam Young Pkwy
 Hillsboro, OR 97124

 Phone: (503) 264-9689
 Email: Mike_Henry@ccm.jf.intel.com

 Eric Dittert
 Intel Corporation, MS JF3-206
 5200 NE Elam Young Pkwy
 Hillsboro, OR 97124

 Phone: (503) 264-8461
 Email: Eric_Dittert@ccm.jf.intel.com

Expires September 1997 [Page 5]

Hardware Glossary 132

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Hardware Glossary
A
ACPI Advanced Configuration and Power Interface. A specification that defines a
new interface to the system board that enables the operating system to implement
operating-system directed power management and system configuration. Following
the ACPI allows system manufacturers to build systems consistent with the OnNow
design initiative for instantly available PCs.

ACPI hardware Computer hardware with the features necessary to support
operating system power management and with the interfaces to those features
described using the Description Tables as specified in Advanced Configuration and
Power Interface Specification.

adapter See device.

add-on devices Devices that are traditionally added to the base PC system to
increase functionality, such as audio, networking, graphics, SCSI controller, and so
on. Add-on devices fall into two categories: devices built onto the system board and
devices on expansion cards added to the system through a system board connector
such as PCI.

agent Software that runs on a client computer for use by administrative software
running on a server. Agents are typically used to support administrative actions,
such as detecting system information or running services.

algorithm In compression software, refers to a specific formula used to compress
or decompress video or other data.

analog A method of signal representation by an infinitely smooth universe of
numeric values. Measurements that are characterized as analog include readings of
voltage and current. Analog devices are characterized by dials and sliding
mechanisms. Compare with digital.

ANSI American National Standards Institute. A standards-setting, non-
governmental organization that develops and publishes standards for voluntary use
in the United States.

API Application programming interface. A set of routines that an applications
program uses to request and carry out lower-level services performed by a computer
operating system.

APM Advanced Power Management. 1. A software interface (defined by
Microsoft and Intel) between hardware-specific power management software (such

Hardware Glossary 133

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

as that located in a system BIOS) and an operating system power management
driver. 2. An abridgment of the APM BIOS Interface Specification title.

arbitrator 1. A software module in Windows that handles the allocation of
hardware resources among devices. 2. Under Windows 95, the Plug and Play device
driver responsible for allocating a specific resource among all drivers that require
the resource. For example, VDMAD is a DMA-channel arbitrator, and VPICD has
services for allocating IRQ lines. Windows 95 provides arbitrators for standard I/O,
memory, hardware interrupt, and DMA-channel resources.

architecture A general term referring to the structure of all or part of a computer
system. Also covers the design of system software, such as the operating system, as
well as referring to the combination of hardware and basic software that links
machines on a computer network.

ASCII American Standard Code for Information Interchange. The most popular
coding method used by small computers for converting letters, numbers,
punctuation, and control codes into digital form.

assigned configuration Drivers examine this portion of the device node to
determine which resources have been allocated for the device. For Plug and Play
cards, the assigned resources for a device can change dynamically or from one
system start-up to the next.

ATA AT Attachment. An integrated bus usually used between host processors and
disk drives. Used interchangeably with IDE.

ATAPI AT Attachment Packet Interface. A hardware and software specification
that documents the interface between a host computer and CD-ROM drives using
the ATA bus.

B
bandwidth Usually used in reference to the amount of data per unit of time that
must move from one point to another, such as from CD-ROM to processor.

BIOS Basic input/output system. A set of routines that works closely with the
hardware to support the transfer of information between elements of the system,
such as memory, disks, and the monitor. Although critical to performance, the BIOS
is usually invisible to the end user; however, programmers can access it.

BIOS enumerator Responsible in a non-ACPI Plug and Play system for
identifying all hardware devices on the motherboard of the computer. The BIOS
supports an API that allows all Plug and Play computers to be queried in a common
manner.

Hardware Glossary 134

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

bpp Bits per pixel. The number of bits used to represent the color value of each
pixel in a digitized image.

buffer A reserved portion of memory in which data is temporarily held pending an
opportunity to complete its transfer to or from a storage device or another location
in memory.

bus enumerator In a Plug and Play system, a bus device driver that detects
devices located on a specific bus and loads information about devices into the
hardware tree.

C
cache A special memory subsystem in which frequently used data values are
duplicated for quick access. Cache memory is always faster than RAM.

CD-ROM Compact disc read-only memory. A 4.75-inch laser-encoded optical
memory storage medium (developed by NV Philips and Sony Corporation) with the
same constant linear velocity (CLV) spiral format as compact audio discs and some
videodiscs. CD-ROMs can hold about 550 MB of data.

CI Component Instrumentation. A specification for DMI related to the service
layer.

CIM Common Information Model. Describes the WBEM data representation
schema that is now a DMTF-sponsored industry standard. CIM evolved from
HMMS (HyperMedia Management Schema).

CIMOM CIM Object Manager. A key component of the WBEM architecture. A
central message of WBEM is uniform data representation encapsulated in object-
oriented fashion in the CIM. CIMOM provides a collection point and manipulation
point for these objects. Formerly HMOM.

class For hardware, the manner in which devices and buses are grouped for
purposes of installing and managing device drivers and allocating resources. The
hardware tree is organized by device class, and Windows 95 uses class installers to
install drivers for all hardware classes.

class driver A driver that provides system-required, hardware-independent support
for a given class of physical devices. Such a driver communicates with a
corresponding hardware-dependent port driver, using a set of system-defined device
control requests, possibly with additional driver-defined device control requests.
Under WDM, the class driver creates a device object to represent each adapter
registered by minidrivers. The class driver is responsible for multiprocessor and
interrupt synchronization.

Hardware Glossary 135

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

codec Coder-decoder. A filter for data that manipulates it in some form, usually by
compressing or decompressing the data stream.

COM 1) Component Object Model; the core of OLE. Defines how OLE objects
and their clients interact within processes or across process boundaries. 2) Legacy
serial port.

compatibility mode An asynchronous, host-to-peripheral parallel port channel
defined in the IEEE 1284–1944 standard. Compatible with existing peripherals that
attach to the Centronics-style PC parallel port.

compression The translation of data (video, audio, digital, or a combination) to a
more compact form for storage or transmission.

Configuration Manager The Windows 95 Plug and Play system component that
drives the process of locating devices, setting up their nodes in the hardware tree,
and running the resource allocation process. Each of the three phases of
configuration management—boot time (BIOS), real mode, and protected mode—
have their own configuration managers.

connection A negotiated method of communication between devices, whether
implemented in hardware or software.

CPU Central processing unit. The computational and control unit of a computer;
the device that interprets and executes instructions. By definition, the CPU is the
chip that functions as the “brain” of the computer.

D
data rate The speed of a data transfer process, normally expressed in bits per
second or bytes per second.

DDC Display data channel. The Plug and Play baseline for monitors. The
communications channel between a monitor and the display adapter to which it is
connected. This channel provides a method for the monitor to convey its identity to
the display adapter.

DDI Device driver interface.

DDK Device driver kit.

density The degree of darkness of an image. Also, the percent of screen used in an
image.

device 1. Any circuit that performs a specific function, such as a parallel port. 2.
For WDM, usually refers to a device object, but also refers to a unit of hardware—
for example, an audio adapter—that is detected by Plug and Play.

Hardware Glossary 136

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Device Bay An industry specification that defines a mechanism for both peripheral
devices and system bays that allows adding and upgrading PC peripheral devices
without opening the chassis.

device ID A unique ASCII string created by enumerators to identify a hardware
device and used to cross-reference data about the device stored in the registry.
Distinguishes each logical device and bus from all others on the system.

device node The basic data structure for a given device, built by the Configuration
Manager. Device nodes are built into memory at system startup for each device and
enumerator. Each device node contains information about the device, such as
currently assigned resources. The complete hierarchical representation of all device
nodes, representing all currently installed devices, is referred to as the hardware
tree.

devnode See device node.

DIB Device-independent bitmap. A file format designed to ensure that bitmap
graphics created using one application can be loaded and displayed in another
application exactly the way they appeared in the originating application.

digital A method of signal representation by a set of discrete numerical values, as
opposed to a continuously fluctuating current or voltage. Compare with analog.

disk I/O controller Also HDC. A special-purpose chip and circuitry that directs
and controls reading from and writing to a computer’s disk drive.

DLL Dynamic link library. API routine that User-mode applications access
through ordinary procedure calls. The code for the API routine is not included in the
user’s executable image. Instead, the operating system automatically modifies the
executable image to point to DLL procedures at run time.

DMA Direct memory access. A method of moving data from a device to memory
(or vice versa) without the help of the microprocessor. The system board uses a
DMA controller to handle a fixed number of channels, each of which can be used
by only one device at a time.

DMI Desktop Management Interface. A framework created by the DMTF. DMTF
specifications define industry-standard interfaces for instrumentation providers and
management applications.

DMTF Desktop Management Task Force.

dock To insert a portable computer into a base unit. Cold docking means the
computer must begin from a power-off state and restart before docking. Hot docking
means the computer can be docked while running at full power. See also warm
docking.

Hardware Glossary 137

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

docking station The base computer unit into which a user can insert a portable
computer, expanding it to a desktop equivalent. A typical docking station provides
drive bays, expansion slots, all the ports on an equivalent desktop computer, and
AC power.

dongle A physical device, attached to a PC’s I/O port, that adds hardware
capabilities.

driver Kernel-mode code used either to control or emulate a hardware device.

DSP Digital signal processor. An integrated circuit designed for high-speed data
manipulations. Used in audio, communications, image manipulation, and other data-
acquisition and data-control applications.

DVD Optical disk storage that encompasses audio, video, and computer data.
dynamic detection The process by which a system can detect that a new device
has been added or removed from the PC. This process allows the operating system
and applications to immediately begin using the added devices or stop using the
removed devices without rebooting the system.

E
ECP Extended capabilities port. An asynchronous, 8-bit–wide parallel channel
defined by IEEE 1284–1944 that provides PC-to-peripheral and peripheral-to-PC
data transfers.

EISA Extended Industry Standard Architecture. A 32-bit PC expansion bus
designed as a superset of the ISA bus. Designed to expand the speed and data width
of the legacy expansion bus while still supporting older ISA cards.

embedded controller The general class of microcontrollers used to support OEM-
specific implementations, mainly in mobile environments. The embedded controller
performs complex low-level functions through a simple interface to the host
microprocessor(s).

enumeration The process by which logical devices and buses, and their available
resources, are identified by Plug and Play during system setup.

enumerator A Plug and Play device driver that detects devices below its own
device node, creates unique device IDs, and reports to Configuration Manager
during startup. For example, a SCSI adapter provides a SCSI enumerator that
detects devices on the SCSI bus.

expansion bus A group of address, data, and control lines that provide a buffered
interface to devices located either on the system board or on cards that are plugged
into expansion connectors. Common expansion buses included on the system board
are USB, PC Card, and PCI.

Hardware Glossary 138

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

expansion card A card that connects to an expansion bus and contains one or more
devices.

expansion ROM See option ROM.

F
FAT File allocation table. A table or list maintained by an operating system to
keep track of the status of various segments of disk space used for file storage.

FDC Floppy disk drive controller. A special-purpose chip and associated circuitry
that directs and controls reading from and writing to a computer’s disk drive.

FIFO First in/first out. A method for processing a queue in which items are
removed in the same order they were added.

full duplex In terms of data flow, indicates bidirectional data flow.

G
GB Gigabyte.

GUID Globally unique identifier. A 16-byte value generated from the unique
identifier on a adapter, the current date and time, and a sequence number. This is
used to allow any party to create identifiers that will be guaranteed not to overlap
with other similarly created identifiers.

H
hardware branch The hardware archive root key in the registry that is a superset
of the memory-resident hardware tree. Although the hardware tree contains
information only about those devices currently detected and running in the system,
the registry contains a complete list of all hardware ever installed on the particular
computer. The hardware root key is \\Hkey_Local_Machine\Hardware.

hardware tree A record in RAM of the current system configuration based on the
configuration information for all devices in the hardware branch of the registry. The
hardware tree is created each time the system is started or whenever a dynamic
change occurs to the system configuration.

HCI Host controller interface. System-level interface supporting USB.

HCL Hardware Compatibility List. See WHQL.

HCT Hardware Compatibility Tests. A suite of tests from WHQL to verify
hardware and device driver operations under a specific operating environment.
These tests exercise the combination of a device, a software driver, and an

Hardware Glossary 139

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

operating system under controlled conditions to verify that all components operate
properly.

HDC Hard disk I/O controller.

HID Human Interface Device.

high resolution An adjective describing improvement in display image quality as a
result of increasing the number of pixels per square inch.

HMMP HyperMedia Management Protocol. The encapsulation of CIM objects
and operations on those objects.

HMMS See CIM.

HMOM See CIMOM.

Human Interface Device Specification The device class definition developed by
the USB standards group for HIDs. Serves as the basis for the WDM input device
support, and unifies input devices by providing flexible data reporting, typeless
data, and arrayed and variable input and output.

Hz Hertz (cycles per second).

I
I2O Intelligent I/O.

IA-PC Intel Architecture Personal Computer. A general descriptive term for
computers built with processors conforming to the architecture defined by the Intel
processor family based on the 486 instruction set.

IDE Integrated Device Electronics. A type of disk-drive interface where the
controller electronics reside on the drive itself, eliminating the need for a separate
adapter card.

IEEE Institute of Electrical and Electronics Engineers. Organization that
developed the IEEE 802 standards, among others, for the physical and data-link
layers of LANs following the ISO/OSI model.

IETF Internet Engineering Task Force.

IHV Independent hardware vendor.

image resolution The fineness or coarseness of an image as it is digitized;
measured in dots per inch (DPI), typically ranging from 200 to 400 DPI.

Hardware Glossary 140

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

INF file Information file. A file created for a particular adapter that provides the
operating system with information required to set up a device, such as a list of valid
logical configurations for the device, the names of driver files associated with the
device, and so on. An INF file is typically provided by the device manufacturer on a
disk with an adapter.

INI file Initialization file. Commonly used under Windows 3.x and earlier, INI
files have been used by both the operating system and individual applications to
store persistent settings related to an application, driver, or piece of hardware. In
Windows NT and Windows 95, INI files are supported for backward compatibility,
but the registry is the preferred location for storing such settings.

instrumentation A mechanism for reporting information about the state of PC
hardware and software to enable management applications to ascertain and change
the state of a PC and to be notified of state changes.

integrated device Any device—such as a parallel port, graphics adapter, and so
on—that is designed on the system board rather than on an expansion card.

interface For parameters on a connection request, a specific set of methods and
properties implemented on a medium that a filter connection uses to communicate,
such as a specific set of IOCTLs.

I/O Input/output. Two of the three activities that characterize a computer (input,
processing, and output). Refers to the complementary tasks of gathering data for the
microprocessor to work with and make the results available to the user through a
device such as the display, disk drive, or printer.

IOCTL Input/output control. A custom class of IRPs available to User mode. Each
WDM class driver has a set of IOCTLs that it uses to communicate with
applications. The IOCTLs give the class driver information about intended usage by
applications. The class driver performs all IOCTL parameter validation.

IPL Initial program load. A device used by the system during the boot process to
load an operating system into memory.

IrDA Infrared Data Association.

IRP I/O request packet. Data structures that drivers use to communicate with each
other. The basic method of communication between kernel-mode devices. An IRP is
a key data structure for WDM, which features multiple layered drivers. In WDM,
every I/O request is represented by an IRP that is passed from one driver layer to
another until the request is complete. When a driver receives an IRP, it performs the
operation the IRP specifies, and then either passes the IRP back to the I/O Manager
for disposal or onto an adjacent driver layer. An IRP packet consists of two parts: a
header and the I/O stack locations.

Hardware Glossary 141

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

IRQ Interrupt request. A method by which a device can request to be serviced by
the device’s software driver. The system board uses a PIC to monitor the priority of
the requests from all devices. When a request occurs, the microprocessor suspends
the current operation and gives control to the device driver associated with the
interrupt number issued. The lower the number—for example, IRQ3—the higher
the priority of the interrupt. Many devices only support raising requests of specific
numbers.

ISA Industry Standard Architecture. An 8-bit (and later, a 16-bit) expansion bus
that provides a buffered interface from devices on expansion cards to the PC
internal bus.

ISDN Integrated Service Digital Network. A set of communications standards that
enable a single phone line or optical cable to carry voice, digital network services,
and video.

ISO International Standards Organization.

isochronous Refers to a communication protocol based on time slices rather than
handshaking. For example, a process might have 20 percent of total bus bandwidth.
During its time slice, the process can stream data.

isolation The Plug and Play process by which cards on an ISA bus are
distinguished from each other after system startup.

ISO/OSI International Standards Organization Open Systems Interconnection
model. A layered architecture that standardizes levels of service and types of
interaction for computers exchanging information through a communications
network.

ISR Interrupt service routine. A routine whose function is to service a device when
it generates an interrupt.

K
K Kilobyte.

kernel The core of the layered architecture that manages the most basic operations
of the operating system, such as sharing the processor between different blocks of
executing code, handling hardware exceptions, and other hardware-dependent
functions.

kernel mode The processor mode that allows full, unprotected access to the
system. A driver or thread running in kernel mode has access to system memory and
hardware.

kernel-mode driver Driver for logical, virtual, or physical devices. Part of the
underlying operating system that supports ring 0 operations.

Hardware Glossary 142

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

L
LAN Local area network. A group of computers and other devices dispersed over a
relatively limited area and connected by a communications link that enables any
device to interact with any other device on the network. Compare with WAN.

legacy Any feature in the PC system based on older technology for which
compatibility continues to be maintained in other system components.

local bus Usually refers to a system bus directly connected to the microprocessor
on a system board. Used colloquially to refer to system board buses located closer
to the microprocessor than are ordinary expansion buses (that is, with less
buffering), which are therefore capable of greater throughput.

M
MB Megabyte.

MCD Miniclient Driver. An OpenGL driver model in which the driver is
responsible only for handling those features that can be accelerated in hardware,
leveraging software implementation to handle the rest of the pipeline.

MIDI Musical Instrument Digital Interface. An industry-standard connection for
computer control of musical instruments and devices. A hardware and data standard
for communicating between hardware. Most references involve only the data
standard, which is a byte stream used for controlling musical instruments and
storing the output of such instruments.

minidriver A hardware-specific DLL that uses a operating system-provided class
driver to accomplish most actions through functions call and provides only device-
specific controls. Under WDM, the minidriver registers each adapter with the class
driver, which creates the device object. The minidriver uses the class driver’s
device object to make system calls.

miniport driver A device-specific kernel-mode driver linked to a Windows NT or
WDM port driver, usually implemented as a DLL that provides an interface
between the port driver and the system.

MIPS Millions of instructions per second. A common measure of processor speed.

MIS Management information system.

monolithic driver A driver that has many different classes of functionality
contained in the same driver.

motherboard See system board.

Hardware Glossary 143

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

MPEG Motion Picture Experts Group. Used when referring to one of several
standard video-compression schemes. A codec for squeezing full-screen, VHS-
quality digital video into a small data stream so it can be played from a CD-ROM
drive.

multifunction device A piece of hardware that supports multiple, discrete
functions, such as audio, mixer, and music, on a single adapter.

multimedia Refers to the delivery of information that combines different content
formats (motion video, audio, still images, graphics, animation, text, and so forth).

N
NDIS Network Driver Interface Specification. The interface for network drivers
used in Windows and Windows NT. NDIS provides transport independence for
network vendors because all transport drivers call the NDIS interface to access the
network.

Net PC Network PC. A PC designed to meet the industry specification for
Network PC systems, which optimizes PC design for flexibility and manageability
in order to reduce the total cost of ownership.

nibble mode An asynchronous, peripheral-to-host channel defined in the IEEE
1284-1944 standard. Provides a channel for the peripheral to send data to the host,
which is commonly used as a means of identifying the peripheral.

NMI Nonmaskable Interrupt. An interrupt that cannot be overruled by another
service request. A hardware interrupt is called nonmaskable if it bypasses and takes
priority over interrupt requests generated by software, the keyboard, and other
devices.

non-interlaced The method of scanning all lines on a display from top to bottom in
sequential order at a specific rate per second. Unlike television, which uses an
interlaced scanning method, computers typically use non-interlaced monitors.

NSP Native signal processing.

NTFS Windows NT file system. An advanced file system designed for use
specifically with the Windows NT operating system. NTFS supports file system
recovery and extremely large storage media, in addition to other advantages.

O
OEM Original equipment manufacturer. Used primarily to refer to PC systems
manufacturers.

Hardware Glossary 144

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

OLE Object linking and embedding. A way to transfer and share information
among applications. OLE is based on the COM programming model and binary
standard.

OnNow A design initiative that seeks to create all the components required for a
comprehensive, system-wide approach to system and device power control. OnNow is
a term for a PC that is always on but appears off and that responds immediately to
user or other requests.
option ROM Optional read-only memory found on PC bus expansion cards.
Option ROMs usually contain additional firmware required to properly boot the
peripheral connected to the expansion card, for example, a hard drive. Also
expansion ROM.

P
PC 97 The 1997–98 requirements for PC system and peripheral design defined in
PC 97 Hardware Design Guide (Microsoft Press, 1996).

PC Card A trademark of PCMCIA. A removable device that is designed to be
plugged into a PCMCIA slot and used as a memory-related peripheral.

PCI Peripheral Component Interconnect. A high-performance, 32-bit or 64-bit bus
designed to be used with devices that have high bandwidth requirements, such as
the display subsystem.

PCMCIA Personal Computer Memory Card International Association. Sometimes
used to refer to a controller for a type of expansion card documented in the
PCMCIA standards.

PIC Programmable interrupt controller

pixels An abbreviation for picture element. The minimum raster display element,
represented as a point, with a specified color or intensity level. One way to measure
picture resolution is by the number of pixels used to create images.

planar See system board.

Plug and Play (PnP) A design philosophy and set of specifications that describe
hardware and software changes to the PC and its peripherals that automatically
identify and arbitrate resource requirements among all devices and buses on the
system. Plug and Play specifies a set of API elements that are used in addition to,
not in place of, existing driver architectures.

Plug and Play BIOS A BIOS with responsibility for configuring Plug and Play
cards and system-board devices during system power up. Provides runtime
configuration services for system board devices after startup. See also ACPI.

Hardware Glossary 145

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

port A connection or socket used to connect a device—such as a printer, monitor,
or modem— to the computer. Information is sent from the computer to the device
through a cable.

port driver A low-level driver that responds to a set of system-defined device
control requests and possibly to an additional set of driver-defined (private) device
control requests sent down by a corresponding class driver. A port driver insulates
class drivers from the specifics of host bus adapters and synchronizes operations for
all its class drivers.

POST Power-on self-test. A procedure of the system BIOS that identifies, tests,
and configures the PC in preparation for loading the operating system.

power management Mechanisms in software and hardware to minimize system
power consumption, manage system thermal limits, and maximize system battery
life. Power management involves trade-offs among system speed, noise, battery life,
processing speed, and AC power consumption. Power management is required for
some system functions, such as appliance operations (including answering machine,
furnace control, and so on).

power policy For power management, the decisions that determine how to save
energy and when to go to sleep, based on end-user preferences, application needs,
and system hardware capabilities.

power resources Resources such as power planes, clock sources, and so on that a
device requires to operate in a given power state.

power sources The battery and AC adapter that supply power to a platform.

property In WDM and Windows NT device driver models, an aspect of the device
or stream that can be set or retrieved, such as volume level.

property set In WDM and Windows NT device driver models, a method defined
to set and get properties on a driver. Each property set has a unique identifier,
which represents types of related information and is used to access the property set.

R
RAM Random access memory. Semiconductor-based memory that can be read and
written by the microprocessor or other hardware devices. Refers to volatile
memory, which can be written as well as read.

RAMDAC RAM digital-to-analog converter. A chip built into some VGA and
SVGA display adapters that translates the digital representation of a pixel into the
analog information needed by the monitor to display it. The presence of a
RAMDAC chip usually enhances overall display performance.

raster A rectangular pattern of lines.

Hardware Glossary 146

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

raster graphics Also bitmapped graphics. Images defined as a set of pixels or
dots in a column-and-row format.

rasterization The conversion of vector graphics (images described mathematically
as points connected by straight lines) to equivalent images composed of pixel
patterns that can be stored and manipulated as sets of bits.

real time In computing, refers to an operating mode under which data is received
and processed; the results are returned instantaneously.

real-time processing Processing that supports real-time functions such as
telephony.

Redbook audio The data format standard for conventional audio CDs used in
home stereo systems.

registry In Windows and Windows NT, the tree-structured hierarchical database
where general system hardware and software settings are stored. The registry
supersedes the use of separate INI files for all system components and applications
that know how to store values in the registry.

resolution Number of pixels per unit of area. A display with a finer grid contains
more pixels and thus has a higher resolution and is capable of reproducing greater
detail in an image.

resource 1. Any sort of set from which a subset can be allocated for use by a
client, such as memory, bus bandwidth, or MIPS. This is not the same as resources
that are allocated by Plug and Play. 2. A general term that refers to IRQ signals,
DMA channels, I/O port addresses, and memory addresses for Plug and Play.

resource arbitrator In Plug and Play device configuration, a set of functions used
by the configuration manager to arbitrate and allocate resources on the PC.

resource conflict In Plug and Play device configuration, the result of more than
one device sharing the same, nonshareable resource. Conflicts can cause the device
to be partially functional or nonfunctional, or can cause the PC to malfunction
completely.

resource data type function A function that describes the resource requirements
of an ISA expansion card as well as the programmability available on the card and
its interdependencies.

RISC Reduced instruction set computing. A type of microprocessor design that
focuses on rapid and efficient processing of a relatively small set of instructions.
RISC architecture limits the number of instructions that are built into the
microprocessor, but optimizes each so it can be carried out very rapidly—usually
within a single clock cycle.

Hardware Glossary 147

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

RISC-based Refers to computers based on Windows NT–compatible
implementations of RISC processors.

RLE Run-length encoding. A data-compression technique in which successive
bytes of identical data are converted into a 2-byte pair, consisting of the repeated
data byte and the repeat count.

S
scalability The ability to vary the information content of a program by changing
the amount of data that is stored, transmitted, or displayed. In a video image, this
translates to creating larger or smaller windows of video on screen (shrinking
effect).

scaling Process of uniformly changing the size of characters or graphics.

SCAM SCSI Configured Automatically.

SCI System control interrupt. A system interrupt used by hardware to notify the
operating system of ACPI events. The SCI is an active low, shareable, level
interrupt.

SCSI Small computer system interface. Pronounced “scuzzy.” An I/O bus designed
as a method for connecting several classes of peripherals to a host system without
requiring modifications to generic hardware and software.

SDK Software development kit.

Smart Battery subsystem A battery subsystem that conforms to the ACPI
requirements and implementation defined in Smart Battery Charger Specification
and related specifications.

SMI System management interrupt. An operating-system–transparent interrupt
generated by interrupt events on legacy systems. By contrast, on ACPI systems,
interrupt events generate an operating-system–visible interrupt that is shareable
(edge-style interrupts will not work).

SMS 1) Microsoft Systems Management Server. Provides a centralized
management service for distributed systems. 2) Short messaging service.

socket services In Windows, a protected-mode VxD that manages PC Card
hardware. Provides a protected-mode PCMCIA Socket Services 2.x interface for
use by Card Services. A socket-services driver must be implemented for each
separate PC Card controller that is used.

software device A filter in kernel streaming and DirectShow (formerly
ActiveMovie) that has no underlying hardware associated with it.

Hardware Glossary 148

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

Sound Blaster Hardware produced by Creative Labs, Inc., that represents for MS-
DOS–based games one of the major hardware interfaces for both audio and music
(specifically MIDI) data.

SPI Service Provider Interface.

spin down A power-management capability in which a hard drive shuts down its
spindle motor.

static resources Device resources, such as IRQ signals, DMA channels, I/O port
addresses, and memory addresses, that cannot be configured or relocated.

SVD Simultaneous voice/data. A technology used in TAPI-based modem
technology.

system board Also motherboard or planar. The primary circuit board in a PC that
contains most of the basic components of the system.

system context The volatile data in the system that is not saved by a device driver.

system devices Devices on the system board, such as interrupt controllers,
keyboard controller, real-time clock, DMA page registers, DMA controllers,
memory controllers, FDC, IDE ports, serial and parallel ports, PCI bridges, and so
on. In today’s PCs, these devices are typically integrated in the supporting chip set.

T
TAPI Telephony Application Program Interface. A set of Win32-based calls that
applications use to control modems and telephones by routing application function
calls to the appropriate service provider DLL for a modem.

telephony Telephone technology. The conversion of sound into electrical signals,
its transmission to another location, and its reconversion to sound, with or without
the use of connecting wires.

U
UART Universal Asynchronous Receiver/Transmitter. A module composed of a
single integrated circuit, which contains both the receiving and transmitting circuits
required for asynchronous serial communication.

UNC Universal naming convention.

Unimodem Universal modem driver. A driver-level component that uses modem
description files to control its interaction with the communications driver,
VCOMM.

Hardware Glossary 149

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

UPS Uninterruptible power supply. A device connected between a computer and a
power source that ensures that electrical flow to the computer is not interrupted
because of a blackout and, in most cases, protects the computer against potentially
damaging events such as power surges and brownouts.

URB USB request block. Clients send URB transfers to the bus by including a
pointer in an IRP to a URB structure; a function within the URB identifies the
specific request.

USB Universal Serial Bus. A bidirectional, isochronous, dynamically attachable
serial interface for adding peripheral devices such as game controllers, serial and
parallel ports, and input devices on a single bus.

USB class The class of filters under WDM that provides a bus interface and bus
enumerator for USB.

User mode For Windows and Windows NT, the nonprivileged processor mode in
which application code executes, including protected subsystem code in
Windows NT.

User-mode drivers Win32-based multimedia drivers and VDDs for MS-DOS–
based applications with application-dedicated devices. For more information, see
the Multimedia Drivers and Virtual DOS Drivers documentation in the
Windows NT DDK.

V
VAR Value added reseller. A company that resells hardware and software
packages to developers and/or end users.

VBI Vertical blanking interval. The time interval between television fields needed
for the scanning gun to move from the bottom to the top of the screen for the start of
the next field.

VCACHE In Windows, a 32-bit protected-mode cache driver.

VCOMM In Windows, a 32-bit protected-mode communications driver.

VCR Video cassette recorder. An analog magnetic recording and playback
machine. Usually used for recording and viewing full-motion video; also useful as a
data backup device.

VDD Virtual display driver.

VESA Video Electronics Standards Association. The governing body that
establishes standards for the video and graphics portions of the electronics industry.

Hardware Glossary 150

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

VGA Video graphics array. A video adapter that supports 640x480-pixels color
resolution. Video display standard for boot devices under Windows operating
systems. Provides medium-resolution text and graphics.

VM Virtual machine. Software that mimics the performance of a hardware device.
For example, a software program that allows applications written for an Intel
processor to be run on a Motorola chip interprets the Intel machine instructions,
becoming a virtual Intel machine.

VxD Virtual Device Driver. A device driver that runs at the privileged ring 0
protected mode of the microprocessor. Can extend the services of the Windows
kernel, supervise hardware operations, or perform both functions. Such driver files
are usually named according to the scheme VxD, where x refers to the device or
service supported.

W
WAN Wide area network. A communications network that connects
geographically separated areas. Compare with LAN.

warm docking A method of removing or installing a mobile system in a docking
station with which the computer can be docked or undocked while in a reduced
power state, such as suspend.

WBEM Web-based Enterprise Management. Technology under development by
BMC Software, Inc., Cisco Systems, Inc., Compaq Computer Corporation, Intel
Corporation, and Microsoft Corporation, based on standards being developed by
DMTF and IETF, to provide a mechanism to specify information exchange between
management applications and managed components.

WDL Windows Driver Library. See WHQL.

WDM Win32 Driver Model. A 32-bit driver model based on the Windows NT
driver model that is designed to provide a common architecture of I/O services and
binary-compatible device drivers for both Windows NT and Windows operating
systems for specific classes of drivers. These driver classes include USB and IEEE
1394 buses, audio, still-image capture, video capture, and HID-compliant devices
such as USB mice, keyboards, and joysticks. Provides a model for writing kernel-
mode drivers and minidrivers, and provides extensions for Plug and Play and power
management.

WDM DDK Provides the supplementary header files used together with the
Windows NT DDK to build WDM drivers.

WDM power management Facilities provided in WDM for drivers to implement
power policy and control. DDIs are defined for synchronizing power state changes
with other power management activities in the system and for detecting device

Hardware Glossary 151

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

idleness. IRPs are defined for setting power sate, enabling wakeup, and querying
power status.

WfM Wired for Management initiative, aimed at increasing the manageability of
desktop PCs and servers and improving the management software for these systems.

WHQL Windows Hardware Quality Labs. Formerly Microsoft Compatibility
Labs. Provides compatibility testing services to test hardware and drivers for
Windows and Windows NT. Administers testing for the “Designed for Microsoft
Windows” logo programs. Information: http://www.microsoft.com/hwtest/.

Win32 API A 32-bit application programming interface for both Windows and
Windows NT that includes sophisticated operating-system capabilities, security,
and API routines for Windows-based applications.

Windows Refers to the Microsoft Windows 95 operating system, including any
add-on capabilities and any later versions of the operating system.

Windows NT Refers to the Microsoft Windows NT version 4.0 operating system,
including any add-on capabilities and any later versions of the operating system,
unless specific design issues are defined that relate to version 5.0.

Windows NT DDK Supports Windows NT, provided through MSDN Professional
membership. Documents the Windows NT driver model (upon which WDM is
based) and is an essential component for building WDM drivers.

Windows NT driver model The layered device driver model used under the
Windows NT operating system. For information, see Inside Windows NT, by Helen
Custer (Microsoft Press, 1993).

WMI Windows Management Instrumentation. Extensions to WDM being
developed for Windows NT 5.0 and Windows 98 to provide an operating system
interface through which instrumented components can provide information and
notifications.

workstation In general, a powerful computer with considerable calculating and
graphics capability.

Z
ZAK Zero Administration Kit for Windows NT Workstation. A set of tools,
methodologies, and guidelines for IT Managers and OEMs that incorporates and
supplements existing Windows NT technologies to allow for simplified
implementation of a secure, policy-based management.

Zero Administration Windows A Microsoft initiative that focuses on improving
Windows and Windows NT for maximum automation of administrative tasks with
centralized control and maximum flexibility.

Hardware Glossary 152

Network PC System Design Guidelines, Version 1.0b
© 1997 Compaq Computer Corporation, Dell Computer Corporation, Hewlett Packard Company,
Intel Corporation, and Microsoft Corporation. All rights reserved.

